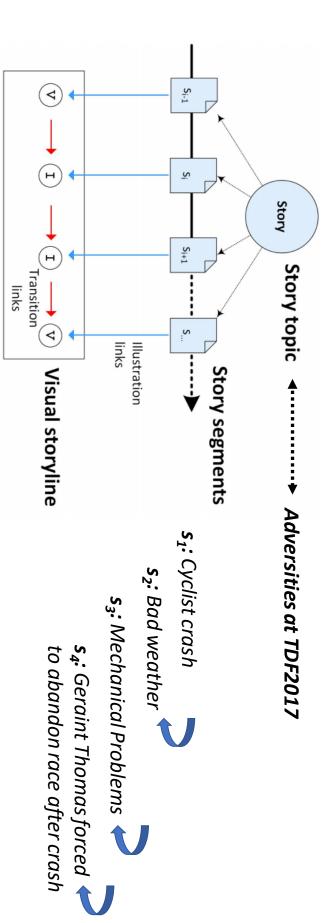
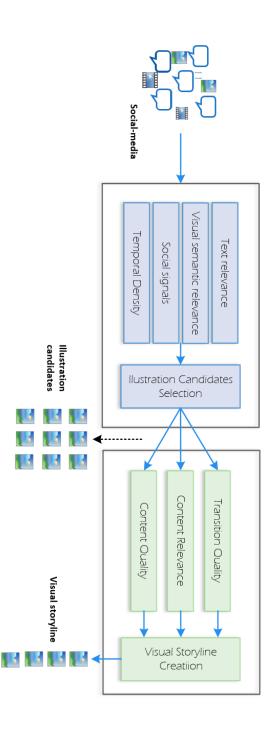
Goncalo Marcelino, Joao Magalhaes NOVA LINCS - Faculdade de Ciências e Tecnologia Universidade NOVA Lis Caparica, Portugal goncalo.bfm@gmail.com, jmag@fct.unl.pt	Graph-based social media story linking TRECVID 2018 - Social-media video story-telling linking Task
o Marcelino, Joao Magalhaes Ciências e Tecnologia Universidade NOVA Lis Caparica, Portugal ⁱ m@gmail.com, jmag@fct.unl.pt	

_isboa,


Context and motivation

- Visual storylines are consistently used in news media to present information to the reader.
- In the newsroom, it is the job of the news editor to find relevant images/videos that illustrate specific stories and organize them in a semantically, visually coherent and appealing fashion, to create visual storylines.


Context and motivation

The goal of the Social-media video story-telling linking is to automatically illustrate a news story with social-media visual content

Approach

- We propose a storyline illustration framework, leveraging on two components:
- A component tasked with retrieving relevant content.
- A component tasked with the organization of the retrieved relevant content into visually coherent sequence.

1 - Retrieving relevant content

Exploit different retrieval models by Combine the results of 5 retrieval models Fusion: weights each document with the Fuses them through Reciprocal Rank inverse of its position on the rank. $RRFscore(d) = \sum_{i=1}^{L} \frac{1}{k + r_i(d)},$ where k = 60Social-media content **Story illustration** News story topic Story segments segments retrieval Story candidates Э Θ Θ Θ Э Э H Θ θ Θ Story Э Э θ H (H) • H Timeline

the rank.

favouring documents at the "top" of

• Text retrieval (TR) using BM25 retrieval model.

- Text retrieval (TR) using BM25 only.
- #Retweets (RT): TR and maximizing number of retweets.
- #Duplicated images (Dup): TR and maximizing number of duplicates.

- Text retrieval (TR) using BM25 only
- #Retweets (RT): TR and maximizing number of retweets
- #Duplicated images (**Dup**): TR and maximizing number of duplicates
- Concept Pool (**CP**): TR and extracting visual concepts, using a pre-trained VGG network, from the top-10 ranked tweets. Images are then re-ranked according to the number of visual concepts in the pool.
- Concept Query (**CQ**): TR and extracting visual concepts, from top-10 ranked tweets, creating a new query with those concepts. We fuse the two ranks using a rank fusion method (RRF), and the top ranked image is chosen.

- Text retrieval (TR) using BM25 only
- #Retweets (**RT**): TR and maximizing number of retweets.
- #Duplicated images (Dup): TR and maximizing number of duplicates
- Concept Pool (CP): TR and extracting visual concepts, using a pre-trained VGG network, from the top-10 ranked tweets. Images are then re-ranked according to the number of visual concepts in the pool.
- Concept Query (CQ): TR and extracting visual concepts, from top-10 ranked tweets, creating a new query with those concepts. We fuse the two ranks using a rank fusion method (RRF), and the top ranked image is chosen.
- Temporal Modeling (**TM**): TR and creating a Kernel Density Estimation with the probability of a tweet being posted at a given date. The tweet that maximizes that probability is chosen

2 - Illustrating storylines

A visual storyline is an ordered sequence of visual elements

Our rationale:

- From a non-computational perspective, transitions are characterized based on the relations between semantic and visual characteristics of adjacent images;
- the concept of distance We emulate this approach proposing a novel formalization of transition based on

Given two sequential images a and b:

 $(\forall c \in C, distance_c(feature_c(a), feature_c(b)))$

The chosen feature spaces should capture the semantic and visual characteristics

Inferring transition quality

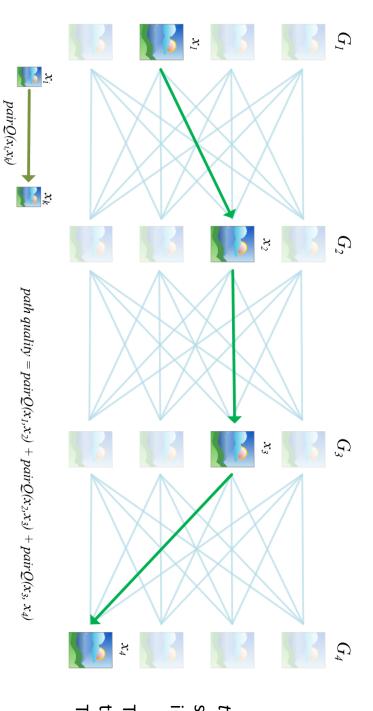
transition distance of a pair. A Gradient Boosted Tree regressor was trained to predict a rating given the

Development data (2016 editions of EdFest and TDF) used for training: Annotated

transitions (0 - bad, 1 - acceptable, 2 - good

Transition features considered

Input of the regressor model: Concatenation of pairwise distances, over 16 different visual feature spaces


неат мар		Color Correlogram	Scene Category	Scene Attributes	Faces		Environment	Quality Sum	Quality Difference
$\sum aos(f(S1) - f(S2))$		jsd(f(S1) - f(S2))	$\#(f(S1) \cap f(S2))$	$\#(f(S1) \cap f(S2))$	abs(f(S1) - f(S2))		f(S1) = f(S2)	-abs(f(S1) + f(S2))	abs(f(S1) - f(S2))
A neat map or informative parts of the image.	color space.	described in individual words. A 16 bins 3D color correlogram in LAB	The most probable locations of a scene	The characteristics of a scene described in individual words.	The number of faces in the image.	or indoors.	If the image represents a place outdoors	A positive real value representing the aesthetic quality of the image.	A positive real value representing the aesthetic quality of the image.
pHash	Luminance		#Edges	Concepts		Entrony	Color Moment	CNN Dense	Color Histogram
$\sum abs(f(S1) - f(S2))$	abs(f(S1) - f(S2))		$\sum abs(f(S1) - f(S2))$	$\#(f(S1) \cap f(S2))$	mon () () ())	abs(f(S1) - f(S2))	euclidean(f(S1), f(S2))	$\sum abs(f(S1) - f(S2))$	$\sum abs(f(S1) - f(S2))$
A Phash vector.	A real value representing the lumi- nance.	number of horizontal, vertical and diag- onal edges, respectively.	A vector of three positions with the	A set of image concepts extracted using VGG16.	entropy.	A nositve real value representing the	Color moment in LAB color space.	A thing extracted from the last layer of a neural network.	A 16 bins 3D histogram in LAB color space.

2 - Illustrating storylines

We propose four graph-based methods for storyline illustration:

Sequential without relevance (run 1): optimizes for the transition quality of adjacent elements pairs.

Sequential without relevance (run 1)

$$F_1 = \sum_{i=2}^{N} pairQ_1(i-1,i)$$

$$pairQ_1(i,k) = t_{i,k}$$

ti,k represents the normalized score of transition quality from image *i* to image *k*.

This score is attained through the use of a Gradient Boosted Trees regressor model

2 - Illustrating storylines

We propose four graph-based methods for storyline illustration:

adjacent elements pairs. Sequential without relevance (run 1): optimizes for the transition quality of

Sequential with relevance(run 2): leverages the transition quality of adjacent element pairs while taking into account relevance.

Sequential with relevance (run 2)

transitions quality: Directly optimise the task metric by approximating relevance and

$$Quality = 0.1 \cdot s_1 + \frac{0.9}{2(N-1)} \sum_{i=2}^{N} pairwiseQ(i)$$

$$pairwiseQ(i) = 0.6 \cdot (s_i + s_{i-1}) + 0.4 \cdot (s_{i-1} \cdot s_i + t_{i-1,i})$$

segments illustration

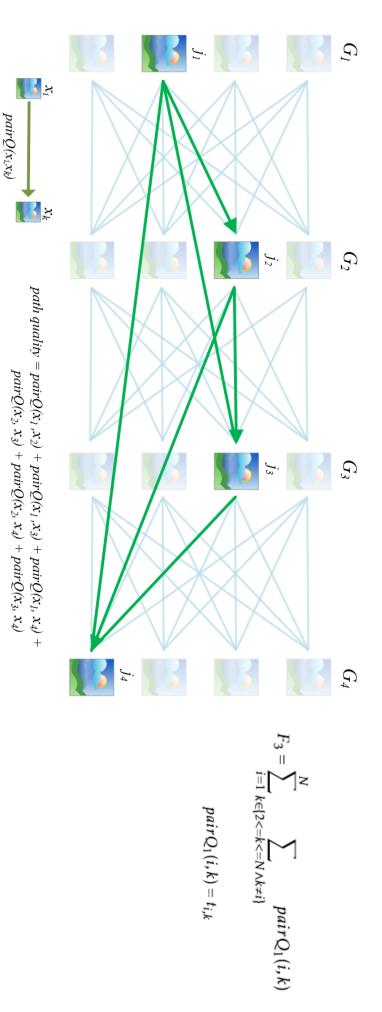
transition

Here *s* represents the normalized score of relevance of an image to the segment it illustrates.

This score is attained through the use of the retrieval model described previously

2 - Illustrating storylines

We propose four graph-based methods for storyline illustration:


adjacent elements pairs. Sequential without relevance (run 1): optimizes for the transition quality of

Sequential with relevance (run 2): leverages the transition quality of adjacent element pairs while taking into account relevance.

between all pairs of images in the storyline. Fully connected without relevance (run 3): optimizes for transition quality

Fully connected without relevance (run 3)

Optimise for transitions quality, for full sequences

2 - Illustrating storylines

We propose four graph-based methods for storyline illustration:

adjacent elements pairs. Sequential without relevance (run 1): optimizes for the transition quality of

Sequential with relevance (run 2): leverages the transition quality of adjacent element pairs while taking into account relevance.

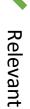
Fully connected without relevance (run 3): optimizes for transition quality between all pairs of images in the storyline.

pairs of images in the storyline as well as relevance. Fully connected with relevance (run 4): leverages transition quality between all

Fully connected with relevance (run 4)

and transitions quality: Again, directly optimise the task metric by approximating relevance

run 1 Tour de France 2017 Topics run 4	run 1 Edinburgh Festival 2017 Topics run 4	Illustration quality pairwise $Q(i) = \beta \cdot (s_i + s_{i-1})$ metric: $+ (1 - \beta) \cdot (s_{i-1} \cdot s_{i-1})$	Results - Illustration Quality
ns_sequential_without_relevance ns_sequential_with_relevance ns_fully_connected_without_relevance ns_fully_connected_with_relevance	ns_sequential_without_relevance ns_sequential_with_relevance ns_fully_connected_without_relevance ns_fully_connected_with_relevance	on $s_i + t_{i-1})$	۱ Quality
0.483667 0.462889 0.554167 0.506111	0.376333 0.360444 0.402111 0.300556	$Quality = \alpha \cdot s_1 + \frac{(1-\alpha)}{2(N-1)} \sum_{i=2}^{N} pairwiseQ(i)$	


(Run 4) Fully Connected with Relevance – Street Performances

The Edinburgh Festival is home to one of the most unique celebrations of arts

Street circus is a popular attraction at Edinburgh Festival with several artists such as unicycle jugglers

Relevant

Street circus is full of colorful artists

Bagpipes

(Run 3) Fully Connected without Relevance – **Street Performances**

The Edinburgh Festival is home to one of the most unique celebrations of arts

Street circus is a popular attraction at Edinburgh Festival with several artists such as unicycle jugglers


Bagpipes

Street circus is full of colorful artists

(Run 3) Fully Connected without Relevance -**Gastronomy at Edinburgh Festival**

Relevant

Relevant

(Run 3) Fully Connected without Relevance – EdFest can be tiring

X Not Relevant

(Run 3) Fully Connected without Relevance – **Scottish Elements**

Conclusions

aspects assessment, by leveraging on a large set of feature spaces, each capturing different We proposed a framework to computationally emulate transition quality

illustrations The proposed **regressor model contributed to the transitions quality** of story

With respect to retrieval of relevant content:

- obtained by training on external data Retrieval component needs to be improved. Consider using a cross-modal space,
- needs to be improved.% Our relevance estimation model (run 2 and 4), based on retrieval models' scores,

Thank you