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Our approach for ad-hoc video search

Submitted runs

Manually assisted Fully automatic

1. Concept-based /

2. Visual-semantic embedding / /

rank among all participants 2nd Ath



Concept bank used in our systems in 2020 and 2021

Name Database # Concepts Concept Type(s) Models
TRECVID346 TRECVID SIN 346 |Person, Object, Scene, Action GoogleNet + SVM
FCVID239 FCVID 239|Person, Object, Scene, Action GooglLeNet + SVM
UCF101 UCF101 101|{Action GooglLeNet + SVM
PLACES205 Places 205|Scene AlexNet
PLACES365 Places 365|Scene GoogleNet
HYBRID1183 Places, ImageNet 1,183|Person, Object, Scene AlexNet
IMAGENET1000 ImageNet 1,000|Person, Object GoogleNet
IMAGENET4000 ImageNet 4.000|Person, Object GooglLeNet
IMAGENET4437 ImageNet 4.437|Person, Object GoogleNet
IMAGENET8201 ImageNet 8,201 |Person, Object GooglLeNet
IMAGENET12988 |ImageNet 12,988 Person, Object GoogleNet
IMAGENET21841 |ImageNet 21.,841|Person, Object GooglLeNet
ACTIVITYNET200 |ActivityNet 200[Action GooglLeNet + SVM
KINETICS400 Kinetics 400|Action 3D-ResNet
ATTRIBUTES300 |Visual Genome 300|Attributes of persons/objects GoogleNet + SVM
RELATIONSHIPS53|Visual Genome 53|Relationships b/w persons/objects|GoogleNet + SVM
FACES40 CelebA 40|Face Attributes face detector + CNN

Prepared in advance a large concept classifiers of more than 50,000

to increase the coverage of words in the query sentences.



Video retrieval pipeline of concept-based approach

1. Extract one or more keywords from a query sentence. (manually or automatically)

ex.) an adult person wearing a backpack and walking on a sidewalk

/o \ \ \ l

“adult” “person” “wearing” “backpack® “walking” “sidewalk”

2.  Select one or more concept classifiers related to a keyword.
The corresponding concept may not exist in the concept bank.

j> Word2vec to obtain more concepts

3. For each video, a score is calculated for the query sentence by
Integrating the scores from multiple concept classifiers.

score of score of X score of score of score of score of
“adult” “person” “‘wearing” “backpack” “walking” “sidewalk”



Visual-semantic embedding approach
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A pair of children sit on a
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Embedding approaches used in our 2021 systems

Improved retrieval accuracy by integrating four different embedding methods

VSE++ [Faghri+, 2018] GSMN ILiu+, 2020]
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Embedding approaches used in our 2021 systems

The following three types of video-shot frames were used in each approach,

depending on when the work was done and how fast the calculations were performed:

Frame;.

. Use only key frames
Frameig :Use the middle 10 frames of the video divided into 11 equal parts

Frame.1p : Use every 10 frames

#rrainingdata | o401/ Features Type of test data # score files
partitions
VSE++ 32 3 (ReSI\JI_eStZ_?O’ 101, 2 ( Frameig, Frameeio ) 192
1 (bottom-up
GSMN J attention) 1 ( Frameeo ) )
4 (ViT-B/32, RN50,

CLIP 1 F\’(N].OI, RN5OX4) 2 ( Frameig, Frame.ig ) 8

Oscar 1 1 (large model) 1( Frame; ) 1

:> All score files were combined to get the final results




Embedding approaches used in our 2021 systems

The following three types of video-shot frames were used in each approach,
depending on when the work was done and how fast the calculations were performed:

Framey : Use only key frames
Frameig :Use the middle 10 frames of the video divided into 11 equal parts

Frame.1o : Use every 10 frames

# training data

partitions Model / Features Type of test data # score files

VSE++ 32 3 (ResNet-50, 101,

~ | 152)

2 ( Frameio, Frame.io ) 192

» Datasets for training: Flickr8k, Flickr30k, MS-COCO, Conceptual Captions

| #image captions: 3,428,009

» 500,000 training data and 50,000 validation data were randomly selected to train models.
* Add 192 scores - min-max normalization (maximum score: 1.0, minimum score: 0.0)

oL Al L L (Iargc rrmouct) L' T'Tameg ) I

:> All score files were combined to get the final results



Embedding approaches used in our 2021 systems

The following three types of video-shot frames were used in each approach,
depending on when the work was done and how fast the calculations were performed:

Framey : Use only key frames
Frameig :Use the middle 10 frames of the video divided into 11 equal parts

Frame.1o : Use every 10 frames

-

i traml‘n‘g 2l Model / Features Type of test data # score files
partitions
VSE++ 32 3 (ReSI\:ll-es'[2-)50, 101, 2 ( Frameio, Frame.io ) 192
1 (bottom-up
GSMN‘* attention) L( Framec ) Y
\hl\ll‘h

/- Datasets for training: Flickr8k, Flickr30k, MS-COCO, Conceptual Captions, MSR-VTT
 # Image captions: 3,755,503
» We divided the training data and created nine models.
* Add 9 scores - min-max normalization (maximum score: 1.0, minimum score: 0.0)

4

—_ = = & = T T - T T

i B

TS T VNS




Embedding approaches used in our 2021 systems

The following three types of video-shot frames were used in each approach,

depending on when the work was done and how fast the calculations were performed:

Framey : Use only key frames
Frameig :Use the middle 10 frames of the video divided into 11 equal parts

Frame.1o : Use every 10 frames

# training data
partitions

Model / Features

Type of test data

# score files

VSE++

32

3 (ResNet-50, 101,

A_=_ &5

2 ( Framein, Frame.in )

192

* No training - 4 types of pre-trained models
» Add 9 scores - min-max normalization (maximum score: 1.0, minimum score: 0.0)

A —] 4(ViT-B/32, RN50,
CLIP 1 F\’(NlOl, RN50X4) 2 ( Frameig, Frame.ig ) 8
Oscar 1 1 (large model) 1( Frame ) 1

:> All score files were combined to get the final results



Embedding approaches used in our 2021 systems

The following three types of video-shot frames were used in each approach,
depending on when the work was done and how fast the calculations were performed:

Framey : Use only key frames
Frameig :Use the middle 10 frames of the video divided into 11 equal parts

Frame.1o : Use every 10 frames

G traml‘n‘g 2l Model / Features Type of test data # score files
partitions
VSE++ 32 3 (ReSI\:ll-es'[2-)50, 101, 2 ( Frameio, Frame.io ) 192
N a 1 (bottom-up s’ - \ A
* No training - pre-trained models
* Min-max normalization (maximum score: 1.0, minimum score: 0.0)
/_-f:r,ﬂ’\l\I\JU/\“r}

Oscar” 1 1 (large model) 1( Framey ) -3

:> All score files were combined to get the final results
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Systems submitted to the main task in 2021

4" among all participants 2"d among all participants
. @ Manual4d
Automatic2 _ Manual3 Manual1
Automatic1 Automatic3
Automatic4 Manual2
35.0 \ / /
30.0
25.0
20.0
15.0
10.0
5.0
0.0
1 23456 7 8 91011121314151617181920212223242526272829 1 2 3 45 6 7 8 910
1 |

Ful ly-automatic Manual |y-assisted 11



Fully automatic runs for 2019-2021 progress task

Ap 21 Automatic2 Our system submitted in 2021
m ..
30 1 .21 automatic1 | F@anked second among all participants.

31 1 '21 Automatic3

T°p '21 Automatic4
0. 0 '20 Automatic4
'20 Automatic2
25.0 '20 Automatic3
'20 Automatic1

20.0
15.0

The performance of the
oY system was significantly
5.0 better than that of the
o previous year's system

12345678 9101112131415161718192021222324252627282930313233343 1738394041 424343454647 4B49505]1 ¢ SES96061 626310 TR NOT172T7374

IS T6TrTR MBROR]
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Manually assisted runs for 2019-2021 progress task

mAP
31.8

30.0

25.0

20.0

15.0

10.0

5.0

0.0

'21 Manual4 Our system submitted in 2021

'21 Manual1

21 Manual?/ 21 Manual2 achieved the best accuracy.

'20 Manual2

20 Manual4 "0 Manual3
\ //'20 Manual1

\rnd

Better than the
previous year's
system

1 2 3 45 6 7 8 9 10111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Our submitted runs for TRECVID 2021 AVS task

Run Fusion weights Fusion weights mAP
name |VSE++ GSMN CLIP Oscar|embedding concept|Main Progress
Automaticl 5 5) 10 1 — 32.5  30.0
Automatic2 3 3 10 1 — 34.1 30.1 @
Automatic3 7 7 10 1 — 30.7  29.1
Automatic4 10 10 10 1 — 28.8  28.0
Manuall 5) 5) 10 1 3 1 31.0 314
Manual2 5) 5) 10 1 2 1 30.8 31.6
Manual3 3 3 10 1 3 1 33.1  31.8
Manual4 3 3 10 1 2 1 32.2  31.7
i

The accuracy is highest when the integration weight of CLIP is large.

CLIP has a different output tendency and higher retrieval accuracy
than VSE++ and GSMN.
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Our submitted runs for TRECVID 2021 AVS task

Run Fusion weights Fusion weights mAP
name |[VSE++ GSMN CLIP Oscar|embedding concept|Main Progress
Automaticl 5 5) 10 1 — 32.5) 30.0
Automatic2 3 3 10 1 —
Automatic3 7 7 10 1 —
Automatic4 10 10 10 1 —
Manuall 5) 5) 10 1 3
Manual2 5) 5) 10 1 2
Manual3 3 3 10 1 3
Manual4 3 3 10 1 2
Were the concept-based and embedding methods complementary? 27?7
—> Not so sure. (-
Main task: Embedding > Embedding + Concept-based
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Our submitted runs for TRECVID 2021 AVS task

Run Fusion weights Fusion weights mAP
name |VSE++ GSMN CLIP Oscar|embedding concept|Main Progress
Automaticl 5) 5) 10 1 — 32.5  [30.0
Automatic2 3 3 10 1 — 34. 30.1
Automatic3 7 7 10 1 — 3 29.1
Automatic4 10 10 10 1 — 2K.8  28.0
Manuall 5 5 10 1 3 1 |35 (31.4]
Manual2 5) 5) 10 1 2 1 308 BL.6)
Manual3 3 3 10 1 3 1 33. 31.8)\
Manual4 3 3 10 1 2 1 32.2  (31.7
Were the concept-based and embedding methods complementary? 27?7

—> Not so sure. @

Progress task: Embedding < Embedding + Concept-based
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Summary

* In the systems submitted this year, we introduced new embedding methods
that have been proposed in recent years, such as GSMN, CLIP, and Oscatr.

* The evaluation results showed that the accuracy of the system was
signicantly better than that of the previous year’s system, indicating that the

recent pre-training mechanism using large-scale image-text pairs is benecial.

+ All embedding methods we used were image-based and did not take
advantage of the characteristics of the video.

U

 For future works, it iIs necessary to consider methods for embedding video
features and text features.
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