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 Instance search (INS) task
— Provided: separate person and location examples
— Topic: combination of a person and a location

— Target: retrieve specific persons in specific locations

Query person
(Ryan)

Query location

Ryan in Cafel
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* Overview
Location-specific search
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 Location-specific search
— Integrates handcrafted and deep features

— Similarity score: sim;ycqtion = W1 * AKM + w, - DNN

u AKM-based
— MSER —l — location search
Query keypoints: u:i:l]» based
examples ‘ SIFT ‘ ARM ‘ Harri %‘ search
ColorSIFT A J result
Hessian
- —_—
Query ‘ | VGGNet
examples .
., ‘ DNN-
T Training . based
transg)fmation ] ‘ data g GoogLeNet % ‘ search
iy result
Returned N ‘ DNN-based
examples ‘ .| ResNet .
I 7 location search
Top ranked examples

Progressive training
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« AKM-based location search
— Keypoint-based BoW features .,

are applied to capture local ~*™"
details

— Total 6 kinds of BoW features,
which are combinations of 3
detectors and 2 descriptors

l
ol

Color Sift Descriptor

4

— AKM algorithm is used to get
one-million dimensional visual
words

SIFT/CSIFT
Feature Space

« Similarity score:

Visual
Vocabulary

1
AKM = NZ: Bow ) Bow
k

Feature
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— DNN features are used to capture semantic information

— Ensemble of 3 CNN models

-based location searc
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* DNN-based location search
— All 3 CNNs are trained with progressive training strategy

* Progressive training

Query
examples VGGNet
—
GoogLeNet
ResNet
—
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* DNN-based location search
— All 3 CNNs are trained with progressive training strategy

* Progressive training

Query
examples

VGGNet

GoogLeNet a

ResNet
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* DNN-based location search
— All 3 CNNs are trained with progressive training strategy

* Progressive training

Query
examples VGGNet
e
GoogLeNet a
| ResNet

Top ranked shots

12
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* DNN-based location search
— All 3 CNNs are trained with progressive training strategy

* Progressive training

Query
examples

VGGNet

GoogLeNet

| ResNet

Top ranked shots

13
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« Qverview

Location-specific search

Find Phil in the Market

S| mi I al’lty AKM-based DNN-based Face Text-based
- location search location search recognition person search
computing .
stage
Location similarity fusion Person similarity Search rank
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* Person-specific search

— We apply face recognition technigue based on deep model

Remove ] vi * .Cqsin.e
bad faces ;W X similarity
B A S
20 f VGG-Face ‘
person ~
examples N 4 model
—
( D | * SVM
L Face detection f , model
TFinetuning

E 3
'
¥\
&\
”

— We also conduct text-based person search, where persons’
auxiliary information is minded from the provided video
transcripts
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* Face recognition based person search

— Face detection

Query
person

————— ’__ — e e ———_— ——

Remove

bad faces

examples"

1)

I

Face detection
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* Face recognition based person search

— Face detection

— Remove “bad” faces automatically: hard to distingush

Before removal of bad faces: : g T

Remove
bad faces

Query
person

examples" L ‘.

I Face detection

! <L
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* Face recognition based person search

— Face detection

— Remove “bad” faces automatically: hard to distingush

Before removal of bad faces: : g

,. Remove
. bad faces
Query .'
person |J L
examples [
P >

Face detection

Right Right
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* Face recognition based person search

— We use VGG-Face model to extract face features

— We integrate cosine similarity and SVM prediction scores to
get the person similarity scores.

» Cosine
similarity

VGG-Face
model

Simperson = Wq- COoS + Wy - SVM

o

TFinetuning
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* Face recognition based person search

— We use VGG-Face model to extract face features

— We integrate cosine similarity and SVM prediction scores to
get the person similarity scores.

— We adopt similar progressive training strategy to finetune
the VGG-Face model

* Cosine
similarity
VGG-Face é
1| model *

SVM
‘ model

IFinetuning

Simperson = Wq- COoS + Wy - SVM

- L Progressive training }
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« Qverview

Our approach
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location search
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* Instance score fusion
— Direction 1, we search person in specific location

S1 = U SlMperson

— w i1s a bonus parameter based on text-based person search

Person-specific search

Location-specific
search

e — — — —

Text-based person search -
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* Instance score fusion
— Direction 1, we search person in specific location

S1 = U SlMperson

— w i1s a bonus parameter based on text-based person search

Person-specific search

Location-specific ’ Candidate
search location shots

e — — — —

Text-based person search -
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* Instance score fusion
— Direction 1, we search person in specific location

S1 = U SlMperson

— w i1s a bonus parameter based on text-based person search

Person-specific search

. Search
Location-specific ‘ Candidate - result 1

search location shots ‘ Re finé

e — — — —

Text-based person search -
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 Instance score fusion
— Direction 2, we search location containing specific person

Sp = U SUMypcation

— w i1s a bonus parameter based on text-based person search

Person-specific search

<

Location-specific Candidate - result 1
search ‘ location shots 4 Refine

Text-based person search

TT
I
|
|
|

‘ Refine

Person-specific Candidate
search ’ person shots _ Search

5

Location-based person search
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e |nstance score fusion
— Combine scores of above two directions:
sf=w-(a-s;+p-s3)

— w indicates whether the shot is simultaneously included
In candidate location shots and candidate person shots

Peggy in Cafel

]

Fusion

Person-specific search

<

Location-specific Candidate - result 1
search ’ location shots ‘ Refin é

Text-based person search

TT
I
A
I
I

[

common clues

: : Refine
Person-specific Candidate .
search ‘ person shots _ Search

5

Location-based person search
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* Overview
Location-specific search

________ Find Phil in the Market |
Person-
| specific
Similarit ARM-based DNN-based F Text-based
t- y location sizerch location :es:rch n'ecog:ietion pe:son sijlerch SearCh
computing 0 0
stage '
Location similarity fusion Person similarity Search rank
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Instance score fusion
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* Re-ranking

— Most of the top ranked shots re correctandlook similar

— Noisy shots with Iarge
dissimilarity can be
filtered using similarity
scores among  top
ranked shots

— A semi-supervised re-
ranking method Is
proposed to refine the
result




« Semi-supervised re-ranking algorithm

— Obtain affinity matrix W of top-ranked shots F:
F/ - F;
Wij = IRl -|F|
0, i=j
— Update W according to k-NN graph:

l:it] l,]={1,2’,n}

W;;, F; € KNN(F;)

Wi; = .
0, otherwise

ij=1{12n)

— Construct the matrix:

L1
S=D 2WD 2

— Re-rank search result:
Gt+1 = aSGt + (1 — (X)Y

where Y iIs the ranked list obtained by above fusion step



a;zmﬁ Outline

RSITY

B Introduction

Our approach

Results and conclusions

Our related works




eN e 724 ¥ Results and Conclusions

PEKING UNIVERSITY

 Results

— We submitted 7 runs, and ranked 1st in both automatic and
Interactive search

— Interactive run is performed based on RUN2 with expanding
positive examples as queries

Type ID MAP Brief description

RUN1 A 0.448 AKM+DNN+Face
RUN1 E 0.471 AKM+DNN+Face

Automatic RUN2_A 0.531 RUN1+Text
RUN2_E 0.549 RUN1+Text
RUN3_A 0.528 RUN2+Re-rank
RUN3 E 0.549 RUN2+Re-rank

Interactive RUN4 0.677 RUNZ2+Human feedback
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« Conclusions
— Video examples are helpful for accuracy improvement
— Automatic removal of “bad faces” Is important

— Fusion of location and person similarity is a key factor of
the Instance search

Type ID MAP Brief description

RUN1 A 0.448 AKM+DNN+Face
RUN1 E 0.471 AKM+DNN+Face

Automatic RUN2_A 0.531 RUN1+Text
RUN2_E 0.549 RUN1+Text
RUN3_A 0.528 RUN2+Re-rank
RUN3 E 0.549 RUN2+Re-rank

Interactive RUN4 0.677 RUNZ2+Human feedback
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 Video concept recognition
— Learn semantics from video content and classify videos into pre-defined
categories automatically.
— For examples: human action recognition and multimedia event detection, etc.

Birthday Celebration

o)

’
EEEEEEEEEENEEEEEEEEERN

Parade

HorseRiding
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» We propose two-stream collaborative learning with spatial-temporal attention
— spatial-temporal attention model: jointly capture the video evolutions both in
spatial and temporal domains
— static-motion collaborative model: adopt collaborative guidance between
static and motion information to promote feature learning

Pl Collaborative l

» learning network :

] T |

|

: : Frame - |

| features |

| |

B :

= - 1

|| |

Temporal-level |! ! . |
attention network| | 1 Adaptively | | i

Lo weighted :. Recognition

- learning || result

M | | |

| | |

| |

Optical =i |

flow —1| || Optical :

| | ﬂ |

'» [ oW =» I

[ I

Temporal-level || | :

[ I

| | |
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attention network
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» We propose two-stream collaborative learning with spatial-temporal attention
— spatial-temporal attention model: jointly capture the video evolutions both in
spatial and temporal domains
— static-motion collaborative model: adopt collaborative guidance between
static and motion information to promote feature learning

LSpatial—temporal attention model L
|

__________________

Collaborative

Connection network
y ’ learning network

Frame
features

s

5 — ”t t
5

.1.- - .

Temporal-level
attention network

Spatial-level attention network Adaptively

weighted
learning

= Recognition

Connection network result

o9 f—i—1|

Yuxin Peng, Yunzhen Zhao, and Junchao Zhang, “Two-stream Collaborative
Learning with Spatial-Temporal Attention for Video Classification”, IEEE TCSVT
2017 (after minor revision) arXiv: 1704.01740
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« Cross-media retrieval:
— Perform retrieval among different media types, such as image, text, audio and
video
» Challenge:
— Heterogeneity gap: Different media types have inconsistent representations

Query examples of Golden Gate Bridge

—
e Guten e Biye
e ke e ] ; ‘
e s Dt ‘ ‘
e g e po s
el gyt
e S P By &
ool o g

! s

Text Image Video Audio

Cross-media
retrieval results

Submit a query
d 7of any media type

Cross-media data

o] >
e ; 0= >

Known data Cross-media
L correlation similarity
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 We propose common representation learning based on sparse and semi-
supervised regularization, which models correlation and high-level semantics in a

unified framework, and exploits complementary information among multiple
media types to reduce noise

Semi-supervised
graph regularization |

1 Semi-supervised = — — — —
I graph regularization I

Cross-medla ema Fgeml—super\./lsed
. correlation 3 graph

' I . : regularization
Audio | |
|

argmin
p(l)’ . p() Z Z

=1 j=i+R
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« We propose common representation learning based on sparse and semi-
supervised regularization, which models correlation and high-level semantics in a
unified framework, and exploits complementary information among multiple
media types to reduce noise

Semi-supervised | l

?f"‘ graph regularization |

il | |
|

Image o
HE : )
S T | = md
Comment from Reviewers of TCSVT: “the proposed method is quite novel.”, and “jointly

represents several media for cross-media retrieval, while the previous works usually deal
with two different media”

/

/e Yuxin Peng, Xiaohua Zhai, Yunzhen Zhao, and Xin Huang, “Semi-Supervised\

Cross-Media Feature Learning with Unified Patch Graph Regularization™, IEEE
TCSVT 2016

e Xiaohua Zhai, Yuxin Peng, and Jianguo Xiao, “Learning Cross-Media Joint

Representation with Sparse and Semisupervised Regularization”, IEEE TCSVT

2014 Y,




Jt,f.«)’. ,‘3? 2. Cross-media Retrieval (3/5)

PEKING UNIVERSITY

* We propose a cross-modal correlation learning approach with multi-grained
fusion by hierarchical network. It exploits multi-level association with joint
optimization and adopts multi-task learning to preserve intra-modality and inter-
modality correlation

Image Separatej
Representation

Multi-task

Intra-modality
Semantic Category
constraints

Original :
Image | =
Instance

learning

Multi-grained
fusion with joint
optimization

Original|[Z257 553
came to & swilt ead.

TeXt of .I.HIW- troub
Instance

Inter-modality
Pairwise Similarity
Constraints

Image

Patches g

[QQ]E[Q . O} @ - b]

Intra-modality

O 10O
Text | il Semantic Cat
! . . emantic Category
Patches Text Separate | . ! . constra; egory
) il ints
Representation OF 4O
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* We propose a cross-modal correlation learning approach with multi-grained
fusion by hierarchical network. It exploits multi-level association with joint
optimization and adopts multi-task learning to preserve intra-modality and inter-
modality correlation

Image Separate
Representation

Multi-task

Intra-modality
Semantic Category
constraints

Original R
Image | ===
Instance 4

learning

Multi-grained
fusion with joint
optimization

Original|[F257 555
came to & swift eod. ...

Text | [mm o
Instance "

Inter-modality
Pairwise Similarity
Constraints

Image
Patches

€ Yuxin Peng, Xin Huang, and Jinwei Qi. “Cross-media Shared Representation by\
Hierarchical Learning with Multiple Deep Networks”. IJCAI 2016.
e Yuxin Peng, Jinwei Qi, Xin Huang, and Yuxin Yuan, “CCL: Cross-modal
Correlation Learning with Multi-grained Fusion by Hierarchical Network”,
. |[EEE TMM 2017 .
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» For addressing the problem of insufficient training data in DNN-based cross-
media retrieval method, we propose cross-media hybrid transfer network, which
exploits the semantic information of existing large-scale single-media datasets to
promote the network training of cross-media common representation learning

Single-modal N >
source domain
Image Q C:> )
Knowledge . 221G
transfer d C
Cross-modal Cross-media
target dgmalg | O\ common
B NVAYE I representatio
Cross- : :
modal Q O 'y
correlatior i e Q Q
Textl>== ;Ewlm 1 representation AR
Immu A= ] K
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» For addressing the problem of insufficient training data in DNN-based cross-
media retrieval method, we propose cross-media hybrid transfer network, which
exploits the semantic information of existing large-scale single-media datasets to
promote the network training of cross-media common representation learning

Single-modal

source domain J LTI
R OO -
Image APSE )
Knowledge . =0
transfer
Cross-modal Cross-media
Q Q common
NANE representatio
T |_>Q O_| :

Xin Huang, Yuxin Peng, and Mingkuan Yuan, “Cross-modal Common
Representation Learning by Hybrid Transfer Network™, IJCAI 2017.

43
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* We have released PKU-XMedia. PKU-XMediaNet dataset with 5 media types.
Datasets and source codes of our related works:

http://www.icst.pku.edu.cn/mipl/xmedia

Image Text Audio

. |Leaders who

# ‘ l o
- have promoted
4 # |holy laughter
Laughter : = claimed that
f {{ ¥4 |the..

On topographic
maps, stream
gradient can be
approximated
if the ...

Stream

* Interested in cross-media retrieval? Hope our recent overview is helpful for you

Yuxin Peng, Xin Huang, and Yunzhen Zhao, "An Overview of
Cross-media Retrieval: Concepts, Methodologies, Benchmarks
and Challenges", IEEE TCSVT, 2017. arXiv: 1704.02223.
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3. Fine-grained Image Classification (1/4)

* Fine-grained Image Classification:
— Recognize hundreds of subcategories belonging to the same basic-level

category

« Challenges:
Large variances in Small variances among
the same subcategory different subcategories

—y

Smart fortwo Convertible

BMW 1 Hyundai Toyota
Elantra Sequoia
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« To address the problem of fine-grained image classification, object-part attention
model is proposed, which is the first work to classify fine-grained images without

using object or parts annotations in both training and testing phase, but still
achieves promising results.

Inputs

Outputs

e,

. Bay Br(‘:a.;t-‘d. \\.'nrbl r
Part-level Attention Model 3 ¢ *
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To address the problem of fine-grained image classification, object-part attention
model is proposed, which is the first work to classify fine-grained images without

using object or parts annotations in both training and testing phase, but still
achieves promising results.

————————————————————————————————

Inputs Ohject -level Attention Model Outputs

_________________________________________________

—————————— e R e R s
Obj ct- P rt Spatial | | Part Alignment || Discriminative Parts i #
[ | Constraint Model | | ' ! Pam1 P2 [«

Yuxin Peng, Xiangteng He, and Junjie Zhao, "Object-Part Attention Model fo\
Fine-grained Image Classification", IEEE TIP 2017

Tianjun Xiao, Yichong Xu, Kuiyuan Yang, Jiaxing Zhang, Yuxin Peng, and
Zheng Zhang, "The Application of Two-level Attention Models in Deep
Convolutional Neural Network for Fine-grained Image Classification”, CVPR

2015 J
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» To accelerate classification speed, saliency-guided fine-grained discriminative
localization is proposed, which jointly facilitates fine-grained image classification
and discriminative localization

SEN

Inputs

Outputs

) | !!

Conyv

Faster R-CNN v

— SmoothL1

v’-?;;i- . loss >
d Fc—»F
Rol pooling .
F oftmax

loss

L —

SmoothlL1
loss

Proposal —»

bbox pred
Conv

proposall Proposal —»
cls score

Softmax
loss

Western Gult
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3. Fine-grained Image Classification (3/4)

» To accelerate classification speed, saliency-guided fine-grained discriminative

localization is proposed, which jointly facilitates fine-grained image classification
and discriminative localization

SEN

Outputs

| ’

| Conv

Faster R-CNN I -
.'"z’:'°’ Fc—» Sm(l)::shLI > orthern Waterthrus
Rol pooli PRt
) ! A
r 1 = Softmax 1 y

Fc—»
loss
SN

h
Proposal —» SmoothL1
bbox pred loss
Conv
proposall Proposal [dy Seftmax
— cls score loss
Xiangteng He, Yuxin Peng and Junjie Zhao, “Fine-grained Discriminative

Localization via Saliency-guided Faster R-CNN”’, ACM MM 2017.
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« Considering the complementarity of text, a two-stream model is proposed to
combine vision and language for learning multi-granularity, multi-view and multi-
level representations

Visual stream

- rrrr . Visual
] e score
IR

Textual Stream @ Classification

Textual
g
score

Sequential
encoding

Convolutional
encoding

Textual
description
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« Considering the complementarity of text, a two-stream model is proposed to
combine vision and language for learning multi-granularity, multi-view and multi-

level representations
Visual stream ’
- . Visual
. score

Textual Stream @ Classification

Textual
—
score

Convolutional{ }
encodin
: FM% Textual |

Xiangteng He and Yuxin Peng, “Fine-grained Image Classification via Combining
Vision and Language”, CVPR 2017.

Sequential
encoding
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