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Abstract. The Waseda Meisei SoftBank team participated in the ad-hoc video

search (AVS) and video-to-text (VTT) tasks at TRECVID 2023 [1]. In the

AVS task of this year, we continued to employ the visual-semantic embed-

ding approach, submitting four fully automatic systems for both the main and

progress tasks, following the methodology of last year. The best-performing sys-

tem achieved an mAP of 0.285 for the main task, securing the second position

among the participating teams. During the progress task, it obtained an mAP of

0.286, attaining the highest overall position. In addition, our team participated

in the VTT task again this year. We also participated in the subtask that was

included this year. Our system for this year consisted of multiple caption models

and three components for re-ranking and refining the generated sentences. In

the main task, it obtained BLEU score of 0.108, METEOR of 0.335, and SPICE

of 0.152, achieving the top overall position.

1 AVS Task

1.1 System Overview

In the past, we constructed systems that combined concept-based approaches, where

concepts such as words and phrases were pretrained and combined with visual-semantic

embedding techniques. However, in recent years, there has been a significant advance-

ment in the technology of training on large-scale image datasets with captions, re-

sulting in improved accuracy. As a result, this year, we exclusively employed visual-

semantic embedding models to build our system, following the approach from the pre-

vious year. For our embedding techniques, we incorporated several methods, including

improved visual-semantic embeddings (VSE++) [2], a graph-structured matching net-

work (GSMN) [3], contrastive language-image pre-training (CLIP) [4], self-supervision

meets language-image pretraining (SLIP) [5], and the diffusion model. Notably, we en-

deavored to enhance the image retrieval accuracy by incorporating multiple pretrained

models provided by OpenCLIP5.

5 https://github.com/mlfoundations/open_clip

https://github.com/mlfoundations/open_clip
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1.2 New Initiatives Undertaken This Year

The system update of this year involved not only incorporating newly available high-

performance pretrained models, but also experimenting with query expansion using

ChatGPT. Assuming that a richer variety of input queries results in an increased

number of retrievable images, we explored the generation of alternative expressions

of the original query that carry the same meaning but differ in phrasing. Although

there are various approaches to altering the original text, we opted to use ChatGPT,

which is a sophisticated natural language processing and dialogue generation tool. We

attempted to input the following five prompts into ChatGPT:

1. Give me 10 sentences that mean exactly the same as “original query” with slight

changes.

2. Give me 10 examples of “original query” that means exactly the same thing, but

with a slight change in the sentence.

3. List 10 sentences that mean the same as “original query” with slight modifications.

4. List 10 examples that mean the same thing as “original query,” but with a slight

change in the sentence.

5. Give me 10 sentences that mean the same as the following sentence with a slight

change of wording: “original query”

For each query, we input the five aforementioned prompts twice, resulting in 100 new

sentences. From this set, we employed non-duplicate sentences as novel queries for the

image-retrieval process. The aim of this approach was to enhance the diversity and

effectiveness of the image retrieval process.

1.3 Integration Approach for Multiple Embedding Methods

We developed our video retrieval systems by calculating the similarity between the

textual features of the query sentences and the visual features extracted from the

frame images of videos obtained from each embedding model. This was followed by

weighted integration of the similarity values from multiple models. Because each model

varies in its training methodology and the dataset on which it has been trained, the

complementarity among these models typically improves the overall accuracy when

their results are combined. Given that some models outperform others, we adjusted

the fusion weights based on the ground truth from the previous year to optimize the

mean average precision. However, overfitting to the ground truth of the previous year

could lead to reduced generalization performance and potentially lower accuracy for

the queries of this year. Therefore, we developed two systems: one that uses a hard

fusion weight determined by the previous ground truth and another that employs a

softer, more evenly distributed fusion weight.

1.4 Submissions and Results

This year, we created four different automatic systems and submitted their results. The

distinctions among these systems lie in the approach used for integrating the models:

determining hard weights, setting soft weights, and the inclusion or exclusion of query

expansion using ChatGPT. The performances of the systems submitted this year are

presented in Table 1. Regarding the fusion weights, the systems that were assigned

hard weights exhibited better accuracy than those that were assigned soft weights.
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Table 1. Our submitted systems for TRECVID 2023.

System Fusion weight
Query expansion mAP

(ChatGPT) Main task Progress task

1 Soft
√

0.269 0.272

2 Hard
√

0.285 0.286

3 Soft 0.270 0.269

4 Hard 0.281 0.283

Consequently, it became evident that the superiority of the models had relatively little

variation depending on the input queries, underscoring the significance of prioritizing

the selection and utilization of high-accuracy models. However, the effect of the query

expansion using ChatGPT was relatively modest. The preliminary experiments involv-

ing the expansion of queries from the previous year yielded improvements, suggesting

that the effectiveness of the query expansion may vary depending on the query type.

In the future, we plan to conduct further analyses to understand the conditions under

which the accuracy improves and to refine our approach accordingly.

Fig. 1. Results of all fully automatic systems for all teams that submitted to the main task.

The results for all teams that submitted to the main task are shown in Fig. 1. The

four systems that we submitted achieved rankings of 5th, 6th, 8th, and 9th among all

systems submitted by participating teams, resulting in 2nd place for our team in the

team-specific standings.

The results of all systems submitted to the progress task are presented in Fig.

2. Our four systems that were submitted this year secured the 1st to 4th positions,

exhibiting improved accuracy compared to the systems that we submitted last year.

This increase in accuracy is attributed to the influence of the newly introduced models
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Fig. 2. Results of all fully automatic systems for all teams that submitted to the progress

task.

this year and the query expansion using ChatGPT. In future, we plan to investigate

the contributions of each approach further.

2 VTT Task

2.1 Overview

Our team participated in the VTT task again this year following our participation in

the previous year. We also participated in an additional subtask that was introduced

this year. Based on the results of the previous year, we developed two main strategies

for the approach this year. The first involves the use of large vision language models.

With recent advancements, such as the introduction of ChatGPT, the number of model

parameters has increased significantly. This trend is no exception in vision language

models, as large and highly accurate models have emerged. Therefore, it is essential to

leverage these models to achieve optimal performance. Furthermore, as mentioned in

our strategy from the previous year, the video-captioning dataset is relatively small.

To address this issue, we aimed to acquire generalization capabilities efficiently using

pretrained models. The second strategy involves merging the results generated by mul-

tiple models. Last year, I worked alone as the developer. However, this year, we had a

team of three members, which allowed us to conduct more experiments. We focused on

merging the individual results to combine the strengths of each model and to improve

the overall performance.

Following the aforementioned strategy, we submitted a system comprising three

components for the competition this year: fine-tuning, reranking, and refining. Among

the publicly released results for the main task, the proposed system achieved the highest

scores for BLEU, METEOR, and SPICE. The scores for these metrics were 0.108, 0.335,

and 0.152, respectively.
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2.2 Methods

Our approach consists of three main components. The first is fine-tuning. We fine-

tuned the three image/video caption models using the VTT dataset. The base models

selected were BLIP2, GIT, and InstructBLIP. By fine-tuning these models, we aimed

to improve their performance, specifically for the VTT task. The second component

is reranking. We calculated the similarity between the captions generated by the fine-

tuned models and the videos on which they were based. The captions were ranked

based on their scores. Because we used image caption models, this approach allowed us

to assess how well each model captured all situations within the videos and selected the

best captions. The third component is refining. We performed caption merging using

the captions generated by the fine-tuned models. This involved summarizing, making

grammatical corrections, and controlling the length of the captions. We used the same

approach for both the main task and the subtask in this competition.

BLIP2 BLIP2 [13] is an abbreviation for “Bootstrap vision-language pretraining

model.” It is the successor model to BLIP, which was used by several teams last year.

BLIP2 introduces a Q-former that connects the encoder and decoder, and the learning

process is divided into two steps. In the first training step, the parameters of the large

language model (LLM) were fixed, and in the second step, the parameters of the image

encoder were fixed. Dividing the learning process into two steps helps to bridge the

modality gap and reduces the number of parameters trained simultaneously, resulting

in better efficiency.

GIT GIT [12], which was proposed by Microsoft, is a powerful vision language model

with high performance in tasks such as captioning and VQA, and is comparable to

SOTA method on various major benchmarks. For this contest, we fine-tuned the model

with the V3C dataset and updated all parameters. In addition to fine-tuning, we fur-

ther trained the model using SCST [15], which can directly optimize non-differentiable

metrics. SCST is a method of maximizing scores by applying a reinforcement learning

algorithm to metrics such as BLEU and CIDEr, which are non-differentiable. As SCST

can calculate rewards only after generating the entire caption, it generates very long

computational graphs. Thus, it can be applied only to lightweight models such as GIT.

During training, the vision model part was frozen and only the language model part

was updated.

InstructBLIP InstructBLIP, as introduced in [14], augments the process of extract-

ing visual features and instructions from images and prompts. This is achieved by

integrating instructions into not only the frozen LLM, but also into the Query Trans-

former (QFormer). During the fine-tuning phase of InstructBLIP, we designated the

instruction as “Describe.” We fed only the instruction into QFormer, whereas both the

instruction and ground truth were input into the LLM layer for loss computation. Dur-

ing inference, both QFormer and the LLM were furnished with the same instruction to

generate captions.

Reranking We generated captions from BLIP2, GIT, and InstructBLIP and calcu-

lated the similarity between each caption and the video using a CLIP-like vision text
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encoder. The caption with the highest similarity was used as the final output for sub-

mission. To measure the similarity, eight frames were sampled equally from the video

and the embedding of the image in each frame along with the embedding of the query

text were obtained. The final similarity scores were calculated as the cosine similarities

between those embeddings. We employed EVA-CLIP[16] as the vision text encoder to

calculate the embeddings.

Refining For this process, we used the GPT3.5 model developed by OpenAI (we would

have liked to use GPT4, but it was not available in time for our preparations). Prompts

were developed to incorporate the Who, Where, What, and When information that is

also described in the annotation rules.

– First step:

identify descriptions that are not found in other captions

→ color information, person/background information

consider synonyms and ungenerated words

summary under 30 words

– Second step:

revised text with emphasis on readability

2.3 Experiments

The base models, GIT6, BLIP27, and InstructBLIP8, use models implemented by Hug-

ging Face as the basis for fine-tuning. These models were fine-tuned using the TV22

training dataset and the model parameters were selected based on the evaluation re-

sults of the TV22 test dataset. The input videos were divided into eight frames with

a resolution of 224×224. For the image captions, one random frame from the set of

frames was selected and used for training. For text preprocessing, texts longer than

150 words were excluded from the training data. Additionally, a period was included

for sentences without periods. The pretrained tokenizers specific to each model were

used for tokenization. The training parameters for each model are listed in Table2.

Pretrained models were used as is for reranking and refining. A refining prompt was

created, as mentioned in the Methods section.

Table 2. Hyperparameters for fine-tuning GIT, BLIP2, and InstructBLIP

Hyperparameters GIT w/ SCST BLIP2 InstructBLIP

batchsize 2 48 48

epochs 30 20 20

optimizer AdamW AdamW AdamW

learning rate 1e-05 1e-06 1e-04

warmup-step none 1000 none

beamsize - 20 20

6 https://huggingface.co/microsoft/git-large-vatex
7 https://huggingface.co/Salesforce/blip2-opt-2.7b
8 https://huggingface.co/Salesforce/instructblip-vicuna-7b

https://huggingface.co/microsoft/git-large-vatex
https://huggingface.co/Salesforce/blip2-opt-2.7b
https://huggingface.co/Salesforce/instructblip-vicuna-7b


7

2.4 Results

Our results for the main task and robustness task are presented in Tables 3 and 4,

respectively.

Table 3. Results of our submitted runs for TRECVID 2023 VTT task.

Runfile Method Primary CIDER CIDER-D BLEU METEOR SPICE
STS

table 1 table 2 table 3 table 4 table 5

1 GIT 0.628 0.287 0.096 0.315 0.126 0.449 0.458 0.463 0.458 0.447
2 BLIP2

√
0.682 0.324 0.108 0.324 0.133 0.451 0.459 0.465 0.457 0.453

3 Reranking 0.642 0.320 0.079 0.331 0.152 0.472 0.474 0.478 0.477 0.472
4 Refining 0.673 0.348 0.103 0.335 0.143 0.460 0.466 0.472 0.468 0.461

Table 4. Robustness results of our submitted runs for TRECVID 2023 VTT task.

Runfile Method Primary CIDER CIDER-D BLEU METEOR SPICE
STS

table 1 table 2 table 3 table 4 table 5

1 GIT 0.630 0.286 0.092 0.313 0.122 0.183 0.189 0.192 0.194 0.185
2 BLIP2

√
0.677 0.313 0.105 0.323 0.132 0.188 0.191 0.193 0.195 0.187

3 Reranking 0.637 0.313 0.078 0.3311 0.151 0.219 0.225 0.230 0.225 0.220
4 Refining 0.677 0.340 0.097 0.3314 0.141 0.204 0.211 0.213 0.213 0.206

We achieved the highest scores for the three metrics in the main task. However,

there was a significant gap compared to the other teams in CIDER, which places a

strong emphasis on captions. We would like to address this as a challenge for next

year. Additionally, although our attempts at data augmentation did not work well, we

are actively working on improving it in the upcoming year.
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