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Abstract

This report presents our solution for the Video
to Text Description (VTT) task of TRECVID
2023. Based on our baseline VTT model in
TRECVID 2022, we further improve the cap-
tioning performance by leveraging a more ad-
vanced video-text pretraining model, augment-
ing the training with more high-quality video-
text data, and applying a re-ranking strategy
for top candidate caption selection. Our sub-
missions from our improved VTT model rank
the 1st in TRECVID VTT 2023 on evaluation
metrics including CIDErD, CIDEr, METEOR
and STS in the main task, achieving the best
CIDEr of 39.4.

1 Introduction

Video to Text Description (VTT) is a challenging
vision-language task, which aims to automatically
generate natural language descriptions given short
videos (Awad et al., 2023). The mainstream so-
lutions for the VTT task usually rely on image-
text pre-training models (Zhang et al., 2021b; Rad-
ford et al., 2021; Li et al., 2022),. For exam-
ple, Yue et al. (2022) fine-tune an image-text pre-
training model BLIP (Li et al., 2022) on video data,
achieving promising results on the VTT task. This
demonstrates the powerful visual understanding
and textual generation capabilities of image-text
models can be effectively transferred to video tasks.
However, building video description systems from
image-text models leads to limitations in temporal
modeling.

Hence, we consider using a video-text pretrain-
ing model with a temporal understanding module
for better video captioning. Specifically, we apply
mPLUG-2 (Xu et al., 2023) as our basic captioning
model because it achieves SOTA video caption-
ing performance on MSRVTT (Xu et al., 2016)
through large-scale video-text pre-training. To bet-
ter fine-tune the model, we improve both the quality
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and quantity of the training dataset through pseudo-
labeling and back translation. We generate multiple
candidate descriptions for each video and employ a
re-ranking method to select the best one. With the
above-mentioned components, our system ranks
the 1st place in TRECVID VTT 2023.

2 Related Work

To generate video descriptions, early works rely
on off-the-shelf feature extractors to get video
representations. For example, Venugopalan
et al. (2015) generated video descriptions through
LSTM (Hochreiter and Schmidhuber, 1997) by ac-
cepting video features from CNN (LeCun et al.,
1998). Zhang et al. (2021a) ensembles sev-
eral types of features within transformer architec-
ture (Vaswani et al., 2017). These methods suffer
from weak visual understanding since their video
representations are kept fixed and limited by the
feature extractors.

Later, image-text pre-training models (Zhang
et al., 2021b; Radford et al., 2021; Li et al., 2022)
show strong visual understanding abilities through
learning from large-scale paired image-text data on
the web (Sharma et al., 2018; Schuhmann et al.,
2022). Many efforts try to transfer the capability of
image-text models to video tasks (Liu et al., 2022;
Yan et al., 2023; Liu et al., 2023). Specifically, He
et al. (2023) proposes a video adapter module to
empower CLIP (Radford et al., 2021) with tem-
poral modeling. Yue et al. (2022) build a video
captioning system on the basis of BLIP (Li et al.,
2022). Though significant improvements are made,
these models have limited ability to capture motion
in videos (Li et al., 2022), since their backbone cap-
tioning models are pre-trained with static images.

More recently, with the rapid development of
VLP, many works (Wang et al., 2023; Xu et al.,
2023) introduce video-text data during pre-training.
This enables their models to have stronger tempo-
ral modeling abilities and perform better in video



Figure 1: Our overall framework.

tasks. For example, Xu et al. (2023) incorporate
both image-text and video-text data for pre-training
and propose a modularized model mPLUG-2. It
achieves SOTA in video description generation
on the MSRVTT dataset (Xu et al., 2016). We
thus choose mPLUG-2 as the backbone captioning
model in our system.

3 Method

As illustrated in Fig. 1, our VTT system mainly con-
sists of three components: the captioning model,
the data augmentation module, and the candidate
re-ranking module. The captioning model gener-
ates descriptions for given videos. The data aug-
mentation module creates and filters pseudo video
descriptions to re-train the model. The candidate re-
ranking module assigns a quality score for each can-
didate description generated by our system. During
inference, our system first generates multiple can-
didate captions by the trained captioning model.
With our re-ranking module, we then evaluate the
quality of each candidate caption and select the
best one as the final prediction.

3.1 Captioning Model
Temporal information is essential for generat-
ing video descriptions. Our winning system in
TRECVID 2022 (Yue et al., 2022) chooses the
image-text pre-training model BLIP (Li et al.,
2022) as the captioning model. It gains little
temporal information understanding abilities by
small-scale fine-tuning. In contrast, video-text pre-
training models could obtain temporal modeling
ability from large-scale pre-training. Thus, they
could capture motion information in the video bet-
ter and generate more accurate descriptions. We
therefore utilize the state-of-the-art video-text pre-
training model mPLUG-2 (Xu et al., 2023) as our
backbone model to replace BLIP.

Given a video, mPLUG-2 first samples
keyframes, and extracts visual features with a dual-
vision encoder and a universal layer. It then feeds
the visual features into a decoder to generate video
descriptions. Compared to image-text models,

Figure 2: Our data augmentation pipeline.

mPLUG-2 has the potential to capture temporal
information for its spatial-temporal modeling mod-
ule in the dual-vision encoder.

If not otherwise specified, we fine-tune mPLUG-
2 in two stages to make it fit the VTT dataset better.
We first optimize the model with cross-entropy loss
in the first stage and then adopt reinforcement learn-
ing with SCST (Rennie et al., 2017) in the second
stage.

3.2 Data Augmentation
To further improve our model, we apply data aug-
mentation to obtain additional high-quality training
data. As shown in Fig. 2, our data augmentation
pipeline comprises back translation and pseudo la-
beling.
Back Translation (Sennrich et al., 2015) is applied
to increase the diversity of the existing video de-
scriptions. Specifically, we translate ground truth
captions to Chinese with Baidu Translation (He,
2015). Then, we translate them back to English.
We filter the back-translated captions with CIDEr
scores to ensure their quality.
Pseudo Labeling leverages the captioning model
to create pseudo descriptions from videos. These
pseudo descriptions are then filtered and added to
the training data to improve the captioning model.
We can cycle through the above procedure since
the improved model can continue to be applied for
pseudo-labeling. The details of our pseudo-labelled
data are shown in Section 4.2.

3.3 Re-ranking
Re-ranking aims to select the best caption from
multiple candidate captions. In our previous solu-



Figure 3: Our re-ranking strategy.

tion (Yue et al., 2022), we adopt a visual-grounded
text encoder (Li et al., 2022) to calculate Video-
Text Matching (VTM) scores. The encoder out-
puts zT and zF , representing confidence scores for
whether the video and text match (T ) or not (F ).
Then, we obtain the probability of video matching
text as the VTM score by softmax:

sVTM =
ezT

ezT + ezF
(1)

With token-level cross-attention between video
and text, VTM scores measure fine-grained video-
text alignments. However, we believe that addi-
tional consideration of the overall semantic simi-
larity of video and text can be beneficial. Thus, in
addition to VTM scores, we propose to take into
account the Video-Text Contrastive (VTC) score
as well. VTC scores depict the cosine similarity of
video and text features extracted by a contrastive
learning-based video-text retrieval model. VTC
scores can be calculated as follows:

sVTC =
fv · ft
|fv||ft|

(2)

Where fv is the video feature and ft is the text
feature. Given a candidate, we sum the rank-
ings of its VTM and VTC score, and a smaller
ranking sum implies a better caption quality. We
adopt BLIP4video (Yue et al., 2022) fine-tuned on
VTT16-21 with video-text contrastive and video-
text matching tasks as the scoring model for both
VTM and VTC scores. We select a caption with

the smallest ranking sum of VTM and VTC as the
output of our captioning system.

For candidate generation, we consider a pipeline
involving i distinct models. Each model generates
j × k candidates for each video, where we sample
frames using TSN sampling j times to get different
frame inputs, and the model generates k beams
for each input. The overall framework of our re-
ranking strategy is shown in Fig. 3.

4 Experiment

4.1 Captioning Model
To verify the performance of our chosen captioning
model mPLUG-2, we perform a shallow evaluation
to compare it with last year’s captioning model,
BLIP4video (Yue et al., 2022) under zero-shot and
supervised settings. For the supervised setting, we
fine-tune both models on the VTT16-21 data. As
shown in Table 1, under both zero-shot and super-
vised settings, mPLUG-2 significantly outperforms
BLIP4video, suggesting mPLUG-2 as a stronger
captioning model for the VTT task. We also report
its performance after CIDEr optimization, which
demonstrates that it can be further improved with
SCST (Rennie et al., 2017).
Implementation details. The implementation of
our backbone model follows largely the official
implementation of mPLUG-2. For video inputs, we
extract 16 frames with TSN sampling (Wang et al.,
2016). For text outputs, we generate 3 captions
via beam search with a beam size of 5, and the
minimum generation length is set to 18. During
cross-entropy loss fine-tuning, we train the models



Table 1: CIDEr scores of mPLUG-2 and BLIP4video
on VTT22. VTT 16-21 are used for fine-tuning.

Approach Model CIDEr

Zero-shot
BLIP4video 28.9
mPLUG-2 44.8

Fine-tuned
BLIP4video 50.5
mPLUG-2 54.4
mPLUG-2 + SCST 57.1

Table 2: Training data of our 4 captioners. CE refers to
cross-entropy, and SCST refers to self-critical sequence
training.

Model Training data
CE SCST

Cap-0 VTT16-21 VTT18-21
Cap-1 Aug-1 -
Cap-2 Aug-1 VTT18-21
Cap-3 Aug-2 VTT18-21

for 10 epochs with a batch size of 32. The optimizer
is AdamW, and the learning rate for the vision
encoder and other modules are 1e−7 and 1e−6,
respectively. For SCST, the models are trained for
5 epochs with a batch size of 16 and a learning rate
of 5e−8 for all parameters.

4.2 Data Augmentation
Implementation Details. We perform a cyclic
data augmentation pipeline as follows: (1) With the
officially provided checkpoint of mPLUG-2, which
is pre-trained with large-scale data and fine-tuned
on MSRVTT (Xu et al., 2016), we further fine-tune
it on VTT16-21 by both cross-entropy loss and
self-critical sequence training to get a model Cap-
0. (2) With Cap-0 as the captioner, we generate 3
captions for each of VTT16-21 videos as pseudo
labels, which are added to the original training data
(VTT16-21). We name the augmented data set Aug-
1. We also include the augmentation data provided
by Yue et al. (2022). We set a threshold CIDEr >
55 to filter pseudo captions for Aug-1. (3) We fine-
tune mPLUG-2 on Aug-1 to get two new captioners,
namely Cap-1 (without SCST) and Cap-2 (with
SCST). (4) We use Cap-1 and Cap-2 as captioners
to generate a new batch of pseudo labels. At this
round, we extend our video source to a subset of the
V3C1 containing a randomly selected fifth of the
videos1, in addition to VTT16-21. We also conduct
back-translation on the VTT16-21 ground truth

1We only consider videos that are 5-15 seconds in length.

Table 3: Details of our augmentation data.

Augment Data Description

Aug-1
VTT16-21 VTT data from 2016 to 2021
Aug-22 Augmentation data from Yue et al. (2022)
Aug-GT-1 Pseudo labeling for VTT16-21 by Cap-0

Aug-2

VTT-22 VTT data 2022
Aug-BT Back translation for VTT16-21
Aug-GT-2 Pseudo labeling for VTT16-21 by Cap-1
Aug-GT-3 Pseudo labeling for VTT16-21 by Cap-2
Aug-V3C1 Pseudo labeling for V3C1 by Cap-2

captions. These richly sourced augmentation data
make up Aug-2. For Aug-2, we set the threshold for
augmentation captions as CIDEr > 80 for VTT
videos, and VTM > 60 for V3C1 videos. (5)
Finally, we fine-tune mPLUG-2 on Aug-2 by cross-
entropy and self-critical sequence training to get
Cap-3. More details about the augmentation data
are shown in Table 5.

Finally, we obtain 86,078 captions in Aug-1 and
91,194 captions in Aug-2, greatly increasing the
training data scale. To verify the effect of dif-
ferent sources of data augmentation, e.g., back-
translation, pseudo labels of V3C1, we perform
an ablation study of data recipes. As shown in
Table 6, back-translated data are more effective
than the V3C1 pseudo labels, while pooling all the
augmentation data leads to the best performance.

4.3 Re-ranking

Our re-ranking implementation includes 2 models,
Cap-2 and Cap-3. Each model generates 5 × 3
captions per video, where we randomly sample
frames 5 times by TSN sampling as input, and
generate 3 captions for each input. We ablate the
scoring scheme and captioners and demonstrate the
results in Table 7. Comparing Row 1 and Row 3,
re-ranking across two models performs better than
with a single Cap-3 model. A comparison of Row 2
and Row 3 suggests that combining VTM and VTC
scores is more effective than using VTC alone.

4.4 Main Results

The validation performance (VTT 2022) and the
official evaluation results on the VTT 2023 test
set of our final runs are detailed in Table 4. De-
spite the narrow variance in performance across
the four runs, Run4, which adopts comprehensive
augmented data and a complete re-ranking strat-
egy, stands out marginally. Finally, our submis-
sion ranks the 1st on evaluation metrics including
CIDErD, CIDEr, METEOR and STS in TRECVID



Table 4: Official evaluation results of our submissions.
C: CIDEr, B@4: BLEU@4, M:METEOR, SP:SPICE, ST:STS

Captioner Re-ranking Main Task Robust TaskSubmission
Cap-2 Cap-3 VTM VTC C B@4 M SP ST C B@4 M SP ST

run1 ✓ ✓ ✓ 38.4 9.21 32.81 14.9 47.0 38.9 9.41 33.05 14.8 20.52
run2 ✓ ✓ ✓ 39.4 9.45 33.25 15.2 47.3 38.6 9.68 33.04 15.0 20.50
run3 ✓ ✓ ✓ 39.4 9.48 33.19 15.1 47.3 38.4 9.72 33.15 14.9 20.36
run4 ✓ ✓ ✓ ✓ 39.4 9.48 33.16 15.2 47.4 39.0 9.83 33.24 15.1 20.61

Table 5: Composition and filtering criterion of Aug-1
and Aug-2.

Data Aug-1 Aug-2

Count Filter Count Filter

VTT16-21 45,820 - 51,820 -
Aug-22 34,660 CIDEr > 55 8,902 CIDEr > 80
Aug-GT 5,598 CIDEr > 55 13,220 CIDEr > 80
Aug-V3C1 - - 4,392 VTM > 60
Aug-BT - - 12,860 CIDEr > 80

Total 86,078 - 91,194 -

Table 6: Performance on VTT22 by using different parts
of our augmentation data.

Model VTT Data Aug-GT Aug-BT Aug-V3C1 CIDEr

Cap0 ✓ 57.1
Cap2 ✓ ✓ 59.5
Cap2+ ✓ ✓ ✓ 59.6
Cap2+ ✓ ✓ ✓ 60.0
Cap3 ✓ ✓ ✓ ✓ 61.0

VTT 2023, with the highest CIDEr score of 39.4.
We also submit to the robustness sub-task, which

introduces natural corruptions and perturbations to
videos, e.g., spatial-temporal corruptions and dif-
ferent types of noise. As shown in Table 4, our
models achieve basically the same performance as
the main task, indicating they are robust enough to
handle these perturbations. We consider the mod-
els can benefit from the video input augmentation
integrated into the original mPLUG-2, including
strategies like random cropping and random frame
selection, which likely enhance their robustness to
such disturbances.

5 Conclusion

This report presents our solution for the VTT chal-
lenge in TRECVID 2023. We adopt a powerful
vision-text pre-training model mPLUG-2 as the
backbone to generate high-quality video descrip-
tions. To enlarge the training data, we introduce
a well-designed data augmentation pipeline with
pseudo-labeling and back translation. Lastly, we se-

Table 7: Performance on VTT22 by using different re-
ranking strategies.

Row Re-rank Captioner CIDEr
VTM VTC Cap-2 Cap-3

1 ✓ ✓ ✓ 62.1
2 ✓ ✓ ✓ 62.5
3 ✓ ✓ ✓ ✓ 63.1

lect the best candidate from multiple generated de-
scriptions with re-ranking strategies. Experiments
demonstrate the effectiveness of our designs, and
our submissions rank 1st on both the main task and
the robust sub-task.

6 Discussions

Robustness Subtask. In an optimal benchmark
scenario, we would expect the captioning model’s
performance to decline when processing corrupted
videos. Contrary to this expectation, our system
demonstrates comparable efficacy on the main task
as well as the robustness subtask, suggesting that
the robustness subtask does not present a signif-
icant challenge. We postulate that the automati-
cally introduced corruptions in the subtask (e.g.,
noise and compression artifacts) may not signifi-
cantly impede contemporary AI systems. A likely
source of more suitable robustness challenges lies
in real-world video recording conditions, such as
inadequate lighting and camera shake.
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