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C
hallenges of D

IV
A - S

parsity 

●
D

IV
A

 actions are very sm
all 

○
The average activity is 
150x300 resolution 

○
E

very video in A
ctE

V
 dataset 

is either 1920x1080 or 
1200x720 

○
M

ost pixels in any given scene 
have no actions. 

 

 
 

 

S
patial S

parsity E
xam

ple 



C
hallenges of D

IV
A - Lim

ited D
ata 



C
hallenges of D

IV
A - V

ariable Length A
ctions 



A
ddressing C

hallenges 
 - S

parsity 

●
P

roposal based approach 

○
P

roposals are generated w
here people/vehicles are detected 

○
R

un classification on sm
all sub-section of fram

e 

○
A

ddresses sparsity by targeting w
here w

e look 

○
P

roposals can tightly bound regions of interest spatially 

●
Focus on H

igh R
ecall 

○
A

s long as proposals overlap a little, they can be refined later 



A
ddressing C

hallenges - Lim
ited D

ata 

●
U

tilize pre-trained classifier (I3D
) 

○
Trained on K

inetics-400 dataset (300k videos, 400 actions) 

●
Trained on proposals 

○
S

ignificantly m
ore proposals than actions 

○
A

cts as im
plicit data-augm

entation 



A
ddressing C

hallenges - V
ariable Length A

ctions 

●
P

roposals m
ay have vastly different spans 

  ●
A

ctions can often be accurately classified using a subset of fram
es 

●
O

ur solution is to classify using fixed num
ber of fram

es from
 each proposal 

 



S
ystem

 O
verview

 

●
M

odular system
 design 

○
M

odules m
ay be im

proved independently 
○

E
asily extendible pipeline 



O
bject D

etection 

    ●
M

ask R
-C

N
N

 
○

Trained on C
O

C
O

 
○

A
ccurate detection of hum

ans and vehicles at different scales 



P
roposal G

eneration 

●
G

enerate high-recall proposals 
●

Tw
o step process 

○
C

luster detections into proposal cuboids 
○

G
enerate extra proposals via tem

poral jittering 



P
roposal G

eneration - H
ierarchical C

lustering 
●

H
ierarchical C

lustering for P
roposal G

eneration 
a.

For each detection let (x,y) be the center and f be the fram
e num

ber 
b.

P
erform

 D
ivisive H

ierarchical C
lustering* on 3-d features (x,y,f) 

c.
D

ynam
ically split linkage tree at various levels to create k clusters 

d.
D

efine cuboid from
 resulting clusters (x

m
in , y

m
in , x

m
ax , y

m
ax , fst , fend ) 

  
●

S
tatistics on D

IV
A

 1.A
. validation 

○
A

pproxim
ately 250 proposals per video 

○
R

ecall 42%
 at spatio-tem

poral IoU
 of 0.2 

* M
üllner, D

aniel. "M
odern hierarchical, agglom

erative clustering algorithm
s." arXiv preprint arXiv:1109.2378 (2011). 



P
roposal G

eneration - Tem
poral Jittering 

●
Jittering to im

prove recall 
○

G
enerate tem

porally jittered cuboids 
from

 each proposal 

●
R

ecall im
provem

ents after jittering 
○

42%
 →

 86%
 at IoU

 of 0.2 

 



A
ction C

lassification 

●
A

ction C
lassification 

○
Im

proves tem
poral localization of proposals 

○
R

ejects False P
roposals 

○
C

lassifies V
alid P

roposals 

 

 



Tem
poral R

efinem
ent I3D

 (TR
I-3D

) 

●
P

roposal tem
poral alignm

ent to ground truth is im
precise 

  

 
●

TR
I-3D

 netw
ork adds tem

poral refinem
ent m

odule 

   

True A
ction 

        N
earest P

roposal 

tim
e 

Tem
poral align error 



●
Label proposal w

ith extra tem
poral refinem

ent 

 TR
I-3D

 - Tem
poral R

efinem
ent 

True A
ction 

        N
earest P

roposal 

●
E

stim
ate how

 m
uch adjustm

ent is needed 
 

○
Tem

poral R
efinem

ent labels 

 



TR
I-3D

 - Input P
re-processing 

●
P

roposal C
uboids expanded to have 1-1 spatial aspect ratio 

○
P

adding im
proved results. Likely due to extra contextual inform

ation. 

●
O

ptical flow
 input 

○
E

ach optical flow
 fram

e captures fast m
otions 

●
U

niform
ly sam

ple 64 fram
es from

 cuboid 
○

TR
I-3D

 C
N

N
 infers high level action from

 m
ultiple sim

ultaneous fram
es 

 

Figure. U
niform

 sam
pling of fram

es 

Input M
ode 

Accuracy 

R
G

B+Flow
 

0.704 

R
G

B 
0.585 

O
pt. Flow

 
0.716 

Table. Prelim
inary Experim

ents on R
G

B vs optical flow
 by 

classifying ground truth validation proposals 



TR
I-3D

 - R
ejecting N

egative P
roposals 

●
P

roposals w
ith insufficient overlap w

ith real action should be discarded 
●

A
dd an extra “negative” label during training 

●
C

onsider tw
o types of negative proposals 

○
E

asy: Little to no overlap w
ith true activity 

○
H

ard: S
om

e overlap w
ith true activity 

●
S

trongly favor hard negatives during training 
○

M
akes classifier m

ore robust (less false positives) 

 



P
ost P

rocessing 

●
S

patio-tem
poral non-m

axim
um

 suppression 
●

S
elect A

O
D

T objects 



P
ost P

rocessing - N
on-m

axim
um

 suppression 

●
D

ue to overlap in proposals a single action m
ay have m

any overlaps 
a.

P
erform

 per-class non-m
axim

um
 suppression on rem

aining proposal cuboids 

●
S

electing A
O

D
(T) O

bjects 
a.

G
enerate tracks for object detections through m

ulti-target K
alm

an-filtering trackers  
b.

G
ather tracks w

ith sufficient overlap w
ith proposal cuboid 

c.
C

lip tracks to cuboid length 
d.

R
eject tracks that don’t m

ake sense, e.g. 
■

S
tationary vehicles and people for turning actions 

■
V

ehicles in person only actions 
e.

R
em

aining tracks m
ake up A

O
D

/A
O

D
T results 



TH
U

M
O

S’14 R
esults 

●
W

ith m
inim

al m
odification, our system

 
outperform

s m
any recently published 

results on the TH
U

M
O

S
’14 action dataset 

●
Tw

o observations 

○
@

 0.5 tIoU
 our system

 outperform
s all but S

oTA
 

○
The D

IV
A

 baseline algorithm
 (X

u et al.) is 
com

parable to our system
 on TH

U
M

O
S

’14. 
H

ow
ever, w

e significantly outperform
 it on D

IV
A

. 
This further em

phasizes how
 m

uch D
IV

A
 differs 

from
 other com

m
on action detection datasets. 

2018 2017 



R
esults - D

IV
A Test 1.A

. (A
D

) 

M
easure 

Value 

m
ean p_m

iss @
 0.15 rfa 

0.6181246 

m
ean p_m

iss @
 1 rfa 

0.4405567 

m
ean n_m

ide @
 0.15 rfa 

0.2162213 

m
ean n_m

ide @
 1 rfa 

0.2231658 



R
esults - D

IV
A Test 1.A

 (A
D

 per class) 
 



R
esults - D

IV
A Test 1.A

 (A
O

D
) 

 

M
easure 

Value 

m
ean p_m

iss @
 0.15 rfa 

0.6801261 

m
ean p_m

iss @
 1 rfa 

0.5576526 

m
ean n_m

ide @
 0.15 rfa 

0.2083421 

m
ean n_m

ide @
 1 rfa 

0.2198618 

m
ean object p_m

iss @
 0.5 rfa 

0.3063430 



R
esults - D

IV
A Test 1.A

 (A
O

D
 per class) 

 



R
esults - D

IV
A V

alidation 1.A
 (A

D
) 

M
easure 

Value 

m
ean p_m

iss @
 0.15 rfa 

0.5630079 

m
ean p_m

iss @
 1 rfa 

0.3613007 

m
ean n_m

ide @
 0.15 rfa 

0.2091128 

m
ean n_m

ide @
 1 rfa 

0.2279841 



R
esults - D

IV
A V

alidation 1.A
 (A

D
 per class) 



R
esults - D

IV
A V

alidation 1.A
 (A

O
D

) 
 

M
easure 

Value 

m
ean p_m

iss @
 0.15 rfa 

0.6271621 

m
ean p_m

iss @
 1 rfa 

0.4618795 

m
ean n_m

ide @
 0.15 rfa 

0.1994476 

m
ean n_m

ide @
 1 rfa 

0.2225540 

m
ean object p_m

iss @
 0.5 rfa 

0.2442836 



R
esults - D

IV
A V

alidation 1.A
 (A

O
D

 per class) 
 



C
onclusion 

●
The dense proposals help increase the recall significantly. 

●
The proposed TR

I-3D
 can effectively refine the tem

poral boundaries of the 
proposals.  

●
The m

odular design of the proposed system
 allow

s easy integration of better 
com

ponents. 


