

Two-stage Ranking Strategy for Ad-hoc Video Search

Fangming Zhou¹, Changqiao Wu², Xiaofeng Guo², Haofan Wang², Jincan Deng², Debing Zhang²

¹Renmin University of China ²MMU, Kuaishou Technology

TRECVID 2021 workshop

2021-12

Ad-hoc Video Search

• ESSENCE: text-video matching in retrieval scenario (a hot topic)

Leaderboard of video retrieval on MSR-VTT-1kA [1]

[1] MSR-VTT-1kA Benchmark (Video Retrieval) | Papers With Code

Previous works

- RUC_AIMC3 at TRECVID 2020 ^[1]:
 - Two-branch model
 - Addition of irCSN feature
- RUCMM at TRECVID 2020 ^[2]:
 - Multi-space & multi-loss strategy
 - Addition of C3d feature

RUC_AIMC3 at TRECVID 2020

RUCMM at TRECVID 2020

[1] Zhao et al., RUC_AIM3 at TRECVID 2020: Ad-hoc video search & video to text description. TRECVID, 2020.
 [2] Li et al., Renmin University of China at TRECVID 2020: Sentence encoder assembly for ad-hoc video search. TRECVID, 2020.

• Stage - I : Keyword-based Rank

- Model architecture
- Training data
- Visual features and textual encoders

• Stage - II : Fine-grained Re-rank

- Frame-level matching
- Weighted sum of two stages as final similarity
- Reasonableness of re-ranking

- Stage I : Keyword-based Rank
 - Model architecture

SEA: sentence encoder assembly

- ✓ Multi-space architecture
- Learning k common space for k sentence encoders
- ✓ Combined loss:

$$loss = \sum_{i=1}^{k} loss_{i}(sentence, video)$$

[1] Li et al., SEA: Sentence encoder assembly for video retrieval by textual queries. TMM, 2021.

- Stage I : Keyword-based Rank
 - Model architecture

- Stage I : Keyword-based Rank
 - Model architecture SEA++ model
 - ✓ Individual common space for each combination.
 - ✓ First stage similarity:

 $S_{first} = \sum_{i=1}^{m} \sum_{j=1}^{n} S_{space,i,j}$

✓ Only the first **K** videos sorted according to S_{first} will be passed to the Stage – II.

- Stage I : Keyword-based Rank
 - Model architecture SEA++ model

- Stage I : Keyword-based Rank
 - Training data
 - ✓ Concepts in different datasets should be complementary.
 - ✓ Training data should be similar to V3C1.

Training data	Num of video/image	Num of sentence
MSR-VTT	10k	200k
TGIF	100k	124k
VATEX	32k	349k
MSCOCO	123k	616k

- Stage I : Keyword-based Rank
 - Visual features and textual encoders
 - ✓ Visual features: ResNeXt101, irCSN, CLIP, timesformer
 - ✓ Textual encoders: Bag-of-word, word2vec (keyword-based)

Model	Feature	TV19	TV20
	Resnext+irCSN	0.167	0.316
SEA(BoW, w2v)	Resnext+irCSN+CLIP	0.185	0.327
	Resnext+irCSN+CLIP+timesformer	0.191	0.332

Ablation experiment on visual feature

• Stage - II : Fine-grained Re-rank

- Frame-level matching
- Weighted sum of two stages as final similarity
- Reasonableness of re-ranking

- Stage II : Fine-grained Re-rank
 - Frame-level matching
 - ✓ We use out-of-box CLIP ^[1] as framelevel matching model.
 - ✓ Only Top-K videos sorted in Stage I are considered.
 - ✓ Second stage similarity:

 $S_{second} = \max(I_1 \cdot T, \cdots, I_n \cdot T)$

 $I_i = ImageEncoder(frame_i)$

T = TextEncoder(query)

[1] Radford et al,. Learning transferable visual models from natural language supervision, arxiv, 2021.

- Stage II : Fine-grained Re-rank
 - Weighted sum of two stages as final similarity

$$S(Q,V) = \begin{cases} 0, \\ w_1 \cdot S_{first} + w_2 \cdot S_{second}, \end{cases}$$

$$if S_{first} < S_{threshold}$$
$$if S_{first} \ge S_{threshold}^{*}$$

- Reasonableness of re-ranking
 - ✓ Keyframe is enough in most cases.
 - ✓ The sentence semantics is considered (versus previous keyword-based method).

 Models
 TV19
 TV20
 TV21

 baseline
 0.211
 0.362
 0.340

 Baseline + re-rank
 0.241
 0.360
 0.349

[*] We set $w_1=0.2 w_2=0.8$ in our experiments.

Overall Pipeline

- Our final submitted runs as followed:
 - run 3: single SEA++ model

Submissions	TV19	TV20	TV21
Winner in 2019	0.163	-	-
Winner in 2020	-	0.359	_
run3	0.206	0.354	0.332

• Our final submitted runs as followed:

- run 3: single SEA++ model
- run 2: model ensemble¹

Submissions	TV19	TV20	TV21
Winner in 2019	0.163	-	_
Winner in 2020	-	0.359	-
run3	0.206	0.354	0.332
run2	0.211	0.362	0.340

• Our final submitted runs as followed:

- run 3: single SEA++ model
- run 2: model ensemble¹
- run 1: model ensemble¹ + re-rank

Submissions	TV19	TV20	TV21
Winner in 2019	0.163	-	_
Winner in 2020	-	0.359	-
run3	0.206	0.354	0.332
run2	0.211	0.362	0.340
run1(primary)	0.241	0.360	0.349

• Our final submitted runs as followed:

- run 3: single SEA++ model
- run 2: model ensemble¹
- run 1: model ensemble¹ + re-rank
- run 4: model ensemble² + re-rank

Submissions	TV19	TV20	TV21
Winner in 2019	0.163	-	_
Winner in 2020	-	0.359	_
run3	0.206	0.354	0.332
run2	0.211	0.362	0.340
run1(primary)	0.241	0.360	0.349
run4	0.239	0.358	0.349

Take-home Message

 1) We propose an improved video retrieval model, namely SEA++, which built a solid backbone for our best run.

SEA++ model

Take-home Message

- 1) We propose an improved video retrieval model, namely SEA++, which built a solid backbone for our best run.
- 2) Re-ranking by CLIP is an effective method to gain higher performance.

THANKS!

Contact with us:

fangming_zhou@ruc.edu.cn, wuchangqiao@kuaishou.com, zhangdebing@kuaishou.com

