Minimizing risk in video hyperlinking

Presented by Chong-Wah Ngo City University of Hong Kong

Zhi-Qi Cheng and Xiao Wu

- Supplementing anchor
- Serendipity

User experience by *minimizing*false link
redundancy

Prefer popular and <u>"easy"</u> targets

SO Video Retrieval Group Popularity – Hubness

A point *x* is popular if many other points regard *x* as "friend".

Hub score of a point x

$$N_k(x) = \sum_{i=1}^n P_{i,k}(x) \quad x \text{ is hub if } N_k(x) > k$$

M. Radovanović, A. Nanopoulos, and M. Ivanović. Hubs in space: Popular nearest neighbors in high-dimensional data. Journal of Machine Learning Research, 2010.

VIRSO VIDEO RETRIEVAL GROUP Easiness – Local Intrinsic Dimension (LID)

The minimal number of dimensions required <u>to describe</u> <u>a point</u> w.r.t to its local neighborhood.

M. E. Houle. Inlierness, outlierness, hubness and discriminabiliy: An extreme-value-theoretic foundation. Technical Report, NII. 2010.

Easiness – Diversity

Average pairwise distance between a target and its *k*-nearest neighbors

Insights of 122 anchors on development set

Insights of 122 anchors on development set

Insights of 122 anchors on development set

Vireo

Insights of 122 anchors on development set

Insights on dataset

Hub Local intrinsic dimension (LID) Diversity

Optimization: Select *k* out of *n* candidate targets

0-1 assignment vector hub LID distance matrix $max_{Y} \left\{ \frac{Y^{t}H}{k} - \frac{Y^{t}D}{k} + \frac{Y^{t}AY}{k(k-1)} \right\}$

Solution

- Relax the $\{0,1\}$ constraint to [0,1]
- Similar to quadratic programming problem

On the selection of anchors and targets for video hyperlinking, in ICMR 2017

Variants of algorithm

Depending on the initialization of assignment vector *Y*

Hub-first Initialize the first *k* targets with largest hub scores to 1 **LID-first** Initialize the first *k* targets with largest LID scores to 1

Intuition

- Hub-first for anchor selection
- LID-first for target selection

Popular content Specific content

Submissions

Run-1: Visual baseline *Run-2*: Run-1+ LID-First (re-rank top-100)

Run-3: Multimodal baseline *Run-4*: Run-3 + LID-First (re-rank top-100)

Implementation

- Exclude 2,719 testing videos without speech *intuitively not suitable as targets?*
- Use LDA-based model for video fragmentation (*ACL* 2017)
- Visual run based on 14K concepts

 ImageNet, ImageNet-Shuffle, SIN, RC, Places
- Use LIMSI ASR
- Multimodal run based on the fusion of cosine similarity and Siamese network

Cross-modal evaluation

Siamese recurrent architecture – train using 122 anchors of development set

Feed different input pairs

- visual, visual
- text, text
- text, visual
- visual, text

Softmax has two nodes – Probability of similarity and dissimilarity Average fusion of pair similarities

Learning to rank question answer pairs with holographic dual LSTM architecture in SIGIR 2017

Result

	P@5	P@10	P@20	MAP	MAiSP	
Run-1	0.864	0.852	0.502	0.1848	0.1113	visual run
Run-2	0.864	0.860	0.530	0.1849	0.1128	
Run-3	0.856	0.852	0.582	0.1951	0.1199	multimodal
Run-4	0.856	0.852	0.710	0.2392	0.1473	

<u>Conclusion-1</u>: Multimodal run brings some improvement for search depth @ 20 and beyond

Result

	P@5	P@10	P@20	MAP	MAiSP	
Run-1	0.864	0.852	0.502	0.1848	0.1113	
Run-2	0.864	0.860	0.530	0.1849	0.1128	
Run-3	0.856	0.852	0.582	0.1951	0.1199	_ Multimo
Run-4	0.856	0.852	0.710	0.2392	0.1473	+ LID-fin

<u>Conclusion-2</u>: LID-first boosts multimodal run and shows the best improvement for search depth @ 20 and beyond

Correlation between hub & performance

Hub scores of 25 testing anchors

Correlation between LID & performance

LID of 25 testing anchors

Multimodal run

Anchor 145 Yoga practice

shower,0.970 shoji,0.941 window screen,0.456 television, television system,0.404 ballet dancer,0.341 dress,0.313 home,0.270 balance beam, beam,0.232 Adult_Female_Human,0.220 Speaking_To_Camera,0.209 leotard, unitard, body suit, cat suit,0.180

Visual run

Sahaja Yoga treats drug addiction and disease

Shri Mataji started Sahaja Yoga @ India in 1970

VIREO VIDEO RETRIEVAL GROUP How LID-first boosts performance

Anchor 124 University marching band

IREO

VIREO VIDEO Retrieval Group How LID-first boosts performance

Anchor 124 University marching band

VIREO

- Name entities in ASR are recognized incorrectly
 - anchors 124, 125, 133, 135, 140, 141, 147

- Data statistics alone is insufficient
 - May pull context-irrelevant but popular and safe fragments to a higher rank
 - Example: anchors 130 (food preparation), 139 (hat show)

Conclusion

- Multimodal run diversifies link targets
- Hub + LID + diversity improves P@20, MAiSP, MAP
- Some correlation between hub+LID of anchors and performances
- More analysis is required to understand the performance ...

