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Problem Statement

Untrimmed Video Types
» No special processing > Single-actor
» Should be comparable » Multi-actor
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GabriellaV2 System
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PreProcessing

» First, we split the video using a sliding window
approach
> 0-16
> 8-24
> 16-32

» Every 4th frame used for tracklet generation

» Full clip is used in tracklet extraction/classification
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Tracklet Generation

Tracklet Generation happens in 3 steps
» Object Detector (YOLOV5)
» spacially localizes objects
» Background Subtractor (MOG)
» Removes Stationary Objects
» Object Tracker (SORT)

» groups detections of the same object
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Object Detection

For each Clip

» send 4 frames to

Object Detector
» Place bounding
box around
potential actor
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Background Subtraction

MOG2
background
subtraction

Gray scale
Conversion

Morphological

Gaussian Blur :
operation

» We use the MOG2 background subtractor

» simple to use
» drastically reduce localization false alarm

» 40% FA reduction
» Runtime reduced by half
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Object Tracker

» We use the SORT tracker
» |OU-based matching

» Same object gets same ID in subsequent frames
» Can "remember" 2 frames prior
» Track continues if one bounding box is missing
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Recall Analysis of Tracklet Generation

» Legacy method used
action localization

instead of object

detection /tracking

» New method attains
higher activity recall
than legacy method
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Recall Analysis of Tracklet Generation

» Legacy method used
action localization

instead of object

detection /tracking

» New method attains
higher activity recall
T than legacy method

4[Ground—Trugmsr:r:;io-temnora\]_, > 22% higher recall using
0.8 IOU threshold
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Tracklet Extraction

For each object ID produced by the SORT tracker in a
given clip:
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Tracklet Extraction
For each object ID produced by the SORT tracker in a

given clip:
» collect all bounding boxes with that object ID

» Combine them by taking the smallest-bounding

bounding box

» Extend the resulting bounding box in the shorter
dimension to obtain a square

» classifier gets consistent aspect ratio

» Take spatial crop of clip. <- Extracted Tracklet
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Action Classification

Surveillance video activities are multi-label
Ground truth tracks to train 3D-CNN backbone + sigmoid

activation with standard BCE loss
[
Locely,§) = =3 ) lilog(9i) — (1 — yi) log(1 — )]
=1

Each action class is independent of each other
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Adapting to Yolo Tracklets

Need to train classifier to take YOLO tracklets

Action

i BCE loss
. Classifier
Input Yolo v5 + Object
video Tracker Tracks

Spatio-temporal
Labels
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Class Balanced Training
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Class Balanced Training
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Some classes are very frequent, some very rare
In the most extreme, 1:1000 difference

Ulésed Partial Label Masking (PLM) for class imbalance
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action recognition.

UCF CENTER FOR RESEARCH
IN COMPUTER VISION



Learning Multi-Label Class Correlations

Log-Sum-Exponential Pairwise (LSEP) loss for multilabel
action recognition.

Lisep =log | 1+ Z Z e

i€y j&y

UCF CENTER FOR RESEARCH
IN COMPUTER VISION



Learning Multi-Label Class Correlations

Log-Sum-Exponential Pairwise (LSEP) loss for multilabel
action recognition.
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Learning Multi-Label Class Correlations

Log-Sum-Exponential Pairwise (LSEP) loss for multilabel
action recognition.

Lisep =log | 1+ Z Z e

i€y j&y

Standard LSEP is based on BCE loss
Use LSEP loss with PLM to reweight samples to class
balance and learn class correlations together
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Two level Knowledge Distillation

We perform Knowledge Distillation in two stages:
» standard phase
» reduce ensemble size

» compression phase
» reduce model size
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Knowledge Distillation (Standard)
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» Train student model
with ensemble

» |oss based on hidden
layers

» loss on raw outputs

» loss on label prediction

» val set mAP >4%
Improvment

» same mAP as fulla
ensemble



Knowledge Distillation
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Knowledge Distillation
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34-layer R2+1D

L2 loss for KD

Backpropagation
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Knowledge Distillation (Model Compression)
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Knowledge Distillation (Model Compression)

Teacher
34-layer R2+1D

L2 loss for KD

Backpropagation

Student
irCSN-152

BCE loss from
Ground truth
label
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Student model from
before as Teacher

New student is slimmer
loss on raw outputs
loss on label prediciton

val set mAP >7%
Improvement

same mAP as full
ensemble
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Post-Processing

Post-Processing has two steps:
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Post-Processing

Post-Processing has two steps:
» TMAS

» smooth detection temporally
» convert actor tracks into action tubes

» NMS

» Remove duplicate predictions
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TMAS
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TMAS

Chain tracklets with same ID
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TMAS

Chain tracklets with same ID

Cekietid=l | mekeial |1 ~ Into one actor track

sy (] § <~/ o ~ Smooth classwise detection
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Chain tracklets with same ID
into one actor track

Smooth classwise detection
temporally

Create action tubes for each
class using (connected)
regions of actor tracks where
class-scores is high
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NMS

» We square our object
detections

v

Very large overlaps

v

Actions contained in
multiple bounding boxes

v

multi-actor actions

v

Need to remove

duplicate predictions
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NMS

Need method to work regardless of actor size
use dimensionless distance metric

de(A, B)

d(A, B) =
( ) {‘/AreaA * Area(B)

Where d. is the euclidian distance.

UCF CENTER FOR RESEARCH
IN COMPUTER VISION



NMS

Need method to work regardless of actor size
use dimensionless distance metric

B de(A, B)
v/ AreaA x Area(B)

d(A, B)

Where d. is the euclidian distance. If actors are close,
treat as same action, if VERY close, same actor
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NMS

Need method to work regardless of actor size
use dimensionless distance metric

B de(A, B)
v/ AreaA x Area(B)

d(A, B)

Where d. is the euclidian distance. If actors are close,
treat as same action, if VERY close, same actor

False Negatives very rare
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TrecVID21 Results

nAUDC@0.2tf p_miss@0.15t

Rank team_name team_abbrev a

1 BUPT-MCPRL BUPT-MC_26542

2 UCF UCF_26546

3 INF INF_26532
M4D_202_2646

4 M4D_2021 7
TOKYOTE_2650

5 TokyoTech_AIST 8

Team UEC TEAMUE_26530
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0.4306
0.4444

0.8466

0.8516
0.964

0.3249
0.3408
0.3508

0.7941

0.8197
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0.4444

0.8466

0.8516
0.964

0.3249
0.3408
0.3508

0.7941

0.8197
0.9503

» based on
VIRAT

dataset

» has known
cameras

» 2nd place



SDL21 Results

mean mean relative_

pP_miss@0.01tf p_miss@0.02 mean processi

Rank Team Name sub_id a tfa nAUDC@0.2tfa ng_time
1 UCF 25908 0.62 0.5372 0.3518 0.684
2 CMU-DIVA 26095 0.65 0.5438 0.333 0.776
3 IBM-Purdue 26113 0.65 0.5531 0.3533 0.575
4 UMD 26619 0.68 0.5938 0.3898 0.515

UMD-

5 Columbia 25031 0.68 0.5975 0.4002 0.52
6 umMcMu 25576 0.75 0.6861 0.4922 0.614
7 Purdue 25782 0.8 0.7294 0.4942 0.239
8 MINDS_JHU 24666 0.84 0.7791 0.6343 0.898
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SDL21 Results

» based on
o T MEVA

pP_miss@0.01tf p_miss@0.02 mean processi
Rank Team Name sub_id a tfa nAUDC@0.2tfa ng_time d
1 UCF 25908 0.62 0.5372 0.3518 0.684 ataset
2 CMU-DIVA 26095 0.65 0.5438 0.333 0.776
3 IBM-Purdue 26113 0.65 0.5531 0.3533 0.575 > h k
4 UMD 26619 0.68 0.5938 0.3898 0.515 aS u n nOWn
UMD-
5 Columbia 25031 0.68 0.5975 0.4002 0.52
6 umMcMu 25576 0.75 0.6861 0.4922 0.614 Ca I I I e ra S
7 Purdue 25782 0.8 0.7294 0.4942 0.239
8 MINDS_JHU 24666 0.84 0.7791 0.6343 0.898

» 1st place in
UF
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Generalization
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Generalization

® UCF m CMU m UMD

pmiss@0.02tfa UF - pmiss@0.02tfa KF

0.1+
o o o o o o Qe o
oo™ W o« Ao¥ o0 \ 3 3 o of & & &0
I I L e I I
n“’\ s o P & c\°"26, 5o é@oﬁ‘ & &
& of & f P o5 W07

o & & &
N o «

» Drop in performance going from Known Facility to Unknown
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» Drop in performance going from Known Facility to Unknown

» Our system gets best generalization
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Qualitative Results

Many common situations that hurt performance
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Qualitative Results
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Qualitative Results

Many common situations that hurt performance

» Distant actors

» Actor changes distance over time
» Temporal variability

» Crowded Scenes
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Conclusion

GabriellaV2 is a real-time action detection system which can
generalize very well to the unknown facility cameras.
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Conclusion

GabriellaV2 is a real-time action detection system which can
generalize very well to the unknown facility cameras.Built upon our
Gabriella system by

» Replacing localization by tracklet generation,

» Better classifiers: class imbalance, multi-label class correlation,
Knowledge distillation

» Improved Post processing using Spatio-temporal deduplication

» Top place for ActEV-SDL21 UF leaderboard and Runners-up for
TRECVID21
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