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Background Subtractor Results
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dimension to obtain a square

I classifier gets consistent aspect ratio

I Take spatial crop of clip. <- Extracted Tracklet
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[yi log(ŷi)− (1− yi) log(1− ŷi)]
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1
N

N∑
i=1
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Each action class is independent of each other



Adapting to Yolo Tracklets

Need to train classifier to take YOLO tracklets



Adapting to Yolo Tracklets

Need to train classifier to take YOLO tracklets



Class Balanced Training

Some classes are very frequent, some very rare
In the most extreme, 1:1000 difference
Used Partial Label Masking (PLM) for class imbalance



Class Balanced Training

Some classes are very frequent, some very rare

In the most extreme, 1:1000 difference
Used Partial Label Masking (PLM) for class imbalance



Class Balanced Training

Some classes are very frequent, some very rare
In the most extreme, 1:1000 difference

Used Partial Label Masking (PLM) for class imbalance



Class Balanced Training

Some classes are very frequent, some very rare
In the most extreme, 1:1000 difference
Used Partial Label Masking (PLM) for class imbalance



Learning Multi-Label Class Correlations

Log-Sum-Exponential Pairwise (LSEP) loss for multilabel
action recognition.

LLSEP = log

1 +
∑
i∈y

∑
j 6∈y

exj−xi


Standard LSEP is based on BCE loss
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de(A,B)
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Where de is the euclidian distance. If actors are close,
treat as same action, if VERY close, same actor
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Conclusion
GabriellaV2 is a real-time action detection system which can
generalize very well to the unknown facility cameras.

Built upon our
Gabriella system by

I Replacing localization by tracklet generation,

I Better classifiers: class imbalance, multi-label class correlation,
Knowledge distillation

I Improved Post processing using Spatio-temporal deduplication

I Top place for ActEV-SDL21 UF leaderboard and Runners-up for
TRECVID21
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