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Introduction

• Instance search (INS) task

– Provided: separate person and location examples

– Topic: combination of a person and a location

– Target: retrieve specific persons in specific locations

Query person

(Ryan)

Query location

(Cafe1)

Ryan in Cafe1
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Our approach

• Location-specific search

– Integrates handcrafted and deep features

– Similarity score: 𝑠𝑖𝑚𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑤1 ∙ 𝐴𝐾𝑀 +𝑤2 ∙ 𝐷𝑁𝑁

AKM-based 

location search

DNN-based 

location search
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Location-specific search

• AKM-based location search

– Keypoint-based BoW features

are applied to capture local

details

– Total 6 kinds of BoW features,

which are combinations of 3

detectors and 2 descriptors

– AKM algorithm is used to get

one-million dimensional visual

words

• Similarity score:

𝐴𝐾𝑀 =
1

𝑁


𝑘
𝐵𝑂𝑊 𝑘
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Location-specific search

• DNN-based location search

– DNN features are used to capture semantic information

– Ensemble of 3 CNN models

VGGNet

GoogLeNet

ResNet
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Location-specific search

• DNN-based location search

– All 3 CNNs are trained with progressive training strategy

• Progressive training

Training data

Query

examples VGGNet

GoogLeNet

ResNet
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Our approach

• Person-specific search

– We apply face recognition technique based on deep model

– We also conduct text-based person search, where persons’

auxiliary information is minded from the provided video

transcripts
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Person-specific search

• Face recognition based person search

– Face detection

16



Person-specific search

• Face recognition based person search

– Face detection

– Remove “bad” faces automatically: hard to distingush

17
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• Face recognition based person search

– Face detection

– Remove “bad” faces automatically: hard to distingush
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Person-specific search

• Face recognition based person search

– We use VGG-Face model to extract face features

– We integrate cosine similarity and SVM prediction scores to

get the person similarity scores.

𝑠𝑖𝑚𝑝𝑒𝑟𝑠𝑜𝑛 = 𝑤1 ∙ 𝐶𝑂𝑆 + 𝑤2 ∙ 𝑆𝑉𝑀
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Person-specific search

• Face recognition based person search

– We use VGG-Face model to extract face features

– We integrate cosine similarity and SVM prediction scores to

get the person similarity scores.

– We adopt similar progressive training strategy to finetune

the VGG-Face model

𝑠𝑖𝑚𝑝𝑒𝑟𝑠𝑜𝑛 = 𝑤1 ∙ 𝐶𝑂𝑆 + 𝑤2 ∙ 𝑆𝑉𝑀

20
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Our approach

• Instance score fusion

– Direction 1, we search person in specific location

– 𝜇 is a bonus parameter based on text-based person search

𝑠1 = 𝜇 ∙ 𝑠𝑖𝑚𝑝𝑒𝑟𝑠𝑜𝑛
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Our approach

• Instance score fusion

– Direction 2, we search location containing specific person

– 𝜇 is a bonus parameter based on text-based person search

𝑠2 = 𝜇 ∙ 𝑠𝑖𝑚𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛
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Our approach

• Instance score fusion

– Combine scores of above two directions:

– 𝝎 indicates whether the shot is simultaneously included

in candidate location shots and candidate person shots

𝑠𝑓 = 𝜔 ∙ 𝛼 ∙ 𝑠1 + 𝛽 ∙ 𝑠2
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Our approach

• Re-ranking

– Most of the top ranked shots are correct and look similar

– Noisy shots with large

dissimilarity can be

filtered using similarity

scores among top

ranked shots

– A semi-supervised re-

ranking method is

proposed to refine the

result
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Re-ranking

• Semi-supervised re-ranking algorithm

– Obtain affinity matrix W of top-ranked shots F:

–

– Update W according to k-NN graph:

– Construct the matrix:

𝑆 = 𝐷−
1
2𝑊𝐷−

1
2

– Re-rank search result:

𝐺𝑡+1 = 𝛼𝑆𝐺𝑡 + 1 − 𝛼 𝑌

where Y is the ranked list obtained by above fusion step

𝑊𝑖𝑗 = ൞

𝐹𝑖
𝑇 ∙ 𝐹𝑗

𝐹𝑖 ∙ 𝐹𝑗
, 𝑖 ≠ 𝑗

0, 𝑖 = 𝑗

, 𝑖, 𝑗 = 1,2,⋯ , 𝑛

𝑊𝑖𝑗 = ൝
𝑊𝑖𝑗 , 𝐹𝑖 ∈ 𝐾𝑁𝑁 𝐹𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝑖, 𝑗 = 1,2,⋯ , 𝑛
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Results and Conclusions

• Results

– We submitted 7 runs, and ranked 1st in both automatic and

interactive search

– Interactive run is performed based on RUN2 with expanding

positive examples as queries

Type ID MAP Brief description

Automatic

RUN1_A 0.448 AKM+DNN+Face

RUN1_E 0.471 AKM+DNN+Face

RUN2_A 0.531 RUN1+Text

RUN2_E 0.549 RUN1+Text

RUN3_A 0.528 RUN2+Re-rank

RUN3_E 0.549 RUN2+Re-rank

Interactive RUN4 0.677 RUN2+Human feedback
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Results and Conclusions

• Conclusions

– Video examples are helpful for accuracy improvement

– Automatic removal of “bad faces” is important

– Fusion of location and person similarity is a key factor of

the instance search

Type ID MAP Brief description

Automatic

RUN1_A 0.448 AKM+DNN+Face

RUN1_E 0.471 AKM+DNN+Face

RUN2_A 0.531 RUN1+Text

RUN2_E 0.549 RUN1+Text

RUN3_A 0.528 RUN2+Re-rank

RUN3_E 0.549 RUN2+Re-rank

Interactive RUN4 0.677 RUN2+Human feedback
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1. Video concept recognition (1/2)

HorseRiding

PlayingGitar Birthday Celebration 

Parade

• Video concept recognition

− Learn semantics from video content and classify videos into pre-defined

categories automatically.

− For examples: human action recognition and multimedia event detection, etc.

34



• We propose two-stream collaborative learning with spatial-temporal attention

− spatial-temporal attention model: jointly capture the video evolutions both in

spatial and temporal domains

− static-motion collaborative model: adopt collaborative guidance between

static and motion information to promote feature learning

1. Video concept recognition (2/2)
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• We propose two-stream collaborative learning with spatial-temporal attention

− spatial-temporal attention model: jointly capture the video evolutions both in

spatial and temporal domains

− static-motion collaborative model: adopt collaborative guidance between

static and motion information to promote feature learning

1. Video concept recognition (2/2)

Yuxin Peng, Yunzhen Zhao, and Junchao Zhang, “Two-stream Collaborative

Learning with Spatial-Temporal Attention for Video Classification”, IEEE TCSVT

2017 (after minor revision) arXiv: 1704.01740
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Submit a query 

of any media type

Query examples of  Golden Gate Bridge

Heterogeneity

Gap

2. Cross-media Retrieval (1/5)

• Cross-media retrieval:

− Perform retrieval among different media types, such as image, text, audio and

video

• Challenge:

− Heterogeneity gap: Different media types have inconsistent representations
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• We propose common representation learning based on sparse and semi-

supervised regularization, which models correlation and high-level semantics in a

unified framework, and exploits complementary information among multiple

media types to reduce noise
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• Yuxin Peng, Xiaohua Zhai, Yunzhen Zhao, and Xin Huang, “Semi-Supervised

Cross-Media Feature Learning with Unified Patch Graph Regularization”, IEEE

TCSVT 2016

• Xiaohua Zhai, Yuxin Peng, and Jianguo Xiao, “Learning Cross-Media Joint

Representation with Sparse and Semisupervised Regularization”, IEEE TCSVT

2014

Comment from Reviewers of TCSVT: “the proposed method is quite novel.”, and “jointly

represents several media for cross-media retrieval, while the previous works usually deal

with two different media”

2. Cross-media Retrieval (2/5)
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Multi-grained 

fusion with joint 

optimization

Multi-task 

learning

• We propose a cross-modal correlation learning approach with multi-grained

fusion by hierarchical network. It exploits multi-level association with joint

optimization and adopts multi-task learning to preserve intra-modality and inter-

modality correlation

2. Cross-media Retrieval (3/5)
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Multi-grained 
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Multi-task 
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• Yuxin Peng, Xin Huang, and Jinwei Qi. “Cross-media Shared Representation by

Hierarchical Learning with Multiple Deep Networks”. IJCAI 2016.

• Yuxin Peng, Jinwei Qi, Xin Huang, and Yuxin Yuan, “CCL: Cross-modal

Correlation Learning with Multi-grained Fusion by Hierarchical Network”,

IEEE TMM 2017

• We propose a cross-modal correlation learning approach with multi-grained

fusion by hierarchical network. It exploits multi-level association with joint

optimization and adopts multi-task learning to preserve intra-modality and inter-

modality correlation

2. Cross-media Retrieval (3/5)

41



Single-modal

source domain

Cross-modal

target domain

Image

Cross-

modal 

correlation

Knowledge 

transfer

Cross-media 

common 

representatio

n

Text

representation

Single-media 

transfer

Cross-media 

transfer

Hybrid 

transfer

Image

Text

• For addressing the problem of insufficient training data in DNN-based cross-

media retrieval method, we propose cross-media hybrid transfer network, which

exploits the semantic information of existing large-scale single-media datasets to

promote the network training of cross-media common representation learning

2. Cross-media Retrieval (4/5)
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Image

TextXin Huang, Yuxin Peng, and Mingkuan Yuan, “Cross-modal Common

Representation Learning by Hybrid Transfer Network”, IJCAI 2017.

• For addressing the problem of insufficient training data in DNN-based cross-

media retrieval method, we propose cross-media hybrid transfer network, which

exploits the semantic information of existing large-scale single-media datasets to

promote the network training of cross-media common representation learning

2. Cross-media Retrieval (4/5)
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• We have released PKU-XMedia、PKU-XMediaNet dataset with 5 media types.

Datasets and source codes of our related works:

• Interested in cross-media retrieval? Hope our recent overview is helpful for you

2. Cross-media Retrieval (5/5)

Yuxin Peng, Xin Huang, and Yunzhen Zhao, "An Overview of

Cross-media Retrieval: Concepts, Methodologies, Benchmarks

and Challenges", IEEE TCSVT, 2017. arXiv: 1704.02223.

http://www.icst.pku.edu.cn/mipl/xmedia
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Large variances in 

the same subcategory

Small variances among 

different subcategories

• Fine-grained Image Classification:

− Recognize hundreds of subcategories belonging to the same basic-level

category

• Challenges:

Black Footed Albatross

Smart fortwo Convertible

Marsh Wren Rock Wren Winter Wren

BMW 1 Hyundai 

Elantra

Toyota 

Sequoia

3. Fine-grained Image Classification (1/4)
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• To address the problem of fine-grained image classification, object-part attention

model is proposed, which is the first work to classify fine-grained images without

using object or parts annotations in both training and testing phase, but still

achieves promising results.

3. Fine-grained Image Classification (2/4)
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• To address the problem of fine-grained image classification, object-part attention

model is proposed, which is the first work to classify fine-grained images without

using object or parts annotations in both training and testing phase, but still

achieves promising results.

• Yuxin Peng, Xiangteng He, and Junjie Zhao, "Object-Part Attention Model for

Fine-grained Image Classification", IEEE TIP 2017

• Tianjun Xiao, Yichong Xu, Kuiyuan Yang, Jiaxing Zhang, Yuxin Peng, and

Zheng Zhang, "The Application of Two-level Attention Models in Deep

Convolutional Neural Network for Fine-grained Image Classification", CVPR

2015

3. Fine-grained Image Classification (2/4)
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• To accelerate classification speed, saliency-guided fine-grained discriminative

localization is proposed, which jointly facilitates fine-grained image classification

and discriminative localization

3. Fine-grained Image Classification (3/4)
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• To accelerate classification speed, saliency-guided fine-grained discriminative

localization is proposed, which jointly facilitates fine-grained image classification

and discriminative localization

Xiangteng He, Yuxin Peng and Junjie Zhao, “Fine-grained Discriminative

Localization via Saliency-guided Faster R-CNN”, ACM MM 2017.

3. Fine-grained Image Classification (3/4)
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Visual 

description

Textual 

description

• Considering the complementarity of text, a two-stream model is proposed to

combine vision and language for learning multi-granularity, multi-view and multi-

level representations

3. Fine-grained Image Classification (4/4)
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Visual 
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• Considering the complementarity of text, a two-stream model is proposed to

combine vision and language for learning multi-granularity, multi-view and multi-

level representations

Xiangteng He and Yuxin Peng, “Fine-grained Image Classification via Combining

Vision and Language”, CVPR 2017.

3. Fine-grained Image Classification (4/4)
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