RUC_AIM3 at TRECVID 2021: Video to Text Description

Liang Zhang, Yuqing Song, Qin Jin Al·M³, Renmin University of China

1

Outline

- Automatically generate a sentence that best describes the video using natural language
- Learning video concepts from both temporal and spatial dimensions

"A man stands in a doorway using a pull up bar to do pull ups"

- Previous works show LSTM-based model perform better than vanilla Transformer. [1]
- We build our system with pretraining based transformer framework

Modeling with video concepts

[1] Zhao Y, Song Y, Chen S, et al. RUC_AIM3 at TRECVID 2020: Ad-hoc Video Search & Video to Text Description[C]. TRECVID, 2020.

Concept Enhanced Pretraining based Transformer Model (CE-PTM)

Figure 1: Architecture of CE-PTM.

Video Encoder: encode raw video frames into visual representations.

- Extract video features $V^f = \{v_1^f, \dots, v_{L_v}^f\} \in \mathbb{R}^{L_v \times 7168}$
 - Key frame sampling for every 8 frames
 - Off-the-shelf feature extractors

Name	Туре	Architecture	Pretrained Data	Dimension
I3D [8]	3D	CNN	Kinetics-400 [8]	1024
ResNeXt-101 [9]	2D	CNN	ImageNet [12]	2048
irCSN [10]	3D	CNN	IG-65M [13]	2048
Swin-Transformers [11]	2D	Transformer	ImageNet [12]	1536
CLIP ViT-B/32 [7]	2D	Transformer	WebImageText [7]	512

Table 1: Comparison between the video features.

- Encode into visual representations
 - One layer Transformer Encoder

 $V^r = \text{TransformerEncoderLayer}(V^e + \text{TE}(0), \theta_v)$

- Text Encoder: encode sentences into textual representations
 - Learnable word embedding $T^e = \{t_1^e, ..., t_{L_t}^e\}, T^e \in \mathbb{R}^{L_t \times 512}$
 - Special token [SOS], [EOS] and [MASK]

Text Encoder

[SOS] an [MASK] is walking in forest [EOS]

• One layer Transformer Encoder

 $T^r = \text{TransformerEncoderLayer}(T^e + \text{TE}(1) + \text{PE}, \theta_t)$

- Concept Encoder: getting Concept representations
 - Video concepts: Objects & Actions in the video
 - Automatically generate video-concepts pairs
 - Extract nouns and verbs from video captions
 - Train a LSTM-based Concept Extractor

Off-the-shelf Concept Extractor

- Multimodal Transformer
 - Encode representations in different modalities
 - Four transformer encoder layers

$$H_0 = [V^r; C^r; T^r]$$

$$H_i = \text{TransformerEncoderLayer}(H_{i-1}, \theta_i), 0 < i <= 4$$

- Pretraining Task
 - Video-guided Masked Language Modeling (VMLM)
 - Predict masked words with video, concepts, and context
 - Select 15% masked words, and replace them with[3]:
 - [MASK] 80% of the time
 - A random token 10% of the time
 - Keeping unchanged 10% of the time

[3] Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv:1810.04805, 2018.

- Finetuning
 - Modify self-attention mask of VMLM
 - Avoid seeing future words
- Inference
 - Feed [MASK] and predict the current word autoregressively
 - Stop when [EOS] is predicted

- Reinforcement Learning (RL) [2]
 - CIDEr reward

$$L_{rl} = -\frac{1}{L_s} r(T^s) \sum_{i=1}^{L_s} \log p(T_i^s | V, C, T_{$$

- Hybrid Reranking
 - Visual relevance scoring by VSE++ model
 - Ensemble the captions generated from different models

[2] Rennie S J, Marcheret E, Mroueh Y, et al. Self-critical sequence training for image captioning[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 7008-7024.

Training dataset : TGIF, TRECVID16-19, MSRVTT, VATEX
 Validation dataset: TRECVID20

Experiments

PTM, CE-PTM: Proposed methods, 5 features

TOP1-in-2020: 2-layers LSTM Model, feature: irCSN + ResNext

BUTD: 2-layers LSTM Model, feature: 5 features⁽¹⁾

Experiments

PTM, CE-PTM: Proposed methods, 5 features

TOP1-in-2020: 2-layers LSTM Model, feature: irCSN + ResNext

BUTD: 2-layers LSTM Model, feature: 5 features^①

Models	BLEU@4	METEOR	CIDEr	SPICE
	Trained with Cros	ss-Entropy		
TOP1-in-2020 [3]	16.7	16.9	26.1	10.6
BUTD [24]	18.4	17.4	29.5	11.3
Ours PTM	19.7	18.4	33.8	12.3
Ours CE-PTM	19.6	18.8	34.5	12.7

① 5 features = irCSN+ResNext+CLIP+Swin+I3D

Experiments

PTM, CE-PTM: Proposed methods, 5 features

TOP1-in-2020: 2-layers LSTM Model, feature: irCSN + ResNext

BUTD: 2-layers LSTM Model, feature: 5 features⁽¹⁾

Conclusion 1: Encoding with different kinds of features make improvements.

Models	BLEU@4	METEOR	CIDEr	SPICE	
Trained with Cross-Entropy					
TOP1-in-2020 [3]	16.7	16.9	26.1	10.6	
BUTD [24]	18.4	17.4	29.5	11.3	
Ours PTM	19.7	18.4	33.8	12.3	
Ours CE-PTM	19.6	18.8	34.5	12.7	

1) 5 features = irCSN+ResNext+CLIP+Swin+I3D

Experiments

PTM, CE-PTM: Proposed methods, 5 features

TOP1-in-2020: 2-layers LSTM Model, feature: irCSN + ResNext

BUTD: 2-layers LSTM Model, feature: 5 features⁽¹⁾

Conclusion 2: Pretraining-based transformer model is more suitable for caption generation

Models	BLEU@4	METEOR	CIDEr	SPICE	
Trained with Cross-Entropy					
TOP1-in-2020 [3]	16.7	16.9	26.1	10.6	
BUTD [24]	18.4	17.4	29.5	11.3	
Ours PTM	19.7	18.4	33.8	12.3	
Ours CE-PTM	19.6	18.8	34.5	12.7	

1) 5 features = irCSN+ResNext+CLIP+Swin+I3D

Experiments

Conclusion 3: Video concepts are helpful for generating more diverse captions that can be complementary to the classic models.

Models	BLEU@4	METEOR	CIDEr	SPICE		
Trai	ned with Cros	ss-Entropy				
TOP1-in-2020 [3]	16.7	16.9	26.1	10.6		
BUTD [24]	18.4	17.4	29.5	11.3		
Ours PTM	19.7	18.4	33.8	12.3		
Ours CE-PTM	19.6	18.8	34.5	12.7		
Trained with Reinforcement Learning						
TOP1-in-2020 [3]	17.4	16.9	28.3	10.6		
BUTD [24]	19.4	17.9	31.7	11.4		
Ours PTM	21.3	18.8	35.4	12.7		
Ours CE-PTM	21.4	19	35.8	12.7		
Hybrid reranking						
BUTD [24]	20.2	18.5	34.7	12.2		
PTM	21.4	19.0	37.1	13.0		
PTM+CE-PTM	21.6	19.3	38.1	13.3		
BUTD+PTM+CE-PTM	21.5	19.3	38.5	13.4		

Submission

- Run 4: Our single best model.
- Run 3: Ensemble of the BUTD models.
- Run 2: Ensemble of the PTM and CE-PTM models.
- Run 1: Ensemble of run2 and run3 by captions reranking.

Runs	BLEU@4	METEOR	CIDEr	SPICE	STS
4	3.9	31.6	33.6	11.9	44.1
3	3.7	31.1	32.4	11.6	44.2
2	4.7	32.7	35.9	12.7	45.7
1	4.6	32.5	36.0	12.6	45.6

Table 3: Results of the submitted four runs on TRECVID VTT 2021 dataset.

Complete video description with a blank based on the video content.

A man is jumping off a mountain using <u>a parachute</u> in a sunny day.

- Generate pseudo blanks using video captioning dataset
 - Extract verb and noun phrases
 - Randomly select one of the pseudo blanks to fill during training

- Use PTM to Fill-in-the-Blanks
- Four approaches to generate the blank phrases
 - Non-autoregressive Mask Generation (NMG)
 - Auto-regressive Mask Generation (AMG)
 - LSTM Decoder Generation (LDG)
 - Transformer Decoder Generation (TDG)

- Non-autoregressive Mask Generation (NMG)
 - Replace the blank phrase with 1-3 [MASK] tokens and make three predictions
 - For each prediction, we aggregate prediction scores of each token with mean pooling

- Autoregressive Mask Generation (AMG)
 - Feed [MASK] to generate the current blanked word
 - End until [BLANK_EOS] is generated

- LSTM Decoder Generation (LDG)
 - Replace blank phrase with one [MASK] token •
 - Initialize the first hidden state with the output feature of the [MASK] •
 - Generate the blank phrase in autoregressive manner •

$$h_{0} = h_{[MASK]}$$

$$h_{i} = \text{LSTM}(y_{i-1}, h_{i-1}; \theta_{l})$$

$$p(y_{i}|y_{

$$L_{xe} = -\frac{1}{N_{b}} \sum_{i=0}^{N_{b}} \log p(y_{i}|y_{
A man is jumping off a mountain using _____ in a sunny day.
$$Prediction: \quad \bullet \quad parachute \quad [BLANK_EOS] \quad \bullet \quad parachute \quad extra stransformer Model$$

$$Pretraining-based Transformer Model$$

$$Pretraining-based Transformer Model$$$$$$

...............................

in a suppy day

- Transformer Decoder Generation (TDG)
 - Replace blank phrase with one [MASK] token
 - Features of the sentence from PTM are treat as the Key & Value
 - 4 transformer decoder layers

- Transformer Decoder Generation (TDG)
 - Random Blank Filling (RBF)
 - Select 1~5 continuous words as a random blank
 - Not necessarily noun or verb phrases (different from pseudo blanks)
 - Finetuning on pseudo blanks

• Generate pseudo blanks on:

- Training dataset : TGIF, TRECVID16-19, MSRVTT, VATEX
- Validation dataset: TRECVID20

Automatic Metrics

- Exactly Match (EM)
- F1 Score over tokens (F1)

• Experiment:

- Non-autoregressive Mask Generation (NMG)
- Auto-regressive Mask Generation (AMG)
- LSTM Decoder Generation (LDG)
- Transformer Decoder Generation (TDG)
 - Random Blank Filling (RBF)

Model	EM	F1		
Single	Model			
NMG	19.4	39.5		
AMG	21.5	40.8		
LDG	28.5	45.0		
TDG	28.9	45.1		
TDG+RBF	29.1	45.8		
Hybrid reranking				
All models	30.3	47.0		

• Experiment:

• Decoder-based method outperform those without additional decoder

Model	EM	F1					
Single	Single Model						
NMG	19.4	39.5					
AMG	21.5	40.8					
LDG	28.5	45.0					
TDG	28.9	45.1					
TDG+RBF	29.1	45.8					
Hybrid reranking							
All models	30.3	47.0					

• Experiment:

- Decoder-based method out perform those without additional decoder
- Transformer Decoder performs slightly better than LSTM

Model	EM	F1				
Single	Single Model					
NMG	19.4	39.5				
AMG	21.5	40.8				
LDG	28.5	45.0				
TDG	28.9	45.1				
TDG+RBF	29.1	45.8				
Hybrid reranking						
All models	30.3	47.0				

• Experiment:

- Decoder-based method out perform those without additional decoder
- Transformer Decoder perform slightly better
- RBF pretraining brings improvements

Model	EM	F1				
Single	Single Model					
NMG	19.4	39.5				
AMG	21.5	40.8				
LDG	28.5	45.0				
TDG	28.9	45.1				
TDG+RBF	29.1	45.8				
Hybrid reranking						
All models	30.3	47.0				

• Submission:

- Run 2: The single best model with Transformer Decoder (TDG+RBF).
- Run 1: Ensemble of all generation methods mentioned above via Hybrid Reranking.

System	Automatic Metrics		Human Evaluation	
System	EM	F1	Average	Average Z
human	-	-	85.4	42.0
Run2	14.1	38.7	80.1	17.3
Run1	15.3	40.8	79.5	13.0

Table 5: Evaluation results on TRECVID VTT 2021.

• Submission:

- Run 2: The single best model with Transformer Decoder (TDG+RBF).
- Run 1: Ensemble of all generation methods mentioned above via Hybrid Reranking.
- Gap between Automatic Metrics and Human Evaluation

System	Automatic Metrics		Human Evaluation	
System	EM	F1	Average	Average Z
human	-	-	85.4	42.0
Run2	14.1	38.7	80.1	17.3
Run1	15.3	40.8	79.5	13.0

Table 5: Evaluation results on TRECVID VTT 2021.

Conclusion

Description Generation

- Pre-training based Transformer model can outperform the LSTM-based model
- Video concepts can be helpful for generating more diverse captions that can be complementary to classic captioning models.
- We ranked 1st in METEOR, CIDEr, SPICE, STS, and 2nd in BLEU4

- Decoder-based methods perform better than models without decoder
- Transformer decoder performs better than LSTM decoder
- We ranked 1st in human evaluation

THANKS !

If you have any questions, please feel free to contact with us: <u>zhangliang00@ruc.edu.cn</u> <u>syuqing@ruc.edu.cn</u> <u>qjin@ruc.edu.cn</u>

http://jin-qin.com/AIM3-Lab.html