TRECVID 2021 Ad-hoc Video Search (AVS) Task Overview

Georges Quénot Laboratoire d'Informatique de Grenoble, France

George Awad Retrieval Group, Information Access Division, Information Technology Laboratory, NIST; Georgetown University

National Institute of Standards and Technology U.S. Department of Commerce Information Access Division Information Technology Laboratory

Outline

Task Definition & Dataset Topics (Queries) Participating Teams Evaluation & Results General Observations

National Institute of Standards and Technology U.S. Department of Commerce

TRECVID 2021

Goal: promote progress in content-based video retrieval based on end user <u>ad-hoc (generic) textual queries</u> that include searching for persons, objects, locations, actions and their combinations.

Task: Given a test collection, a query, and a master shot boundary reference, return a ranked list of at most 1000 shots (out of 1,082,657) which best satisfy the query.

Queries:

- Main : New queries each year
- Progress : A set of fixed queries for 3 years

Testing data: 7475 Vimeo Creative Commons Videos (V3C1), 1000 total hours with mean video durations of 8 min. Reflects a wide variety of content, style and source devices. Fixed testing data since 2019.

Development data: ≈2000 hours of previous IACC.1-3 (Internet Archive) data used between 2010-2018 with concept and ad-hoc query annotations.

Vimeo Creative Commons Collection

Partition	V3C1	V3C2	V3C3	Total
File Size	2.4TB	3.0TB	3.3TB	8.7TB
Number of Videos	7,475	9,760	11,215	28,450
Combined Video Duration	1000 hours, 23 minutes, 50 seconds	1300 hours, 52 minutes, 48 seconds	1500 hours, 8 minutes, 57 seconds	3801 hours, 25 minutes, 35 seconds
Mean Video Duration	8 minutes, 2 seconds	7 minutes, 59 seconds	8 minutes, 1 seconds	8 minutes, 1 seconds
Number of Segments	1,082,659	1,425,454	1,635,580	4,143,693

The Vimeo Creative Commons Collection (V3C)^{*} consists of '**free**' video material sourced from the web video platform **vimeo.com**. *It is designed to contain a wide range of content which is representative of what is found on the platform in general*. All videos in the collection have been released by their creators under a **Creative Commons License** which allows for unrestricted redistribution.

^{*} Rossetto, L., Schuldt, H., Awad, G., & Butt, A. (2019). V3C – a Research Video Collection. Proceedings of the 25th International Conference on MultiMedia Modeling.

AVS 2021 (20 main) Queries by complexity NIST

Query	Person	Action	Object	Location
Find shots of a hang glider floating in the sky on a sunny day		\checkmark	\checkmark	
Find shots of a woman wearing sleeveless top	\checkmark			
Find shots of a person with a tattoo on their arm	\checkmark			
Find shots of city street where ground is covered by snow			\checkmark	\checkmark
Find shots of an adult person wearing a backpack and walking on a sidewalk	\checkmark	\checkmark	\checkmark	\checkmark
Find shots of a man wearing a blue jacket	\checkmark		\checkmark	
Find shots of a person looking at themselves in a mirror	\checkmark	\checkmark	\checkmark	
Find shots of a person wearing an apron indoors	\checkmark	\checkmark	\checkmark	\checkmark
Find shots of a woman holding a book	\checkmark	\checkmark	\checkmark	
Find shots of a person painting on a canvas	\checkmark	\checkmark	\checkmark	
Find shots of a man behind a pub bar or club bar	\checkmark			\checkmark
Find shots of a person wearing a cap backwards	\checkmark		\checkmark	
Find shots of a man pointing with his finger	\checkmark	\checkmark		
Find shots of a parachutist descending towards a field on the ground in the daytime	\checkmark	\checkmark		\checkmark
Find shots of two or more ducks swimming in a pond		\checkmark	\checkmark	\checkmark
Find shots of a white dog			\checkmark	
Find shots of two boxers in a ring	\checkmark			\checkmark
Find shots of a man sitting on a barber chair in a shop	\checkmark	\checkmark	\checkmark	\checkmark
Find shots of a ladder with less than 6 steps			\checkmark	
Find shots of a bow tie			\checkmark	

2019-2021 (20 progress) Queries by complexity NIST

Query	Person	Action	Object	Location
Find shots of a person holding an opened umbrella outdoors	\checkmark	\checkmark	\checkmark	\checkmark
Find shots of two people talking to each other inside a moving car	\checkmark	\checkmark	\checkmark	\checkmark
Find shots of people walking across (not down) a street in a city	\checkmark	\checkmark		\checkmark
Find shots of a shark swimming under the water		\checkmark	\checkmark	\checkmark
Find shots of a person reading a paper including newspaper	\checkmark	\checkmark	\checkmark	
Find shots of fishermen fishing on a boat	\checkmark	\checkmark	\checkmark	
Find shots of a person jumping with a motorcycle	\checkmark	\checkmark	\checkmark	
Find shots of a person jumping with a bicycle	\checkmark	\checkmark	\checkmark	
Find shots of one or more women models on a catwalk demonstrating clothes	\checkmark	\checkmark		
Find shots of people doing yoga	\checkmark	\checkmark		
Find shots of a person sleeping	\checkmark	\checkmark		
Find shots of people hiking	\checkmark	\checkmark		
Find shots of bride and groom kissing	\checkmark	\checkmark		
Find shots of a person skateboarding	\checkmark	\checkmark		
Find shots of people queuing	\checkmark	\checkmark		
Find shots of two people kissing who are not bride and groom	\checkmark	\checkmark		
Find shots of a man in a clothing store	\checkmark			\checkmark
Find shots of a person in a bedroom	\checkmark			\checkmark
Find shots of a person's shadow			\checkmark	
Find shots showing electrical power lines			\checkmark	

Task Parameters

DIGITAL VIDEO RETRIEVAL at NIST

TRECVID 2021

System Types	Description	Training data	Description
Fully Automatic (F)	System uses official query directly	A	Only IACC training data
		D	Other training data sources
Manually- Assisted (M)	Query built manually	E	Only training data collected <i>automatically</i> using the query text
Relevance- Feedback (R)	Allow judging top-30 results up to 3 iterations	F	Only training data collected <i>automatically</i> using a query <i>built manually</i> from the official query text

->> Novelty (optional) run type to encourage retrieving non-common relevant shots easily found across systems.

->> Explainability of result items were allowed as extra optional information with the submitted shots

Teams – Main Task (39 runs)

Team		S	ystem Type	e
(8 Einishers)	Organization	Manually	nually Fully N	
(01111511615)		assisted	automatic	run
VIREO	Singapore Management University; City University of Hong Kong	4	4	1
Kindai_ogu_osaka	Kindai University; Osaka Gakuin University; Osaka University		4	1
GodSpeed	Kuaishou Tech		4	
	Information Technologies Institute, Centre for Research		4	
III_CEKIH	and Technology Hellas		4	
RUC_AIM3	Renmin University of China		4	
RUCMM	Renmin University of China		4	
WasedaMeiseiSoftbank	Waseda University; Meisei University; SoftBank Corporation	4	4	
DMT_CUC_01	Communication University of China	1		
	communication oniversity of china			

National Institute of Standards and Technology U.S. Department of Commerce

Teams – Progress Task (112 runs)

DIGITAL VIDEO RETRIEVAL at NIST

TRECVID 2021

Team		S	ystem Type		
14 Finishers	Organization	Manually	Fully	Novelty	
		assisted	automatic	run	
VIdeoREtrievalGrOup	City University of Hong Kong	10	12		
FIU_UM	Florida International University; University of Miami		6		
Kindai_ogu	Kindai University; Osaka Gakuin University		9	1	
SIRET (2019) [*]	Charles University	4			
ATL (2019) [*]	Alibaba group; ZheJiang University		4		
Inf (2019) [*]	Carnegie Mellon University; Monash University; Renmin University; Shandong University		4		
EURECOM (2019) *	EURECOM		3		
ITI_CERTH	Information Technologies Institute, Centre for Research and Technology Hellas		5	-	_
RUC_AIM3	Renmin University of China		8		1
RUCMM	Renmin University of China		12		7
WasedaMeiseiSoftbank	Waseda University; Meisei University; SoftBank Corporation	12	9		
ZY_BJLAB	XinHuaZhiYun Technology CO,. Ltd.	4	4		
GodSpeed (2021)*	Kuaishou Tech		4		
DMT_CUC_01 (2021)*	Communication University of China	1			

*Some teams only participated in 2019 or 2021

National Institute of Standards and Technology U.S. Department of Commerce

Evaluation Methodology

- ➢ NIST judged 100% of top (ranks 1 − 250) pooled results from all submissions and sampled 20% from the rest of pooled results (ranks 251 − 1000).
- > Stats of sampled and judged clips (ranks 251 to 1000) across all runs and topics
 - > At minimum, 16.9 % of any run and query results were sampled and judged
 - > At maximum, 94.9 % of any run and query results were sampled and judged
 - > On average, 73.9 % of any run and query results were sampled and judged
- > One assessor per query, watched complete shot while listening to the audio.
- > Each query assumed to be binary: absent or present for each master reference shot.
- Top submitted results were *double judged* if at least 10 runs submitted them, and assessor judged them as false positive.
- Extended inferred average precision (xinfAP) was calculated using the judged and unjudged pool by sample_eval¹ tool.
- > Compared runs in terms of **mean** extended *inferred average precision* across the all evaluated queries.

¹https://www-nlpir.nist.gov/projects/trecvid/trecvid.tools/sample_eval/

Human Judgments

National Institute of Standards and Technology U.S. Department of Commerce

TRECVID 2021

Main Task Results

National Institute of Standards and Technology U.S. Department of Commerce

Inferred average precision (InfAP)

- Estimates average precision well using a small sample of judgments from the usual submission pools^{*}
- Thus, more queries can be judged with same annotation effort.
- Experiments on previous TRECVID years confirmed the quality of the estimate in terms of actual scores and system ranking.
- Extended InfAP (xinfAP) allows the adjustment of sampling to match the relative importance of highest ranked items to average precision.

^{*} J.A. Aslam, V. Pavlu and E. Yilmaz, Statistical Method for System Evaluation Using Incomplete Judgments Proceedings of the 29th ACM SIGIR Conference, Seattle, 2006.

Sorted Overall Scores

Higher is better

Automatic Runs

Sorted Overall Scores

Higher is better

10 Manually-Assisted Runs across 20 Main queries

Manually-Assisted Runs

Statistical Significance (top 10 runs)

Top 10 automatic runs - randomization test (p < 0.05)

Rank	Run	xInfAP (sorted scores)	
1	C_D_VIREO.21_4	0.355	
2	C_D_GodSpeed.21_4	0.349	
3	C_D_GodSpeed.21_1	0.349	
4	C_D_RUCMM.21_1	0.343	<pre>C_D_VIRE0.21_4 > C_D_VIRE0.21_3</pre>
5	C_D_WasedaMeiseiSoftbank.21_2	0.341	
6	C_D_RUCMM.21_3	0.340	
7	C_D_RUCMM.21_2	0.340	- VIREO run 4 is better than run 3.
8	C_D_GodSpeed.21_2	0.340	- No significant difference between
9	C_D_RUCMM.21_4	0.337	runs in rank 2 to 9.
10	C_D_VIREO.21_3	0.336	

Statistical Significance

Top 10 manually-assisted runs - randomization test (p < 0.05)

Hier

Run	xInfAP
C_D_VIREO.21_4	0.355
C_D_WasedaMeiseiSoftbank.21_3	0.331
C_D_WasedaMeiseiSoftbank.21_4	0.322
C_D_WasedaMeiseiSoftbank.21_1	0.315
C_D_VIREO.21_3	0.313
C_D_WasedaMeiseiSoftbank.21_2	0.308
C_D_VIREO.21_1	0.305
C_D_VIREO.21_2	0.301
N_D_VIREO.21_5	0.297
C_D_DMT_CUC_01.21_1	0.081

erarchy of significant differences between runs	
 C_D_VIREO.21_4 C_D_VIREO.21_2 C_D_DMT_CUC_01.21_1 C_D_VIREO.21_3 C_D_VIREO.21_1 C_D_VIREO.21_1 C_D_VIREO.21_5 C_D_DMT_CUC_01.21_1 	lr in c ind th
 C_D_WasedaMeiseiSoftbank.21_3 C_D_WasedaMeiseiSoftbank.21_4 C_D_WasedaMeiseiSoftbank.21 C_D_DMT_CUC_01.21_1 C_D_WasedaMeiseiSoftbank.21_1 C_D_DMT_CUC_01.21_1 	_2

ndentation levels ndicate significant difference. Outer lented run is better an inner indented run(s)

- No significant difference between VIREO run 4 and WasedaMeiseiSoftbank run 3.
- VIREO run 4 is better than all other VIREO runs.
- WasedaMeiseiSoftbank run 3 is better than all other Waseda runs. •
- All runs are significantly better than DMT CUC 01 run 1.

Hits Per Topic (Main Task)

Unique vs Common (from 2 or more teams) True Positive Shots

Unique Common

Sorted Unique Hits by Team

1534 Unique Shots from 8 teams in their automatic & manually-assisted runs

Teams

Top runs per query (Main Task)

Query Ids

Top runs per query (Main Task)

Novelty Scores

National Institute of Standards and Technology U.S. Department of Commerce

TRECVID 2021

Automatic Systems

1000000 100 Good Good and slow 100000 and slow 10000 Time (s) Time (s) 10 1000 100 Good and 10 fast ۲ 1 and as 0.2 0.6 0.4 0.6 0.8 1.2 0.2 0.4 0 InfAP InfAP

National Institute of NIST Standards and Technology U.S. Department of Commerce

TRECVID 2021

Manually-Assisted Systems

at

Efficiency

Progress Task

			Evaluation year	
		2019	2020	2021
	2019	<i>Systems:</i> Submit 20 fixed progress queries		
			Systems: Submit 20 fixed	
Submission year	2020		progress queries	
,			NIST: Eval 10 queries (set A)	
				Systems: Submit 20 fixed
	2021			progress queries
				NIST: Eval 10 queries (set B)
	Goals : E E	valuate 10 (set A) common queries valuate 10 (set B) common queries	submitted in 2 years (2019, 202 submitted in 3 years (2019, 202	0) 0, 2021)

National Institute of Standards and Technology U.S. Department of Commerce

Progress set-A results (2019-2021)

Max performance per team (*automatic systems*) on 10 progress queries

Max performance per team (**manuallyassisted systems**) on 10 progress queries

Majority of automatic systems performed better in later years on the fixed query set A

VIREO 2020 system is better, while Waseda's 2021 system is better. Not enough teams to make conclusions

Progress set-B results (2019-2021)

Max performance per team (*automatic*

Max performance per team (**manuallyassisted systems**) on 10 progress queries

2019 2020 2021

Majority of automatic systems performed better in later years on the fixed query set B

Two teams participated in 3 years with manually-assisted systems performed better in 2021. More participation is needed in manually-assisted runs.

Samples of frequent false positives

person looking at themselves in a mirror

person with a tattoo on their arm

adult person wearing a backpack and walking on a sidewalk

man pointing with his finger

man sitting on a barber chair in a shop

Samples of hard true positives

person with a tattoo on their arm

A woman holding a book

adult person wearing a backpack and walking on a sidewalk

a bow tie

person wearing an apron indoors

man sitting on a barber chair in a shop

Easy vs Hard Queries

Top 5 easiest queries (ranked based on # of runs with infAP >= 0.5)					
Query	Person	Action	Object	Location	
Two boxers in a ring	\checkmark			\checkmark	
Parachutist descending towards a field on the ground in the daytime	\checkmark	\checkmark		\checkmark	
Woman wearing sleeveless top	\checkmark				
A bow tie			\checkmark		
Person with a tattoo on their arm	\checkmark				

Top 5 hardest queries (ranked based on # of runs with infAP < 0.5)

Query	Person	Action	Object	Location
Person wearing a cap backwards	\checkmark	\checkmark	\checkmark	
Ladder with less than 6 steps			\checkmark	
Man pointing with his finger	\checkmark	\checkmark		
Adult person wearing a backpack and walking on a sidewalk	\checkmark	\checkmark	\checkmark	\checkmark
Person looking at themselves in a mirror	\checkmark	\checkmark	\checkmark	

General Observations

National Institute of Standards and Technology U.S. Department of Commerce

2021 Task Observations

➤Submissions

- > 8 teams finished the main task and 14 teams finished the progress task.
- > 29 automatic systems and 10 manually-assisted systems submitted runs in the main task.
- 112 total systems (31 manually-assisted and 81 automatic) were submitted between 2019-2021 in the progress subtask.
- ➢ Run training types are dominated by "D" runs. No "E" or "F" runs.
- > No teams submitted "optional" explainability results with their runs!
- > Only 2 Novelty systems submitted. Better than common runs on novelty metric.

➢ Performance

- > Majority of 2021 systems performed higher than their 2019 & 2020 systems in the progress subtask
- > Few automatic systems are good and fast (< 10 sec). Additional processing time didn't help most systems
- High similarity between automatic and manually-assisted systems in terms of query performance relatively to each other.
- > Top scoring teams not necessary contributing a lot of unique true shots and vice-versa (Except for VIREO team)
- > About 11% of all hits are unique. All the rest are common hits across the runs.
- > Hard queries are the ones asked for unusual combinations of facets (compared to well-known concepts)

During the Video Browser Showdown (VBS)

At MMM 2022 28th International Conference on Multimedia Modeling, April 2022, Qui Nhon, Vietnam

- 10 Ad-Hoc Video Search (AVS) topics : Each AVS topic has several/many target shots (from V3C1 + V3C2 datasets) that should be found.
- 10 Known-Item Search (KIS) tasks, which are selected completely random on site. Each KIS task has only one single 20 s long target segment.
- Registration for the task is now closed

EST Time

7:30 – 7:50 AM	• VIREO
7:50 – 8:10 AM	• GodSpeed
8:10 – 8:30 AM	• RUCMM
8:30 - 8:50 AM	 Waseda_Meisei_SoftBank
8:50 - 9:10 AM	• Break
9:10 - 9:30 AM	 AVS Task Discussion