

University of Maryland College Park 11/14/2018

Rajeev Ranjan, Joshua Gleason, Steve Schwarcz, Carlos D. Castillo, Jun-Cheng Chen, Rama Chellappa

Detection in Untrimmed Videos Spatio-Temporal Action

Outline

- Introduction
- A Proposal-Based Solution to Spatio-Temporal Action Detection
- Experimental Results
- Conclusion

Challenges of DIVA - Sparsity

- DIVA actions are very small
- The average activity is
 150x300 resolution
- Every video in ActEV dataset
 is either 1920x1080 or
 1200x720
- Most pixels in any given scene have no actions.

Spatial Sparsity Example

a small portion of the image, and the surrounding context has image's context is useful for classification. no value for the action classification task. The THUMOS action Figure 3. On the left, the DIVA action Closing makes up only Cricket on the right is much larger in the image, and the entire

Challenges of DIVA - Limited Data

Challenges of DIVA - Variable Length Actions

Addressing Challenges

- Sparsity

- Proposal based approach
- 0 Proposals are generated where people/vehicles are detected
- Run classification on small sub-section of frame
- Addresses sparsity by targeting where we look
- 0 Proposals can tightly bound regions of interest spatially
- Focus on High Recall
- 0 As long as proposals overlap a little, they can be refined later

Addressing Challenges - Limited Data

- Utilize pre-trained classifier (I3D)
- 0 Trained on Kinetics-400 dataset (300k videos, 400 actions)
- Trained on proposals
- Significantly more proposals than actions
- Acts as implicit data-augmentation

Addressing Challenges - Variable Length Actions

Proposals may have vastly different spans

- Actions can often be accurately classified using a subset of frames
- Our solution is to classify using fixed number of frames from each proposal

System Overview

- Modular system design
- Modules may be improved independently
- Easily extendible pipeline

Object Detection

- Mask R-CNN
- Trained on COCO
- 0 Accurate detection of humans and vehicles at different scales

- Generate high-recall proposals
- Two step process
- Cluster detections into proposal cuboids
- Generate extra proposals via temporal jittering

Proposal Generation - Hierarchical Clustering

- Hierarchical Clustering for Proposal Generation
- For each detection let (x, y) be the center and f be the frame number
- σ Perform Divisive Hierarchical Clustering^{*} on 3-d features (x, y, f)
- <u></u> Dynamically split linkage tree at various levels to create k clusters
- <u>0</u> Define cuboid from resulting clusters (X_{min}, Y_{min}, X_{max}, Y_{max}, T_{st}, T_{end})
- Statistics on DIVA 1.A. validation
- Approximately 250 proposals per video
- Recall 42% at spatio-temporal IoU of 0.2

* Müllner, Daniel. "Modern hierarchical, agglomerative clustering algorithms." arXiv preprint arXiv:1109.2378 (2011).

Proposal Generation - Temporal Jittering

- Jittering to improve recall
- Generate temporally jittered cuboids from each proposal
- Recall improvements after jittering
- $\circ~$ 42% \rightarrow 86% at IoU of 0.2

Algorithm 1 Dense Proposal Generation

- 1: detections $\leftarrow Mask RCNN(video)$
- 2: **orig_proposals** \leftarrow *hierarchical_clustering*(**detections**)
- **3:** new_proposals ← orig_proposals
- 4: $\mathbf{s} \leftarrow 15$
- 5: for proposal in orig_proposals do
- 6: $\mathbf{x}_0, \mathbf{y}_0, \mathbf{x}_1, \mathbf{y}_1 \leftarrow spatial_bounds(proposal)$
- 7: $\mathbf{f}_{st}, \mathbf{f}_{end} \leftarrow temporal_bounds(proposal)$
- 8: for f from f_{st} to f_{end} step s do
- 9: $new_proposals.add(f 16, f + 16)$
- new_proposals.add(f 32, f + 32)

10:

- 11: **new_proposals**. $add(\mathbf{f} 64, \mathbf{f} + 64)$
- 12: **new_proposals**. $add(\mathbf{f} 128, \mathbf{f} + 128)$
- 13: final_dense_proposals \leftarrow new_proposals

RGB Frames Action Classification Detection Object Optical Flow Hierarchical Clustering Proposal Generation Temporal Jittering Sampling Proposal Action Classification TRI-3D Processing Post Output

- Action Classification
- Improves temporal localization of proposals
- Rejects False Proposals
- Classifies Valid Proposals

Temporal Refinement I3D (TRI-3D)

Proposal temporal alignment to ground truth is imprecise

TRI-3D network adds temporal refinement module

TRI-3D - Temporal Refinement

Label proposal with extra temporal refinement

- Estimate how much adjustment is needed
- 0 Temporal Refinement labels $r_{st}, r_{end} = \left(-\frac{\Delta f_{st}}{f}, \frac{\Delta f_{end}}{f}\right)$

TRI-3D - Input Pre-processing

- Proposal Cuboids expanded to have 1-1 spatial aspect ratio
- 0 Padding improved results. Likely due to extra contextual information.
- Optical flow input
- Each optical flow frame captures fast motions
- Uniformly sample 64 frames from cuboid
- 0 TRI-3D CNN infers high level action from multiple simultaneous frames

Opt. Flow	RGB	RGB+Flow	Input Mode
0.716	0.585	0.704	Accuracy

Table. Preliminary Experiments on RGB vs optical flow by classifying ground truth validation proposals

TRI-3D - Rejecting Negative Proposals

- Proposals with insufficient overlap with real action should be discarded
- Add an extra "negative" label during training
- Consider two types of negative proposals
- Easy: Little to no overlap with true activity
- Hard: Some overlap with true activity
- Strongly favor hard negatives during training
- Makes classifier more robust (less false positives)

Total Used	Hard Negative	Easy Negative	Positive	Designation	
35,851	• 13,574	9,525	12,752	Count	

Table 1. Number of proposals used for training TRI-3D network.

Post Processing

- Spatio-temporal non-maximum suppression
- Select AODT objects

Post Processing - Non-maximum suppression

- Due to overlap in proposals a single action may have many overlaps
- a. Perform per-class non-maximum suppression on remaining proposal cuboids
- Selecting AOD(T) Objects
- ຍ. Generate tracks for object detections through multi-target Kalman-filtering trackers
- <u></u> Gather tracks with sufficient overlap with proposal cuboid
- c. Clip tracks to cuboid length
- d. Reject tracks that don't make sense, e.g.
- Stationary vehicles and people for turning actions
- Vehicles in person only actions
- e. Remaining tracks make up AOD/AODT results

THUMOS'14 Results

- With minimal modification, our system results on the THUMOS'14 action dataset outperforms many recently published
- Two observations
- @ 0.5 tloU our system outperforms all but SoTA
- The DIVA baseline algorithm (Xu et al.) is comparable to our system on THUMOS'14.
 However, we significantly outperform it on DIVA.
 This further emphasizes how much DIVA differs from other common action detection datasets.

Ţ				2	20	18	3			1				20)1	7				1									
able 4. Comparison	Ours	Shou et al. [41]	Lin <i>et al.</i> [27]	Gao et al. [11]	Alwassel et al. [1]	Nguyen et al. [32]	Chao et al. [6]	Yang et al. [47]	Huang et al. [19]	Zhao et al. [53]	Xu et al. [46]	Gao et al. [13]	Dai <i>et al</i> . [8]	Hou et al. [18]	Gao et al. [12]	Buch et al. [2]	Yuan <i>et al.</i> [50]	Shou et al. [40]	Buch et al. [3]	Escorcia et al. [9]	Yuan et al. [49]	Yeung et al. [48]	Shou et al. [42]	Richard et al. [38]	Caba et al. [4]	Wang et al. [45]	Oneata et al. [36]	Karaman et al. [24]	tloU
1 to T	52.1	•	,	ï	,	52.0	59.8		•	60.3	54.5	54.0	ï	51.3	60.1	ï	51.0	i.	i.	,	51.4	48.9	47.7	39.7	ï	18.2	36.6	4.6	0.1
HUH	51.4	•	ŀ	ŀ	ľ	44.7	57.1	•	,	56.2	51.5	50.9	ı	·	56.7	ŀ	45.2	•	,	ï	42.6	44.0	43.5	35.7	ŀ	17.0	33.6	3.4	0.2
OS'14	49.7	35.8	53.5	ŀ	51.8	35.5	53.2	44.1	•	50.6	44.8	44.1	ŀ	43.7	50.1	45.7	36.5	40.1	37.8	ŀ	33.6	36.0	36.3	30.0	ŀ	14.0	27.0	2.4	0.3
+ perfe	46.1	29.0	45.0	ŀ	42.4	25.8	48.5	37.1	•	40.8	35.6	34.9	33.3	,	41.3	ŀ	27.8	29.4	ŀ	ŀ	26.1	26.4	28.7	23.2	ŀ	11.7	20.8	1.4	0.4
ormers	37.4	21.2	36.9	29.9	30.8	16.9	42.8	28.2	27.7	29.1	28.9	25.6	25.6	22.0	31.0	29.2	17.8	23.3	23.0	13.9	18.8	17.1	19.0	15.2	13.5	8.3	14.4	0.9	0.5
on ti	26.2	13.4	28.4	ŀ	20.2	9.9	33.8	20.6	•	,	ŀ	ŀ	15.9	,	19.1	ŀ	•	13.1	•	•	ŀ	ŀ	10.3	ŀ	ŀ	•	ï	'	0.6
he mAP	15.2	5.8	20.0	•	11.1	4.3	20.8	12.7	•	i.	•	•	9.0	•	9.9	9.6	i.	7.9	•	•	•	•	5.3	•	•	•	i.	•	0.7

Table 4. Comparison to THUMOS'14 performers on the mAP metric at various temporal IoUs. Missing entries indicate that results are not available. We note that Xu *et al.* [46] is the same system used to compute the DIVA V1 baseline; see Table 3. Bold indicates best performance.

Results - DIVA Test 1.A. (AD)

Measure	Value
mean p_miss @ 0.15 rfa	0.6181246
mean p_miss @ 1 rfa	0.4405567
mean n_mide @ 0.15 rfa	0.2162213
mean n_mide @ 1 rfa	0.2231658

Results - DIVA Test 1.A (AD per class)

activity	p_missAtRfa.15	p_missAtRfa1	n_mideAtRfa.15	n_mideAtRfa1
vehicle_turning_right	0.4160000	0.2160000	0.1189398	0.1406151
Closing_Trunk	0.4800000	0.2800000	0.1952250	0.2005133
vehicle_turning_left	0.6330935	0.2805755	0.1041266	0.1455894
Loading	0.5925926	0.2962963	0.2320325	0.2185177
Unloading	0.5151515	0.3030303	0.1473277	0.1523250
vehicle_u_turn	0.3076923	0.3076923	0.1343847	0.1343847
Open_Trunk	0.6000000	0.4000000	0.1877447	0.2123635
Opening	0.777778	0.5763889	0.2990197	0.2796126
Exiting	0.7340426	0.5957447	0.2144886	0.2502759
Entering	0.7319588	0.5979381	0.2417627	0.2779568
Closing	0.7807018	0.6754386	0.2838833	0.2275646
Transport_HeavyCarry	0.8484848	0.7575758	0.4357200	0.4382713

Results - DIVA Test 1.A (AOD)

Measure	Value
mean p_miss @ 0.15 rfa	0.6801261
mean p_miss @ 1 rfa	0.5576526
mean n_mide @ 0.15 rfa	0.2083421
mean n_mide @ 1 rfa	0.2198618
mean object p_miss @ 0.5 rfa	0.3063430

Results - DIVA Test 1.A (AOD per class)

activity	p_missAtRfa.15_AOD	p_missAtRfa1_AOD	n_mideAtRfa.15_AOD	n_mideAtRfa1_AOD	object_p_missAtRfa.50_AOD
vehicle_turning_right	0.4320000	0.2640000	0.1224045	0.1467868	0.0972335
vehicle_turning_left	0.6258993	0.3309353	0.1104631	0.1457217	0.0708223
vehicle_u_turn	0.3846154	0.3846154	0.0956272	0.0956272	0.0047506
Closing_Trunk	0.5600000	0.4800000	0.2053459	0.2281162	0.2839879
Unloading	0.6969697	0.4848485	0.0919419	0.1504894	0.7281739
Open_Trunk	0.6800000	0.5600000	0.1754733	0.1903678	0.2280419
Loading	0.7037037	0.5925926	0.2424638	0.2416688	0.3603478
Opening	0.8402778	0.6736111	0.3131711	0.2719526	0.3773797
Exiting	0.7765957	0.6914894	0.2240591	0.2680818	0.4643600
Entering	0.7628866	0.7010309	0.2242854	0.2373795	0.4214567
Closing	0.7894737	0.7105263	0.2750829	0.2148685	0.3389735
Transport_HeavyCarry	0.9090909	0.8181818	0.4197867	0.4472813	0.3005877

Results - DIVA Validation 1.A (AD)

Measure	Value
mean p_miss @ 0.15 rfa	0.5630079
mean p_miss @ 1 rfa	0.3613007
mean n_mide @ 0.15 rfa	0.2091128
mean n_mide @ 1 rfa	0.2279841

Results - DIVA Validation 1.A (AD per class)

p_miss@0.15rfa	p_miss@1rfa	n-mide@0.15rfa	n-mide@0.1rfa
0.554745	0.218978	0.112873	0.127510
0.250000	0.250000	0.156234	0.156234
0.451128	0.255639	0.170556	0.175456
0.454545	0.272727	0.193195	0.233416
0.538462	0.323077	0.206481	0.214736
0.521127	0.338028	0.193284	0.249608
0.513514	0.378378	0.264423	0.280165
0.428571	0.380952	0.162767	0.155613
0.716535	0.433071	0.205391	0.235101
0.674242	0.439394	0.174487	0.176459
0.903226	0.451613	0.407549	0.476384
0.750000	0.593750	0.262114	0.255128
	P_miss@0.15rfa 0.554745 0.250000 0.451128 0.454545 0.538462 0.521127 0.521127 0.513514 0.428571 0.716535 0.674242 0.903226 0.750000	p_miss@0.15rfa p_miss@1rfa 0.554745 0.218978 0.250000 0.250000 0.451128 0.255639 0.454545 0.272727 0.538462 0.323077 0.521127 0.338028 0.513514 0.378378 0.428571 0.380952 0.716535 0.433071 0.674242 0.439394 0.903226 0.451613 0.750000 0.593750	p_miss@0.15rfap_miss@1rfan-mide@0.15rfa0.5547450.2189780.1128730.2500000.2500000.1562340.4511280.2556390.1705560.4545450.2727270.1931950.5384620.3230770.2064810.5211270.3380280.1932840.52135140.3783780.2644230.4285710.3809520.1627670.7165350.4330710.2053910.6742420.4393940.1744870.9032260.4516130.4075490.7500000.5937500.262114

Results - DIVA Validation 1.A (AOD)

Measure	Value
mean p_miss @ 0.15 rfa	0.6271621
mean p_miss @ 1 rfa	0.4618795
mean n_mide @ 0.15 rfa	0.1994476
mean n_mide @ 1 rfa	0.2225540
mean object p_miss @ 0.5 rfa	0.2442836

Results - DIVA Validation 1.A (AOD per class)

Conclusion

- The dense proposals help increase the recall significantly.
- The proposed TRI-3D can effectively refine the temporal boundaries of the proposals.
- components. The modular design of the proposed system allows easy integration of better