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1 Introduction

The TREC Video Retrieval Evaluation (TRECVID)
is a TREC-style video analysis and retrieval evalua-
tion with the goal of promoting progress in research
and development of content-based exploitation and
retrieval of information from digital video via open,
tasks-based evaluation supported by metrology.

Over the last two decades this effort has yielded a
better understanding of how systems can effectively
accomplish such processing and how one can reliably
benchmark their performance. TRECVID has been
funded by NIST (National Institute of Standards and
Technology) and other US government agencies. In
addition, many organizations and individuals world-
wide contribute significant time and effort.
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TRECVID 2023 planned the following five tasks.
From which, four tasks (AVS, VTT, DVU, & ActEV)
continued from previous years, while a pilot task
(MedVidQA) was introduced. In total, 26 teams from
various research organizations worldwide signed up
to join the evaluation campaign this year, where 16
teams (Table 1) completed one or more of the follow-
ing five tasks, and 10 teams registered but did not
submit any runs.

1. Ad-hoc Video Search (AVS)
2. Video to Text (VTT)
3. Deep Video Understanding (DVU)
4. Activities in Extended Video (ActEV)
5. Medical Video Question Answering (Med-

VidQA)

This year TRECVID continued the usage of the
Vimeo Creative Commons collection dataset (V3C1
and V3C2) [Rossetto et al., 2019] of about 2,300
hours in total and segmented into 1.5 million short
video shots to support the Ad-hoc video search task.
The dataset is drawn from the Vimeo video sharing
website under the Creative Commons licenses and
reflects a wide variety of content, style, and source
devices determined only by the self-selected donors.
The VTT task also adopted a subset of 2000 short
videos from the Vimeo V3C3 dataset.
For the ActEV task, about 16 hours of the

Multiview Extended Video with Activities (MEVA)
dataset was used which was designed to be realis-
tic, natural and challenging for video surveillance do-
mains in terms of its resolution, background clutter,
diversity in scenes, and human activity/event cate-
gories.
The same licensed movie dataset of about 15 hours

acquired in 2022 from KinoLorberEdu1 was applied
to the DVU task. In addition, a set of 14 Cre-
ative Common (CC) movies (total duration of 17.5
hr) previously utilized between 2020 and 2022 ACM
Multimedia DVU Grand Challenges including their
movie-level and scene-level annotations are being uti-
lized as development dataset for the DVU task. The
movies have been collected from public websites such
as Vimeo and the Internet Archive. In total, the 14
movies consist of 621 scenes, 1572 entities, 650 rela-
tionships, and 2491 interactions.
The AVS results were judged by NIST human as-

sessors, while the VTT and DVU task ground-truth
was created by NIST human assessors and scored
automatically later using Machine Translation (MT)

1https://www.kinolorberedu.com/

metrics and Direct Assessment (DA) by Amazon Me-
chanical Turk workers on sampled runs. The systems
submitted for the ActEV task evaluations were scored
by NIST using reference annotations created by Kit-
ware, Inc.

This paper is an introduction to the tasks, data,
evaluation framework, and performance measures
used in the 2023 evaluation campaign. For detailed
information about the approaches and results, the
reader should see the various site reports and the
results pages available at the workshop proceeding
online page [TV23Pubs, 2023]. Finally, we would like
to acknowledge that all work presented here has been
cleared by RPO (Research Protection Office)2

Disclaimer: Certain commercial equipment, in-
struments, software, or materials, commercial or
non-commercial, are identified in this paper in or-
der to specify the experimental procedure adequately.
Such identification does not imply recommendation or
endorsement of any product or service by NIST, nor
does it imply that the materials or equipment iden-
tified are necessarily the best available for the pur-
pose.

2 Datasets

Many datasets have been adopted and used across
the years since TRECVID started in 2001 and all
available resources and datasets from previous years
can be accessed from our website3. In the following
sections we will give an overview of the main datasets
used this year across the different tasks.

2.1 DVU Movies Training Dataset

The dataset consisted of two types of movie data
with a total of 19 movies (23 hr) to support the
Deep Video Understanding (DVU) task: The first
is a set of 14 Creative Common (CC) movies (total
duration of 17.5 hr) previously utilized in 2020 - 2022
ACM Multimedia DVU Grand Challenges including
their movie-level and scene-level annotations. The
movies have been collected from public websites such
as Vimeo and the Internet Archive. In total, the 14
movies consist of 621 scenes, 1572 entities, 650 re-
lationships, and 2491 interactions. The second is a
set of 5 licensed movies from KinolorberEdu platform
that have been used as testing data in 2022.

2under RPO number: #ITL-17-0025
3https://trecvid.nist.gov/past.data.table.html
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Table 1: Participants and tasks

Task Location TeamID Participants
MD AV DV V T AH
−− −− −− V T −− SAm camilouchile Uchile
MD −− −− −− −− NAm UMass BioNLP UMass Amherst
−− AV −− −− −− NAm suvosree Florida Atlantic University
MD −− −− −− −− Eur + Asia + Aus Delphi City University of Hong Kong;

University of Oxford;
Australian National University

−− ∗∗ −− ∗∗ −− Asia MLV C HDU Hangzhou Dianzi University
MD AV ∗∗ V T ∗∗ Asia NII UIT National Institute of Informatics;

University of Information Technology
VNU-HCM, Vietnam (HCM-UIT)

−− −− −− −− ∗∗ Asia V IREO Singapore Management University
City University of Hong Kong

−− −− DV −− −− NAm CMU DV U Carnegie Mellon University
−− AV −− −− −− Eur HSMW University of Applied Sciences
∗∗ −− −− −− −− NAm UMBCVQA University of Maryland Baltimore County
∗∗ −− −− −− −− NAm UNCWAI University of North Carolina
∗∗ −− −− −− −− Asia V PAI Hunan University;

National Laboratory of Pattern
Recognition Institute of Automation,
Chinese Academy Sciences

∗∗ −− −− −− −− Eur + Asia doshisha uzl Doshisha University
Institute of Medical Informatics,
University of Lubeck DFKI

MD −− −− −− −− Eur upvqa University Politehnica of Bucharest
−− AV −− −− ∗∗ Eur ITI CERTH Information Technologies Institute,

Centre for Research
and Technology Hellas

−− ∗∗ −− ∗∗ −− Asia BUPT MCPRL Beijing University of Posts
and Telecommunications

−− ∗∗ −− −− −− Asia FDU AWS Fudan University Amazon Web Service
∗∗ −− −− −− −− Asia MI TJU Tianjin University
MD AV DV −− AH Asia PKU WICT Peking University
−− −− −− −− ∗∗ Asia RUCMM Renmin University of China
−− −− −− ∗∗ ∗∗ Asia RUC AIM3 Renmin University of China
−− −− −− −− AH Asia TJUMMG Tianjin University
−− −− DV V T AH Asia V RR Zhongyuan University of Technology
−− −− ∗∗ −− ∗∗ Asia WHU NERCMS Wuhan University
−− −− −− ∗∗ −− Asia kslab Nagaoka University of Technology
−− ∗∗ −− ∗∗ ∗∗ Asia WasedaMeiseiSoftbank Waseda University, Meisei University,

SoftBank Corporation

Task legend. DV:Deep Video Understanding; VT:Video to Text; AV:Activities in Extended videos; AH:Ad-hoc search; MD: Medical
Video Question Answering; −−:no run planned; ∗∗:submitted run(s)
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2.2 Kinolorberedu Testing Dataset

A set of 5 movies licensed from Kino Lorber Edu
(https://www.kinolorberedu.com/) is made available
to support the deep video understanding task. All
movies are in English with a duration between 1.5
- 2 hrs each. Participants were able to download
the whole original movies, scenes boundary reference,
and a few image examples of key characters and lo-
cations.

For the DVU robustness subtask, we created three
additional datasets by adding noise to the main task
testing dataset with, audio noise only, video noise
only, and with both audio and video noise.

2.3 Vimeo Creative Commons Collec-
tion (V3C) Dataset

Two sub-collections (V3C1 and V3C2)
[Rossetto et al., 2019] have been adopted to support
the AVS task. Together, they are composed of about
17,000 Vimeo videos (2.9 TB, 2300 h) with Creative
Commons licenses and a mean duration of 8 min. All
videos have some metadata available such as title,
keywords, and description in json files. They have
been segmented into 2 508 113 short video segments
according to the provided master shot boundary files.
In addition, keyframes and thumbnails per video
segment have been extracted and made available.
V3C2 was used for testing, while V3C1 was available
for development along with the previous Internet
Archive datasets (IACC.1-3) of about 1800 h. In
addition to the above, a third subset of short videos
from the sub-collection V3C3 dataset was used to
test the Video to Text systems.

2.4 MEVA Dataset

The ActEV Sequestered Data Leaderboard (SDL)
competition is based on the Multiview Ex-
tended Video with Activities (MEVA) dataset
([Kitware, 2020] mevadata.org) which was collected
and annotated specifically for the development and
evaluation of public safety video activity detec-
tion capabilities at the Muscatatuck Urban Train-
ing Center by Kitware, Inc. for the IARPA DIVA
(Deep Intermodal Video Analytics) program and the
broader research community. This dataset contains
time-synchronized multi-camera, continuous, long-
duration video, often taken at significant stand-off
ranges from the activities. Metadata and auxiliary

data for the site were provided as is typical for public-
safe scenarios where detailed knowledge of the site is
available to systems. Provided data will include a
map and 3D site model of the test area, approximate
camera locations for the publicly released video data,
and camera models for released sensor video. The
dataset was collected with both EO (Electro-Optical)
and IR (Infrared) sensors, with over 100 actors per-
forming in various scripted and non-scripted activi-
ties in various scenarios. The activities included per-
son and multi-person activities, person-object inter-
action activities, vehicle activities, and person-vehicle
interaction activities.

The dataset was captured with off-the-shelf cam-
eras. Both overlapping and non-overlapping views
are in the data set. There are 25 EO cameras and
4 IR cameras. The IR cameras are paired with EO
cameras with roughly the same location and orien-
tation. The spatial resolution of the EO cameras
is 1920x1080 or 1920x1072 and the IR cameras is
352x240. All the video cameras have a frame rate
of 30 frames/second, have a fixed orientation except
one, and all are synchronized with the GPS time sig-
nal. The number of indoor cameras is 11 and the
number of outdoor cameras is 18. Figure 1 shows dif-
ferent image montages of randomly selected videos4

Test Data

The TRECVID’23 ActEV Self-Reported Leader-
board (SRL) test dataset is a 16-hour collection
of videos with 20 activities, which only consists of
Electro-Optics (EO) camera modalities from public
cameras. The TRECVID’23 ActEV SRL test dataset
is the same as the one used for TRECVID’22 ActEV
SRL, CVPR ActivityNet 2022 ActEV SRL and the
WACV’22 ActEV SRL challenges.

Training and Development Data

In December 2019, the public MEVA dataset was re-
leased with 328 hours of ground-camera data and 4.2
hours of Unmanned Aerial Vehicle video. 160 hours
of the ground camera video have been annotated by
the same team that has annotated the ActEV test
set. Additional annotations have been performed by
the public and are also available in the annotation
repository.

4CC BY-4.0 license
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Figure 1: Montage of randomly selected video clips

2.5 TRECVID-VTT

This dataset contains short videos that are between
3 seconds and 10 seconds long. The video sources are
from Twitter Vine, Flickr, and V3C2. The dataset is
being updated annually and in total, there are 12,870
videos with captions. Each video has between 2 and 5
captions, which have been written by dedicated anno-
tators. The collection includes 6475 URLs from Twit-
ter Vine and 6,395 video files in webm format with
Creative Commons License. Those 6,395 videos have
been extracted from Flickr and the V3C2 dataset.
For robustness testing, we only created one new

dataset by adding noise to the main task test data in
both the audio and video channels. The main reason
for creating only one dataset was to make it easier for
teams to take part in the subtask.

3 Evaluated Tasks

3.1 Ad-hoc Video Search

The Ad-hoc Video Search (AVS) task aims to model
the end user video search use case, who is looking for
segments of video containing people, objects, activi-
ties, locations, etc., and combinations of the former.
More focus on fine-grained descriptions was given to
provided queries. The task was coordinated by NIST
and by the Laboratoire d’Informatique de Grenoble.
The task for participants was defined as the follow-

ing: given a standard set of master shot boundaries
(about 1.4 million shots defined by starting time and
ending time in the original whole videos) from the
V3C2 test collection and a list of 30 ad-hoc textual
queries (see Appendix A and B), participants were
asked to return for each query, at most the top 1000
video clips from the master shot boundary reference

set, ranked according to the highest probability of
containing the target query. The presence of each
query was assumed to be binary, i.e., it was either
present or absent in the given standard video shot.

Judges at NIST followed several rules in evaluat-
ing system output. For example, if the query was
true for some frame (sequence) within the shot, then
it was true for the shot. In addition, query defini-
tions such as “contains x” or words to that effect are
short for “contains x to a degree sufficient for x to be
recognizable as x by a human”. This means among
other things that unless explicitly stated, partial vis-
ibility or audibility may suffice. Lastly, the fact that
a segment contains video of a physical object repre-
senting the query target, such as photos, paintings,
models, or toy versions of the target (e.g. picture
of Barack Obama vs Barack Obama himself), was
NOT grounds for judging the query to be true for
the segment. Containing video of the target within
video (such as a television showing the target query)
may be grounds for doing so. Three main submission
types were accepted:

• Fully automatic runs (no human input in the
loop): The system takes a query as input and
produces results without any human interven-
tion.

• Manually-assisted runs: where a human can for-
mulate the initial query based on topic and
query interface, not on knowledge of collection
or search results. The system takes the formu-
lated query as input and produces results with-
out further human intervention.

• Relevance-Feedback: The system takes the offi-
cial query as input and produces initial results,
then a human judge can assess the top-30 re-
sults and input this information as feedback to
the system to produce a final set of results. This
feedback loop is strictly permitted for only up to
3 iterations.

In general, runs submitted were allowed to choose
any of the following four training types:

• A - used only V3C1 training data

• D - used any other training data (except the test-
ing dataset V3C2)

• E - used only training data collected automati-
cally using only the official query textual descrip-
tion
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• F - used only training data collected automati-
cally using a query built manually from the given
official query textual description

The training categories “E” and “F” are motivated
by the idea of promoting the development of methods
that permit the indexing of concepts in video clips
using only data from the web or archives without
the need for additional annotations. The training
data could for instance consist of images or videos
retrieved by a general-purpose search engine (e.g.,
Google) using only the query definition with only au-
tomatic processing of the returned images or videos.
The progress subtask objective is to measure sys-

tem progress on a set of 20 fixed topics (Appendix
B). As a result, 2022 systems were allowed to submit
results for 20 common topics (not evaluated in 2022)
that will be fixed for three years (2022-2024). This
year NIST evaluated progress runs submitted in 2022
and 2023 so that teams can measure their progress
against two years, while in 2024 they can measure
their progress against three years. In general, the 20
fixed progress topics are divided equally into two sets
of 10 topics to be evaluated in 2023 and 2024.
A Novelty run type was also allowed to be submit-

ted within the main task. The goal of this run type
is to encourage systems to submit novel and unique
relevant shots not easily discovered by other runs. In
other words, to find rare true positive shots. Finally,
teams were allowed to submit an optional explainabil-
ity parameter with each shot. This was formulated as
a keyframe and bounding box to localize the region
that supports the query evidence.

Dataset

The V3C2 dataset (drawn from a larger V3C video
dataset [Rossetto et al., 2019]) was adopted as a test-
ing dataset. It is composed of 9760 Vimeo videos (1.6
TB, 1300 h) with Creative Commons licenses and a
mean duration of 8 min. All videos have some meta-
data available e.g., title, keywords, and description
in json files. The dataset has been segmented into
1 425 454 short video segments according to the pro-
vided master shot boundary files. In addition, key-
frames and thumbnails per video segment have been
extracted and made available. For training and devel-
opment, all previous V3C1 dataset (1000 h) and In-
ternet Archive datasets (IACC.1-3) with about 1 800
h were made available with their ground truth and
xml meta-data files. Throughout this report we do
not differentiate between a clip and a shot and thus

they may be used interchangeably.

Evaluation

Each group was allowed to submit up to 4 prioritized
runs per submission type and per task type (main or
progress), and two additional if they were of training
type “E” or “F” runs. In addition, one novelty run
type was allowed to be submitted within the main
task.

In fact, 7 groups submitted a total of 73 runs with
43 main runs and 30 progress runs. One team sub-
mitted a novelty run. The 43 main runs consisted
of 29 fully automatic, 10 manually-assisted runs, and
4 relevance feedback runs. Progress runs consisted
of 19 fully automatic and 11 manually-assisted runs.
As the evaluation will also take into consideration
progress runs submitted in 2022, there were 23 fully
automatic and 5 manually-assisted runs considered
for scoring.

To prepare the results from teams for human judg-
ments, a workflow was adopted to pool results from
runs submitted. For each query topic, a top pool was
created using 100 % of clips at ranks 1 to 300 across
all submissions after removing duplicates. A second
pool was created using a sampling rate of 25 % of
clips at ranks 301 to 1000, not already in the top
pool, across all submissions and after removing du-
plicates. Using these two master pools, we divided
the clips in them into small pool files with about
1000 clips in each file. Five human judges (asses-
sors) were presented with the pools - one assessor per
topic - and they judged each shot by watching the
associated video and listening to the audio then vot-
ing if the clip contained the query topic or not. Once
the assessor completed judging for a topic, a second
round of confirmation judging was conducted to take
into consideration close neighborhood shots with op-
posite judging decisions as well as clips submitted by
at least 10 runs at ranks 1 to 200 that were voted as
false positive by the assessor. This final step was done
as a secondary check on the assessors’ judging work
and to give them an opportunity to fix any judgment
mistakes.

In all, 130 390 clips were judged while 121 415 clips
fell into the unjudged part of the overall samples.
Total hits across the 30 topics reached 21 234 with
9152 hits at submission ranks from 1 to 100, 7396
hits at submission ranks 101 to 300, and 4686 hits
at submission ranks between 301 to 1000. Table 2
presents information about the pooling and judging
per topic.
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Measures

Work at Northeastern University
[Yilmaz and Aslam, 2006] has resulted in meth-
ods for estimating standard system performance
measures using relatively small samples of the usual
judgment sets so that larger numbers of features
can be evaluated using the same amount of judging
effort. Tests on past data showed the measure
inferred average precision (infAP) to be a good
estimator of average precision [Over et al., 2006].
This year mean extended inferred average precision
(mean xinfAP) was used which permits sampling
density to vary [Yilmaz et al., 2008]. This allowed
the evaluation to be more sensitive to clips returned
below the lowest rank (≈300) previously pooled and
judged. It also allowed adjustment of the sampling
density to be greater among the highest ranked items
that contribute more average precision than those
ranked lower. The sample eval software 5, a tool
implementing xinfAP, was used to calculate inferred
recall, inferred precision, inferred average precision,
etc., for each result, given the sampling plan and a
submitted run. Since all runs provided results for
all evaluated topics, runs can be compared in terms
of the mean inferred average precision across all
evaluated query topics.

Ad-hoc Results

All submissions were of training type “D”, and no
runs using category “E” or “F” were submitted. It
is encouraging to see relevance-feedback runs, as it
has been several years that any team submitted any
R runs. Tables 3, 4, and 5 show the results of
all fully automatic (F), manually-assisted (M), and
relevance-feedback (R) runs respectively. In general,
for fully automatic results, the top scores and me-
dian (0.263) are higher than 2022. The top team
(WHU NERCMS) 4 runs achieved the top 4 places,
while other team runs are also within close per-
formance. For manually-assisted runs, we had two
participating teams (VIREO and NII UIT). Overall,
compared to automatic runs, manually-assisted runs
performed lower (with a median score of 0.1875) and
comparing the performance of common teams we can
see that team NII UIT team top M run performed
better than their top F run, however team VIREO
top M run performed lower than their top F run. Re-
garding relevance-feedback runs, they all came from

5http://www-nlpir.nist.gov/projects/trecvid/
trecvid.tools/sample eval/

one team (WHU NERCMS) with an overall median
score of 0.2985 and top score (0.299) exceeding the
top automatic and manual runs.

Run ID (appended with priority) Mean xInfAP

WHU NERCMS.23 2 0.292
WHU NERCMS.23 1 0.292
WHU NERCMS.23 3 0.291
WHU NERCMS.23 4 0.29

WasedaMeiseiSoftbank.23 2 0.285
WasedaMeiseiSoftbank.23 4 0.281

RUCMM.23 1 0.272
WasedaMeiseiSoftbank.23 3 0.27
WasedaMeiseiSoftbank.23 1 0.269

RUC AIM3.23 1 0.269
VIREO.23 4 0.268
RUCMM.23 3 0.268
RUCMM.23 2 0.268

RUC AIM3.23 2 0.267
RUC AIM3.23 3 0.263
RUC AIM3.23 4 0.262
RUCMM.23 4 0.261
VIREO.23 3 0.256

ITI CERTH.23 3 0.24
VIREO.23 1 0.237
VIREO.23 5 0.235

ITI CERTH.23 4 0.233
ITI CERTH.23 1 0.225
ITI CERTH.23 2 0.224

VIREO.23 2 0.215
NII UIT.23 1 0.166
NII UIT.23 3 0.164
NII UIT.23 2 0.16
NII UIT.23 4 0.158

Table 3: AVS: Sorted scores of 29 automatic runs
across all 20 main queries. All runs used training
type “D”.

To test if there were significant differences between
the runs submitted, we applied a randomization test
[Manly, 1997] on the top 10 runs for each run type
category using a significance threshold of p<0.05.

For automatic runs, the analysis showed there is
no statistical difference between Waseda team runs
2 and 4 and between runs 1 and 3, and there is a
statistical difference between runs 2 & 4 and 1 &
3. Team WHU NERCMS run 1 is better than team
RUC AIM3 run 1, and top 4 runs of WHU NERCMS
are not significantly better from each other. With re-
spect to manually-assisted runs, the test indicated
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Table 2: Ad-hoc search pooling and judging statistics

Topic
number

Total
submitted

Unique
submitted

total
that
were
unique
%

Number
judged

unique
that
were
judged
%

Number
relevant

judged
that
were
relevant
%

1681 57992 52854 91.14 5313 10.05 441 8.30

1683 57947 49205 84.91 4104 8.34 1107 26.97

1685 57975 48981 84.49 3854 7.87 1090 28.28

1687 57993 53584 92.40 9229 17.22 381 4.13

1689 57985 53223 91.79 6665 12.52 446 6.69

1691 57867 50865 87.90 4079 8.02 460 11.28

1693 57954 52938 91.34 3664 6.92 971 26.50

1695 57957 52927 91.32 4380 8.28 766 17.49

1697 57924 52615 90.83 2736 5.20 310 11.33

1699 57988 53281 91.88 6168 11.58 144 2.33

1731 43000 42096 97.90 3683 8.75 1100 29.87

1732 43000 41545 96.62 3149 7.58 1005 31.91

1733 43000 38144 88.71 2600 6.82 298 11.46

1734 43000 38433 89.38 2874 7.48 1133 39.42

1735 43000 38341 89.17 4825 12.58 732 15.17

1736 43000 42538 98.93 3948 9.28 326 8.26

1737 43000 42230 98.21 3940 9.33 1790 45.43

1738 43000 42116 97.94 3161 7.51 369 11.67

1739 43000 40442 94.05 3691 9.13 249 6.75

1740 43000 42276 98.32 6185 14.63 1507 24.37

1741 43000 40426 94.01 4149 10.26 475 11.45

1742 43000 42364 98.52 4192 9.90 110 2.62

1743 43000 42587 99.04 5819 13.66 46 0.79

1744 43000 42337 98.46 4112 9.71 345 8.39

1745 43000 42193 98.12 4161 9.86 2496 59.99

1746 43000 42188 98.11 4053 9.61 249 6.14

1747 43000 40428 94.02 3264 8.07 267 8.18

1748 43000 42322 98.42 3978 9.40 439 11.04

1749 43000 42312 98.40 3177 7.51 1826 57.48

1750 43000 42219 98.18 5237 12.40 356 6.80

that there is no statistical difference between VIREO
runs 1, 4, and 5. And also, no statistical difference
between NII UIT runs 1,2,3 and 4. Finally for R runs
it was indicated that there is no difference between
the top 2 runs, while run 1 is better than run 4.

Figure 2 shows for each topic the number of rele-
vant and unique shots submitted by all teams com-
bined (blue color). On the other hand, the orange
bars show the total non-unique true shots submitted
by at least 2 or more teams. The chart is sorted by
the number of unique hits. One-third of all hits are
unique.

The four topics: 1745, 1740, 1749, and 1737
achieved the most unique hits while also reporting

a high number of hits overall, while the three top-
ics: 1697, 1742, and 1733 reported the lowest unique
hits. In general, topics that reported a high num-
ber of hits consisted of both unique and non-unique
hits, while topics that reported a low number of hits
mainly only consisted of non-unique hits, represent-
ing the difficulty of the query. While it is hard
to draw conclusions about why hits vary by topic,
there seems to be a correlation between the rela-
tive easiness of the query and its components (e.g.
more actions/activities in combination with objects
or conditions (spatial or temporal) are harder and
are being detected less). We should also note here
that high/low hits per topic don’t necessarily mean
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Figure 2: AVS: Unique vs overlapping results in main task

Run ID (appended with priority) Mean xInfAP

C VIREO.23 4 0.25
N VIREO.23 5 0.222
C VIREO.23 1 0.222
C NII UIT.23 4 0.189
C NII UIT.23 3 0.188
C NII UIT.23 2 0.187
C NII UIT.23 1 0.186
C VIREO.23 3 0.072
C VIREO.23 6 0.041
C VIREO.23 2 0.002

Table 4: AVS: Sorted scores of 10 manually-assisted
runs across all 20 main queries. All runs used training
type “D”. Run names are prefixed by “C” (common)
or “N” (novelty)

high/low performance in the final scores as a good
run must detect and rank results high as well.

Run ID (appended with priority) Mean xInfAP

WHU NERCMS.23 3 0.299
WHU NERCMS.23 1 0.299
WHU NERCMS.23 2 0.298
WHU NERCMS.23 4 0.296

Table 5: AVS: Sorted scores of 4 relevance-feedback
runs across all 20 main queries. All runs used training
type “D”.

Team Relevant shots

VIREO 4167
NII UIT 892

ITI CERTH 534
WasedaMeiseiSoftbank 360

RUC AIM37 357
RUCMM 230

WHU NERCMS 138
kindai ogu osaka 52

Table 6: AVS: Sorted unique number of hits (true
positive shots) by team.

Table 6 shows the number of unique clips found
by the different participating teams. From this figure
and the overall scores in Tables 3, 4, and 5, it can
be shown that there is no clear relation between the
teams who found the most unique shots and their to-
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tal performance. The VIREO team contributed the
most unique hits (similar to previous year). Although
WHU NERCMS, RUCMM, and Waseda teams per-
formed well, their unique hits contributions were not
very high.

Figures 3 show the performance of the top 10 runs
across the 20 main queries for automatic runs. Note
that each series in this plot represents a rank (from
1 to 10) of the scores, but all scores at a given
rank do not necessarily belong to a specific team.
A team’s scores can rank differently across the 20
queries. Some samples of top and bottom performing
queries are highlighted with the query text. Harder
queries are those that include non-traditional combi-
nations of concepts (e.g. A man with an earring in
his left ear). In general, for automatic systems and
topics not performing well, usually all top 10 runs
are condensed together with low spread between their
scores, while mid or high performing queries may vary
in their range of performance.

The novelty run type encourages submitting
unique (hard to find) relevant shots. Systems were
asked to label their runs as either novelty type (N) or
common type (C). The novelty metric was designed
to score runs based on how good they are at detect-
ing unique relevant shots. A weight was given to each
topic and shot pair such as follows:

TopicX ShotYweight(x) = 1− N

M

where N is the number of times Shot Y was retrieved
for topic X by any run submission, and M is the num-
ber of total runs submitted by all teams. For in-
stance, a unique relevant shot weight will be close to
1.0 while a shot submitted by all runs will be assigned
a weight of 0.

For a run R and for all topics, we calculate the
summation S of all unique shot weights only, and the
final novelty metric score is the mean score across all
evaluated 20 topics. Figure 4 shows the novelty met-
ric scores. The red bars indicate the single submitted
novelty run.

For a team that submitted a novelty run, we re-
moved all its other common runs submitted. The
reason for doing this was the fact that usually for a
given team there would be many overlapping shots
within all its submitted runs. For other teams who
did not submit novelty runs, we chose the best (top-
scoring) run for each team for novelty metric calcu-
lations purposes. As shown in the figure, the nov-
elty run (by VIREO team) scored best based on our

metric. More runs are needed to conduct a better
comparison within novelty systems.

Among the submission requirements, we asked
teams to submit the processing time that was con-
sumed to return the result sets for each query. Fig-
ure 5 plots the reported processing times vs the InfAP
scores among all run queries for automatic runs.

It can be seen that spending more time did not nec-
essarily help in most cases and few queries achieved
high scores in less time. There is more work to be
done to make systems efficient and effective at the
same time. In general, most automatic systems re-
ported processing time below 10 s.

The progress task results are shown in Table 7 for
automatic and manually-assisted systems. In total, 7
teams participated in this progress task for the last
two years. Comparing the best run in these two years
for each team, we can see that for automatic Systems
all teams submitted in both years achieved better in
2023, two teams submitted in 2022 but not in 2023,
and one team submitted in 2023 but not in 2022. For
manually-assisted systems, only VIREO submitted in
both years being 2022 submission better.

To analyze in general which topics were the easiest
and most difficult we sorted topics by the number of
runs that scored above or below the midpoint score
of xInfAP >= 0.5 for any given topic and assumed
that those runs with 0.5 or above were the easiest
topics, while topics with xInfAP < 0.5 were assumed
hard topics. From this analysis, it can be concluded
that the top 5 hard topics were: “A man is talking
in a small window located in the lower corner of the
screen”, “A man carrying a bag on one of his shoul-
ders”, “A red or blue scarf around someone’s neck”,
“A man with an earring in his left ear”, and “A per-
son opens a door and enters a location”. On the other
hand, the top 5 easiest topics were: “A person wear-
ing gloves while biking”, “A man is seen with a baby”,
“A person wearing any kind of face or head mask”,
and “A woman wearing (dark framed) glasses”, and
“A woman with red hair”.

Ad-hoc Observations and Conclusions

Compared to the semantic indexing task that was
conducted to detect single concepts (e.g., airplane,
animal, bridge) from 2010 to 2015 it can be seen from
running the ad-hoc task the last 7 years that it is
still very hard and systems still have a lot of room to
research methods that can deal with unpredictable
queries composed of one or more concepts including
their interactions, relationships and conditions. From
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Figure 3: AVS: Top 10 runs (xinfAP) per query (fully automatic)

Team Automatic systems Manually-assisted systems

RUCMM (2022) 0.24
RUCMM (2023) 0.26
VIREO (2022) 0.14 0.149
VIREO (2023) 0.17 0.134
NII UIT (2023) 0.15 0.15

ITI CERTH (2022) 0.19
ITI CERTH (2023) 0.22

RUCAIM3-Tencent (2022) 0.19
kindai ogu osaka (2022) 0.21

WasedaMeiseiSoftbank (2022) 0.26
WasedaMeiseiSoftbank (2023) 0.29

Table 7: AVS: Max performance (xInfAP score) per team on 10 progress queries
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Figure 4: AVS: Novelty Runs Scores

Figure 5: AVS: Processing time vs scores (fully auto-
matic)

2016 to 2021 we concluded two cycles of six years
running the Ad-hoc task using the Internet Archive
(IACC.3) dataset [Awad et al., 2016] and the Vimeo
Creative Commons Collection (V3C1). Starting in
2022, we are using a new sub-collection from Vimeo
(V3C2) as the official testing dataset.

To summarize major observations in 2023 we can
see that overall team participation and task comple-
tion rates are stable. All submitted runs were of
training type “D”, and no runs of type “E” or “E”
were submitted. One novelty run type was submit-
ted. Overall, 43 systems (29 automatic, 10 manually-
assisted, and 4 relevance-feedback) were submitted
in the main task including 1 novelty run, while 30
runs were submitted for the progress task. Overall,
performance scores are higher than last year which
is encouraging given that queries are still focused
on fine-grained information. Few automatic systems
are good and fast (< 10 sec). There exists a high
similarity between automatic, manually-assisted, and
relevance feedback systems in terms of query per-
formance relative to each other. The top-scoring
teams did not necessarily contribute a lot of unique
true shots and vice-versa. About 32% of all hits are
unique, while 68% are common hits across the sub-
mitted runs. Overall, 16.2% of all judged shots across
all queries are true positives. Hard queries are the
ones asked for unusual combinations of facets (com-
pared to well-known concepts commonly found in
the available training datasets). For low-performance
queries, usually all systems are condensed in a small
range. While for mid to high performance queries,
the top 10 runs vary in their range of performance.

As a general high-level systems overview, we
observe the use of multiple text-image and text-
video common latent embedding approaches such
as VSE++, CLIP and its various variants: SLIP,
BLIP, BLIP-2, LaCLIP, OpenCLIP, and TeachCLIP.
Some teams applied query expansion with Chat-
GPT, while others made use of Text-to-Image gen-
erative approaches. The majority of systems used
a transformer-based extension of a cross-modal deep
network architectures. An interesting approach was
based on top-K feedback and proposed a new algo-
rithm Quantum-Theoretic Interactive Ranking Ag-
gregation (QT-IRA) that adjusts models’ weight with
relevance feedback.

No teams used the previous popular concept banks.
However, the focus is more towards “dual task” (in-
terpretable embeddings). In terms of datasets, mul-
tiple text-image and text-video annotated collections
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such as MSR-VTT, TGIF, Vatex, Flickr8k/30k, MS-
COCO, and Conceptual Captions were used for train-
ing systems. Teams experimented with several com-
binations and fusion approaches (e.g. normalization,
averaging), as well as lightweight attentional feature
fusion methods. Finally, it is hard to distinguish be-
tween data or feature effects and algorithmic effects.

For detailed information about the approaches and
results for individual teams, we refer the reader to
the reports [TV23Pubs, 2023] in the online workshop
notebook proceedings.

3.2 Deep Video Understanding

Deep video understanding is a challenging task that
requires systems to develop a deep analysis and un-
derstanding of the relationships between different en-
tities in video, to use known information to reason
about other, more hidden information, and to popu-
late a knowledge graph (KG) representation with all
acquired information [Curtis et al., 2020]. To work
on this task, a system should take into consideration
all available modalities (speech, image/video, and in
some cases text). The aim of this task is to push the
limits of multi-modal extraction, fusion, and analy-
sis techniques to address the problem of analyzing
long duration videos holistically and extracting use-
ful knowledge to utilize it in solving different types of
queries. The target knowledge includes both visual
and non-visual elements. As videos and multimedia
data are getting more and more popular and usable
by users in different domains and contexts, the re-
search, approaches and techniques we aim to be ap-
plied in this task will be very relevant in the coming
years and near future.

Dataset

The Deep Video Understanding Training Set de-
scribed in Table 8 consists of 19 Creative Commons
(CC) license movies with a total duration of about
25 hours6. This training set has been annotated by
human assessors and final ground truth, both at the
overall movie level (Ontology of relations, entities, ac-
tions & events, Knowledge Graph, and names and im-
ages of all main characters), and the individual scene
level (Ontology of locations, people/entities, interac-
tions and their order between people, sentiments, and
text summary) has been be provided to participating

6https://www-nlpir.nist.gov/projects/trecvid/dvu/
dvu.development.dataset/

researchers for training and development of their sys-
tems. In summary, we hired 5 annotators in addition
to a summer student. On average each movie took
about 20 hours of work to annotate both movie and
scenes. A sample from a scene-level knowledge graph
annotation can be seen in Figure 7. For more detailed
information about the annotation framework please
refer to our paper at [Loc et al., 2022].

The DVU Test Set described in Table 9 contains 5
movies licensed from KinoLorberEdu7 platform with
a total duration of about 6 hours. Participants were
required to complete a data access form in order to
access these movies. The testing set was fully anno-
tated by human annotators to the same degree as the
training set. A set of queries, described in more de-
tail in Section 3, were then automatically extracted
from human annotations and released to participants,
along with the set of movies and annotated images of
the movie characters identified during annotation.

Further information about movies’ genres and du-
ration are provided below in Tables 8 and 9.

Annotation

Human assessors annotated each movie of the full
DVU dataset. Full movies were annotated to a
Knowledge Graph (KG) indicating the relationships
and connections between every major character, en-
tity, and concept in the movie. Images of each char-
acter and entity were also provided. Figure 6 shows
an example of a movie-level KG. Following this, ev-
ery scene within each movie was also annotated to a
scene-level KG indicating the locations and charac-
ters within each scene, at least one sentiment label
for that scene, non-neutral mental states of charac-
ters, the interactions between characters, and the or-
dering of the interactions as they happened in that
scene. Figure 7 shows an example of a scene-level
KG.

System task

The Deep Video Understanding task was as follows:
given a whole original movie (e.g. 1.5 - 2hrs long),
image snapshots of main entities (persons, loca-
tions, and concepts) per movie, and ontology of re-
lationships, interactions, locations, and sentiments

7https://www.kinolorber.com/
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Movie Genre Duration

Honey Romance 86min
Let’s Bring
Back Sophie Drama 50min
Nuclear Family Drama 28min
Shooters Drama 41min
Spiritual Con-
tact - The Movie

Fantasy 66min

Super Hero Fantasy 18min
The Adventures
of Huckleberry
Finn

Adventure 106min

The Big Some-
thing

Comedy 101min

Time Expired Comedy / Drama 92min
Valkaama Adventure 93min
Bagman Drama / Thriller 107min
Manos Horror 73min
Road to Bali Comedy / Musi-

cal
90min

The Illusionist Adventure/Drama 109min
Chained for Life Comedy / Drama 88min
Liberty Kid Drama 88min
Calloused Hands Drama 92min
Like Me Horror / Thriller 79min
Losing Ground Comedy / Drama 81min

Table 8: The full DVU training set

Movie Genre Duration

Archipelago Drama 114min
Bonneville Drama 93min
Heart Machine Drama 85min
Littlerock Drama 82min
Memphis Drama 79min

Table 9: The full DVU testing set

Figure 6: Movie-level KG sample

Figure 7: Scene-level KG sample
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used to annotate each movie at global movie-level
(relationships between entities) as well as on fine-
grained scene-level (scene sentiment, interactions be-
tween characters, and locations of scenes), systems
were expected to generate a knowledge-base of the
main actors and their relations (such as family, work,
social, etc) over the whole movie, and of interactions
between them over the scene level. This represen-
tation would be used to answer a set of queries on
the movie-level and/or scene-level (see below details
about query types) per movie. The task supported
two tracks (sub-tasks) where teams could join one
or both tracks. The Movie track was comprised of
queries on the whole movie level, and the Scene track
was comprised of queries targeting specific movie
scenes.

Query Topics & Metrics

Movie-level Track

• Question Answering
This query type represents questions on the re-
sulting knowledge base of the movies in the test-
ing dataset. For example, we may ask ‘How
many children does Person A have?’, in which
case participating researchers should count the
‘Parent Of’ relationships Person A has in the
Knowledge Graph. These queries also contain
human-generated questions (open domain ques-
tions) which are not limited to the ontology. This
query type takes a multiple choice questions for-
mat.

• Fill in the Graph Space
Fill in spaces in the Knowledge Graph (KG).
Given the listed relationships, events or actions
for certain nodes, where some nodes are replaced
by variables X, Y, etc., solve for X, Y etc. Ex-
ample of The Simpsons: X Married To Marge.
X Friend Of Lenny. Y Volunteers at Church. Y
Neighbor Of X. Solution for X and Y in that case
would be: X = Homer, Y = Ned Flanders.

Scene-level Track

• Find Next or Previous Interaction
Given a specific scene and a specific interaction
between person X and person Y, participants are
asked to return either the previous interaction or
the next interaction, in either direction, between
person X and person Y. This can be specifically
the next or previous interaction within the same

scene, or over the entire movie. This query type
takes a multiple choice questions format and it is
considered a mandatory query in the scene-level
track).

• Find Unique Scene
Given a full, inclusive list of interactions, unique
to a specific scene in the movie, teams should
find which scene this is.

• Find the 1-to-1 relationship between
scenes and natural language descriptions
Given a set of scenes, and a set of natural lan-
guage descriptions of movie scenes, match the
correct natural language description for each
scene.

• Classify scene sentiment from a given
scene Given a specific movie scene and a set
of possible sentiments, classify the correct senti-
ment label for each given scene.

Queries for this task were generated semi-
automatically by parsing full annotations over the
movie-level and the scene-level and populating a
data structure with the full knowledge base. Four
different sets of questions and accompanying answers
for each query type were automatically generated.
The TRECVID team then checked questions by
hand, taking care to eliminate any questions that
were duplicates or near-duplicates of previous ques-
tions, or where the question was considered not
of sufficient quality to effectively evaluate systems
performance.

Metrics

• Movie-level Q1: Question Answering
Scores for this query were produced by calcu-
lated by the number of Correct Answers / num-
ber of Total Questions.

• Movie-level Q2: Fill in the Graph Space
Results were treated as a ranked list of result
items per each unknown variable, and the Re-
ciprocal Rank score was calculated per unknown
variable and Mean Reciprocal Rank (MRR) per
query.

• Scene-level Q1: Find Next or Previous In-
teraction
Scores for this query were produced by calcu-
lated by the number of Correct Answers / num-
ber of Total Questions.
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• Scene-level Q2: Find Unique Scene
Results were treated as a ranked list of result
items per each unknown variable, and the Re-
ciprocal Rank score was calculated per unknown
variable and Mean Reciprocal Rank (MRR) per
query.

• Scene-level Q3: Find the 1-to-1 relation-
ship between scenes and natural language
descriptions Scores for this query will be calcu-
lated by the number of Correct Answers / num-
ber of Total Questions.

• Scene-level Q4: Classify scene sentiment
from a given scene Scores for this query will
be calculated by the number of Correct Answers
/ number of Total Questions.

Evaluation

The advantage of automatically generating questions
for this task was that evaluations could be performed
automatically. A system was developed to parse cor-
rect answers for each query, as well as submitted an-
swers from each participant team’s submission. An-
swers were then compared and an itemized output
was generated allowing participating teams to see the
correct answers for each query in addition to their
submitted query and assigned scores. In general, we
divided each of the movie and scene tracks into two
query type groups. For example, in scene-level, the
first two query types focused on interactions were
combined in one group, while the text to scene match-
ing and scene sentiment classification were combined
in another group. Each team were allowed to sub-
mit runs against any of the tracks and query groups
within them.

In total 2 teams (NII UIT and WHU NERCMS)
submitted runs this year. For details about their sys-
tems approaches, we refer the reader to the detailed
teams’ papers [TV23Pubs, 2023]

Results

Figures 8 and 11 show the overall summary scores of
runs from both teams participating in these two sub-
tasks. The WHU NERCMS team achieved higher
results in both movie and scene level queries. In
general, the fill in the graph space query performed
higher than the question answering queries in movie-
level results, while group 2 scene queries (scene
to text matching and sentiment classification) per-

formed higher than group 1 consisting of interactions
questions.

Figure 9 shows the movie-level results by individual
movie for the fill in the graph space query. The movie
“Archipelago” achieved the highest scores by both
teams, “little rock” scored the lowest overall, while
both teams achieved similar scores on “Memphis”.
In summary, for this query type runs achieved a high
median score just above 0.6.

Compared to fill in the graph space, Figure 10
shows the movie-level results by individual movie for
the question answering query. WHU NERCMS run 3
achieved the highest scores on all movies, while both
runs by NII UIT team performed similarly in 3 out
of the 5 movies with very small changes in the other
2 movies. In general, across all runs and movies, a
median score of 0.3 was observed indicating that this
query type may have been difficult given the open
domain questions by humans.

Finally, Figures 12 and 13 show the scene-level re-
sults by movie in both query groups. Group 1 queries
received results from only 1 team (WHU NERCMS)
and it can be shown that they performed relatively
higher in 3 movies while struggled in 2 movies (lit-
tle rock and Memphis) with overall median score of
0.29. In group 2 queries, WHU NERCMS run per-
formed higher than NII UIT across all movies and
we can observe that overall this query group achieved
higher scores than group 1 with a median of 0.36.
The difference in performance between the two query
groups could be due to the difficulty of recognizing
fine grained interactions asked in group 1 compared
to scene textual summary matching or sentiment clas-
sification.

Figure 8: DVU: Overall run scores for movie-level in
both query types
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Figure 9: DVU: Movie-level fill in the graph query
results by testing movie

Figure 10: DVU: Movie-level question answering
query results by testing movie

Figure 11: DVU: Overall team scores for scene-level
in both query groups

Figure 12: DVU: Scene-level group 1 query results by
testing movie

Figure 13: DVU: Scene-level group 2 query results by
testing movie
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Observations and conclusions

Task participation was low this year (2 out of 5 teams
finished). In regard to movie-level queries, we found
that fill in the graph space queries scored higher than
question answering queries indicating QA queries are
hard. On the other hand, for scene-level queries,
group 2 (scene to text matching and sentiment classi-
fication) scored higher than group 1 (interactions fo-
cused). Comparing movie to scene queries in general,
we found that movie-level results performed higher
than scene-level results. While top system is con-
sistently higher across most movies, the performance
varies by movie and its complexity. Inspecting the
teams’ research papers we find that LLMs (Large
Language Models) are being applied to answer DVU
queries which is interesting direction given the multi-
modality aspect of long movies and how LLMs are
becoming a major approach to solve a lot of natural
language and vision problems. Given the low par-
ticipation, the continuation of the task may not be
feasible in 2024 unless the design of queries can be
changed or a new derived task can be proposed and
attract more participants.

3.3 Medical Video Question Answer-
ing

One of the key goals of artificial intelligence (AI)
is the development of a multimodal system that
facilitates communication with the visual world
(image, video) using a natural language query.
In recent years, significant progress has been
achieved due to the introduction of large-scale
language-vision datasets and the development of
efficient deep neural techniques that bridge the
gap between language and visual understand-
ing. Improvements have been made in numerous
vision-and-language tasks, such as visual captioning
[Li et al., 2020, Luo et al., 2020], visual question
answering [Zhang et al., 2021], and natural language
video localization [Anne Hendricks et al., 2017].
Most of the existing works on language vision fo-
cused on creating datasets and developing solutions
for open-domain applications. We believe medical
videos may provide the best possible answers to
many first aid, medical emergency, and medical
education questions. With increasing interest in
AI to support clinical decision-making and improve
patient engagement [HHS, 2021], there is a need
to explore such challenges and develop efficient
algorithms for medical language-video understanding

and generation. Towards this, we introduced new
tasks to foster research toward designing systems
that can understand medical videos to provide
visual answers to natural language questions and
are equipped with multimodal capability to generate
instruction questions from the medical video. These
tasks have the potential to support the development
of sophisticated downstream applications that can
benefit the public and medical practitioners.

System Task

• Task A: Video Corpus Visual Answer Lo-
calization (VCVAL). Given a medical query
and a collection of videos, the task aims to
retrieve the appropriate video from the video
collection and then locate the temporal seg-
ments (start and end timestamps) in the video
where the answer to the medical query is be-
ing shown or the explanation is illustrated in
the video. The proposed VCVAL task can be
considered as video retrieval and then finding
a series of “medical instructional activity-based
frame localization” where a potential solution
first searches for all medical instructional ac-
tivity for a given medical query and then lo-
calizes the activities in an untrimmed medical-
instructional video. This task is the extension of
the MVAL task introduced in MedVidQA-2022
[Gupta and Demner-Fushman, 2022], where we
only focused on locating the segment from a
given video. In contrast, the VCVAL task
deals with relevant video retrieval followed by
the visual answer segment localization (cf. Fig-
ure 14)8. The video retrieval system requires
the ability to identify the medical instructional
video and retrieve the most relevant video to the
health-related query.

• Task B: Medical Instructional Question
Generation (MIQG). Given a video segment
and its subtitle, the task is to generate the in-
structional question for which the given video
segment is the visual answer. This task comes
under multimodal generation, where the system
has to consider the video (visual) and subti-
tle (language) modality to generate the natu-
ral language question (cf. Figure 15)9. Given
the data scarcity, annotation efforts, and ne-
cessity of expert involvement in the annotation
to create ground-truth video question answering

8CC BY license
9CC BY license
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Figure 14: MedVidQA: Visualization of the pro-
posed video corpus visual answer localization (VC-
VAL) task. The VCVAL task consists of two sub-
tasks: video retrieval and visual answer localization.

(VidQA) dataset for the healthcare domain ne-
cessitate the effective and efficient MIQG system
that can be used to generate additional VidQA
datasets. The applications to the MIQG task
are in creating an automatic human-computer
dialogue system and developing intelligent tutor
systems in a multimodal environment. A social
or educational agent can be built that can gener-
ate appropriate and informative questions about
a video or a collection of videos on a certain
topic. Such generated questions can be used for
promoting interactivity and persistence and test
the knowledge of a student about a certain topic
in a multimodal multi-turn dialogue setting.

Figure 15: MedVidQA: Visualization of the proposed
medical instructional question generation (MIQG)
task.

Datasets

VCVAL: The VCVAL task comprises two sub-
tasks: video retrieval and visual answer localiza-
tion. For the video retrieval, we developed a video
corpus considering the videos from ‘Personal Care
and Style,’ ‘Health,’ and ‘Sports and Fitness’ cat-
egories within the HowTo100M [Miech et al., 2019]
dataset. We follow the strategy discussed in

[Gupta et al., 2023b] to select the medical instruc-
tional videos from the HowTo100M dataset. This
process yielded a total of 12, 657 medical instruc-
tional videos, which we considered as video corpus
to retrieve the relevant videos against the query. To
facilitate the training and validation of the visual
answer localization system, we use the MedVidQA
collections [Gupta et al., 2023a] consisting of 3, 010
human-annotated instructional questions and visual
answers from 899 health-related videos.

We sampled a total of 60 videos from the video
corpus and created forty (40) medical instructional
questions. Out of these 40 questions, 20 questions
were formulated according to the annotation guide-
lines discussed in [Gupta et al., 2023a]. We call this
subset of the test questions ‘Basic’ questions. We aim
to formulate another 20 questions that are more chal-
lenging compared to the ‘Basic’ questions. To create
these questions, we asked the annotators to follow the
following guidelines:

• Formulate such a question that cannot be an-
swered with just the subtitles or captions avail-
able within the video (i.e., just listening to the
video alone and not watching should not be
enough to answer the question).

• The question should not be answered by reading
the embodied text in the video.

The questions that can be answered with subtitles or
embodied text in the video do not require visual in-
formation. Therefore, we formulated these questions,
which required visual information to provide the an-
swer, and called them “Visual Information Required”
(VIR) questions.

MIQG: The MedVidQA dataset was also used for
the MIQG task, as each sample in the dataset has
the question and annotated start and end timestamps
associated with it. To create a test collection, we
sampled 100 videos from the video corpus discussed
above, formulated 80 medical instructional questions,
and marked the visual answer with answer start and
end timestamps in the video. Similar to the VCVAL,
we formulate two different test collections, ‘Basic’ and
‘VIR’, with 52 and 28 samples, respectively.

Judgment

The participants were asked to retrieve the relevant
videos (up to 1000) for each question from the video
corpus of having 12, 657 videos. Additionally, the
participants also had to provide the start and end
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timestamps from each retrieved video against a given
question, which can be considered a visual answer to
the question. In order to judge the relevant videos
and corresponding visual answers in the videos, we
performed the manual judgments of all the submit-
ted videos (943) and visual answers by the partici-
pants. We instructed a total of eight assessors with
the following guidelines to assess the video:

Objective:

1. To judge relevant videos with respect to medi-
cal/healthcare instructional questions. A video
can be called relevant if it has a visual answer to
the question.

2. For each relevant video, provide the time stamps
(start and end) where the answer is being shown
or the explanation is illustrated in the video.

Evaluating videos for relevance : The videos
are judged as being “Definitely Relevant”, “Possibly
Relevant”, or “Not Relevant” to the given question.
The assessors were presented with videos from the
submitted runs. They were instructed to determine
if the video was definitely relevant, possibly relevant,
or not relevant to the question. In general, a video is
definitely relevant if it contains a visual segment that
can be considered a complete visual answer to the
question. A video can be considered possibly relevant
if it contains a visual segment that can be considered
a partial/incomplete visual answer to the question. If
the visual segments from the videos do not provide
any visual answers to the question, the video can be
marked as not relevant. The assessors were asked to
provide the judgment with the following instructions:

• Only provide the time stamps for definitely rel-
evant and possibly relevant videos.

• For each definitely relevant and possibly relevant
video, provide the time stamps from the video
that can be considered a visual answer.

• The time stamps should be the shortest span in
the video, which can be considered as a complete
(for definitely relevant video) or partially com-
plete (for possibly relevant video) visual answer
to the question.

• In case a video has multiple visual answers to the
same question, assessors were asked to provide
all the visual answers.

Metrics

Metrics for VCVAL Task The VCVAL task con-
sists of two sub-tasks: video retrieval (VR) and vi-
sual answer localization (VAL). We evaluated the
performance of the video retrieval system in terms
of Mean Average Precision (MAP), Recall@k, Pre-
cision@k, and nDCG metrics with k = {5, 10}. We
follow the trec eval10 evaluation library to report
the performance of participating systems.

For the VAL task, if the predicted (retrieved by
the system) video is from the list of relevant videos
(marked by the assessor; we called it ground-truth
video), then we compute the overlap between the re-
trieved and relevant video by the following metrics:

1. Mean Intersection over Union (mIoU): For
a given question qi, IoU is computed as the ra-
tio of intersection area over union area between
predicted and ground-truth temporal visual an-
swer segments. It ranges from 0 to 1. A larger
IoU means the predicted and ground-truth tem-
poral visual answer segments match better, and
IoU = 1.0 denotes an exact match. The mIoU
is defined as the average temporal IoUs for all
questions (N) in the test set. Formally,

mIoU =
1

N

i=N∑
i=1

IoU(qi) (1)

2. IoU = µ is another metric used to evaluate the
performance of the VAL system. It denotes the
percentage of questions for which, out of the top-
n retrieved temporal segments, at least one pre-
dicted temporal segment having IoU with ground
truth is larger than µ. Formally,

< Rαn, IoU = µ >=
1

N

i=N∑
i=1

s(qi, µ), and (2)

s(qi, µ) =

{
1, if IoU(qi) ≥ µ

0, otherwise
(3)

We evaluated the participants’ submission by
considering µ = {0.3, 0.5, 0.7} and for brevity,
we denote the < Rαn, IoU = µ > metric with
IoU=µ n = {1, 3, 5, 10}

Metrics for MIQG Task For the task of MIQG,
we followed the language generation evaluation met-
rics and evaluated the performance of the MIQG sys-
tems in terms of BLEU [Papineni et al., 2002], Rouge

10https://github.com/usnistgov/trec_eval
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Team Name Team Affiliations VCVAL MIQG
MI TJU Tianjin University ✓ ✗
VPAI Hunan University/CAS ✓ ✓
UNCWAI University of North Carolina Wilmington ✓ ✗
UMBCVQA University of Maryland Baltimore County ✗ ✓
doshisha uzl Doshisha University and University of Lubeck ✗ ✓

Table 10: MedVidQA: Participating teams and their
task participation at MedVidQA@TRECVID 2023

[Lin, 2004] and BERTScore [Zhang et al., 2019] met-
rics.

Participating Teams

In total, 5 teams from Asia (China, Japan), Europe
(Germany), and North America (USA) continents
participated in the MedVidQA and submitted 5 and 8
individual runs for the VCVAL and MIQG tasks, re-
spectively. We have provided (cf. Table 10) the team
name, affiliations, and their participation in VCVAL
and MIQG tasks.

Results

VCVAL Task: The VCVAL task consists of video
retrieval and visual answer localization subtasks. We
presented the results of the video retrieval subtask in
Table 11. We reported the results in terms of MAP,
R@5, R@10, P@5, P@10, and nDCG. Since the rele-
vancy of the videos is judged in terms of multi-level
judgment, we consider nDCG as the primary metric
for video retrieval subtask. Team MI TJU achieved
the best nDCG for the video retrieval subtask with
a score of 0.5448. We also compare the performance
of the participating teams between Basic and VIR
questions, which are shown in the results in Figure
16. We noticed that, out of the five runs submit-
ted for the video retrieval subtask, three performed
better on VIR questions than on Basic questions.

Figure 16: MedVidQA: Performance comparison of
participating teams between Basic and VIR questions
on video retrieval subtask of the VCVAL task.

The participating teams’ visual answer localization
subtask results are reported in Table 12. The ta-
ble exhibits the detailed results with varying num-
bers of n and multiple evaluation metrics. We con-
sider IoU=0.7 the primary metric for this subtask as
it is the most strict metric, which signifies >= 70%
overlap between the predicted and ground-truth vi-
sual answer segments. Team MI TJU achieved the
best IoU=0.7 for the visual answer localization sub-
task with a score of 50 (n = 1). Additionally, we
examined the performance of participating teams on
both Basic and VIR questions, as illustrated in Figure
17. We observed that, among the five runs submitted
for the visual answer localization subtask, only two
demonstrated better performance on VIR questions
compared to Basic questions.

Figure 17: MedVidQA: Performance comparison of
participating teams between Basic and VIR questions
on visual answer localization (n = 1) subtask of the
VCVAL task.

MIQG Task The results of medical instructional
question generation by the participating teams are
presented in Table 13. The table provides a de-
tailed breakdown of the performance using vari-
ous evaluation metrics. Following prior research
[Du et al., 2017, Dong et al., 2019] on question gen-
eration, we adopted BLEU-4 as the primary metric
for this task due to its strict measurement, indicat-
ing the extent of 4-gram overlap between the gener-
ated and ground-truth questions. Team doshisha uzl
achieved the highest BLEU-4 score for the MIQG
task with a score of 0.05153. Similar to the previous
task, we assessed the performance of participating
teams on both Basic and VIR questions, as depicted
in Figure 18. Among the eight runs submitted for the
MIQG task, only one exhibited superior performance
on VIR questions compared to Basic questions.
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Team RunID MAP R@5 R@10 P@5 P@10 nDCG

VPAI run-1 0.2427 0.2489 0.2489 0.31 0.155 0.3804
UNCWAI run-2 0.1839 0.1903 0.1903 0.29 0.145 0.2858
UNCWAI run-1 0.3669 0.2221 0.3654 0.395 0.3575 0.5094
UNCWAI run-3 0.3669 0.2221 0.3654 0.395 0.3575 0.5094
MI TJU run-1 0.404 0.3549 0.4132 0.545 0.3625 0.5448

Table 11: MedVidQA: Official results of the participating teams on video retrieval subtask of the VCVAL
task.

n Team RunID IoU=0.3 IoU=0.5 IoU=0.7 mIoU

1

VPAI run-1 57.5 35 25 39.97
UNCWAI run-2 42.5 32.5 22.5 31.37
UNCWAI run-1 10 7.5 0 9.32
UNCWAI run-3 25 10 5 15.78
MI TJU run-1 67.5 62.5 50 55.24

3

VPAI run-1 65.0 45.0 32.5 46.98
UNCWAI run-2 55.0 40.0 35.0 42.87
UNCWAI run-1 27.5 12.5 0.0 19.32
UNCWAI run-3 37.5 25.0 10.0 25.25
MI TJU run-1 85.0 85.0 65.0 73.22

5

VPAI run-1 65.0 45.0 32.5 46.98
UNCWAI run-2 55.0 40.0 35.0 42.87
UNCWAI run-1 37.5 15.0 0.0 24.34
UNCWAI run-3 37.5 27.5 12.5 29.58
MI TJU run-1 87.5 87.5 75.0 77.29

10

VPAI run-1 65.0 45.0 32.5 46.98
UNCWAI run-2 55.0 40.0 35.0 42.87
UNCWAI run-1 52.5 27.5 2.5 31.83
UNCWAI run-3 50.0 32.5 17.5 36.52
MI TJU run-1 87.5 87.5 75.0 77.71

Table 12: MedVidQA: Official results of the partici-
pating teams on visual answer localization subtask of
the VCVAL task.

Findings and Conclusion

Despite the expectation that VIR questions would
be more challenging for the system, sometimes we
observe submitted runs performed better on the Ba-
sic Questions compared to the VIR questions. We
hypothesize that our approach to constructing these
questions may explain this observation. VIR ques-
tions are generated by watching a specific video, and
answering them requires visual information from that
particular video. However, this requirement may not
be applicable to other videos for the same question.
The maximum nDCG of 0.5448 signifies the chal-
lenges of instructional video retrieval for the medi-
cal domain. The team MI TJU achieved the best
performance (55.24 mIoU) on the visual answer lo-
calization subtask with a multimodal approach. On
the other hand, the team UNCWAI utilized only the
textual modality for the VCVAL task and reported a

Figure 18: MedVidQA: Performance comparison of
participating teams between Basic and VIR questions
on the MIQG task.

performance of 31.37 (mIoU). The team doshisha uzl
achieved the best performance (0.05153 BLEU-4) on
the MIQG task with a combination of mono and
multimodal approaches. The lower performance on
the MIQG task signifies the challenge of generating
the instructional questions from the video segment.
This underscores the need for a more sophisticated
approach that involves a comprehensive multimodal
understanding of the task.

3.4 Video to Text

Automatic annotation of videos using natural lan-
guage text descriptions has been a long-standing goal
of computer vision. The task involves understand-
ing many concepts such as objects, actions, scenes,
person-object relations, the temporal order of events
throughout the video, to mention a few. In recent
years there have been major advances in computer
vision techniques that enabled researchers to start
practical work on solving the challenges posed in au-
tomatic video captioning.

There are many use-case application scenarios that
can greatly benefit from the technology, such as video
summarization in the form of natural language, facil-
itating the searching and browsing of video archives
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Team RunID BLEU BLEU-4 ROUGE-2 ROUGE-L BERTScore

doshisha uzl run-1 0.15828 0.05153 0.27845 0.47822 0.91092
doshisha uzl run-2 0.14352 0.04546 0.24372 0.44667 0.90523
VPAI run-1 0.12969 0.04331 0.27329 0.47979 0.90981
doshisha uzl run-3 0.14593 0.03875 0.27379 0.47418 0.91099
doshisha uzl run-4 0.13289 0.03404 0.24227 0.45566 0.9078
doshisha uzl run-5 0.093 0.01627 0.20113 0.4085 0.90248
UMBCQA run-2 0 0 0.12253 0.26042 0.85332
UMBCQA run-1 0 0 0.1317 0.31554 0.87683

Table 13: MedVidQA: Official results of the participating teams on MIQG task.

Number of runs

BUPT MCPRL 4
Kslab 4

MLVC HDU 1
RUC AIM3 8

WasedaMeiseiSoftbank 8

Table 14: VTT: List of teams participating and their submitted runs

using such descriptions, describing videos as an as-
sistive technology, etc. In addition, learning video
interpretation and temporal relations among events
in a video will likely contribute to other computer
vision tasks, such as the prediction of future events
from the video.
The Video to Text (VTT) task was introduced in

TRECVID 2016. Since then, there have been sub-
stantial improvements in the dataset and evaluation.
Essentially, each year’s testing dataset is being ap-
pended to previous year’s development dataset. In
addition, since 2021, a subset of videos has been ded-
icated to a progress sub-task for which the ground
truth is withheld and participants submit results from
2021 to 2023. They will then be able to compare their
systems across the three years to measure improve-
ment over the years on the same set of videos.

System Task

For each video, automatically generate a text descrip-
tion of 1 sentence independently from any previously
generated sentences. Up to 4 runs are allowed per
team. New this year is the introduction of a robust-
ness sub-task where we added noise to the main task
test data in both the audio and video channels.
For this year, 5 teams participated in the VTT

task. The 5 teams submitted a total of 17 runs in
the main task and 8 runs in the robustness task. A
summary of participating teams is shown in Table 14.

Data

When the VTT task started the testing dataset con-
sisted of Twitter Vine videos, which generally had a
duration of 6 seconds. In 2019, we supplemented the
dataset with videos from Flickr. During the years
of 2020, 2021, and 2022 the VTT data was selected
from the V3C1 and V3C2 data collection. The V3C
dataset [Rossetto et al., 2019] is a large collection of
videos from Vimeo. It also provides us with the ad-
vantage that we can distribute the videos rather than
links, which may not be available in the future. This
year, the testing dataset was selected from the V3C3
collection which is another subset of the bigger V3C
dataset and shares all V3C1 and V3C2 characteris-
tics.

For the purpose of this task, we only selected video
segments with lengths between 3 and 15 seconds. A
total of 2000 video segments were annotated man-
ually by multiple annotators for this year’s task.
Since we have selected 300 videos for our progress
set in 2021 and 2022, our results will be reported for
2000 new videos (non-progress) and the 300 videos in
progress set.

It is important for a good dataset to have a di-
verse set of videos. We reviewed around 8000 videos
and selected 2000 videos. Figure 19 shows a screen-
shot11 of the video selection tool that was used to

11all videos are subset of V3C dataset and CC licensed
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Figure 19: VTT: Screenshot of video selection tool.

decide whether a video was to be selected or not. We
tried to ensure that the videos covered a large set of
topics including spatial and temporal description as-
pects. If we came across a large number of videos
that looked similar to previously selected clips, they
were rejected. We also removed the following types
of videos:

• Videos with multiple, unrelated segments that
are hard to describe, even for humans.

• Any animated videos.

• Other videos that may be considered inappropri-
ate or offensive.

Annotator Avg. Length Total Videos Watched

1 20.64 2000
2 20.48 2000
3 28.86 2000
4 29.38 2000
5 23.43 2000

Table 15: VTT: Average number of words per sen-
tence for all the annotators. The table also shows the
number of videos watched by each annotator.

Annotation Process The videos were divided
among 5 annotators, with each video being annotated
once by each to create 5 annotations per video.
The annotators were asked to include and com-

bine into 1 sentence, if appropriate and available, four
facets of the video they are describing:

• Who is the video showing (e.g., concrete objects
and beings, kinds of persons, animals, or things)?

• What are the objects and beings doing (generic
actions, conditions/state or events)?

• Where was the video taken (e.g., locale, site,
place, geographic location, architectural)?

• When was the video taken (e.g., time of day,
season)?

Different annotators provide varying amounts of
detail when describing videos. Some people try to in-
corporate as much information as possible about the
video, whereas others may write more compact sen-
tences. Table 15 shows the average number of words
per sentence for each of the annotators. The average
sentence length varies from 20 words to 29 words, em-
phasizing the difference in descriptions provided by
the annotators. The overall average sentence length
for the dataset is 24.56 words.

Furthermore, the annotators were also asked the
following questions for each video:

• Please rate how difficult it was to describe the
video.

1. Very Easy

2. Easy

3. Medium

4. Hard

5. Very Hard

• How likely is it that other assessors will write
similar descriptions for the video?

1. Not Likely

2. Somewhat Likely

3. Very Likely

The average score for the first question was 2.22 (on
a scale of 1 to 5), showing that the annotators thought
the videos were close to medium level of difficulty on
average. The average score for the second question
was 2.52 (on a scale of 1 to 3), meaning that they
thought that other people would write a similar de-
scription as them for most videos. The two scores are
negatively correlated as annotators are more likely to
think that other people will come up with similar de-
scriptions for easier videos. The Pearson correlation
coefficient between the two questions is -0.53.

Submissions

Systems were required to specify the run types based
on the types of training data and features used.

The list of training data types is as follows:

• ‘I’: Training using image captioning datasets
only.
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• ‘V’: Training using video captioning datasets
only.

• ‘B’: Training using both image and video cap-
tioning datasets.

The feature types can be one of the following:

• ‘V’: Only visual features are used.

• ‘A’: Both audio and visual features are used.

In total, 25 runs were submitted and distributed as
follows: 16 runs were of type “BV” (visual features
from both image and video datasets), 2 runs of type
“IV” (used image datasets with visual features), 2
runs of type ”IA” (image data with audio features
from video dataset), and 5 runs are of type “VV”
(video datasets with visual only features).
Teams were also asked to specify the loss function

used for their runs. Loss functions reported were
mainly based on cross-entropy (8 runs). Four runs re-
ported language-based loss function, while four other
runs applied self-critical reinforcement learning loss.

Evaluation and Metrics

The description generation task scoring was done au-
tomatically using different popular metrics. We also
used a human evaluation metric on selected runs to
compare with the automatic metrics.
METEOR (Metric for Evaluation of Translation

with Explicit ORdering) [Banerjee and Lavie, 2005]
and BLEU (BiLingual Evaluation Understudy)
[Papineni et al., 2002] are standard metrics in ma-
chine translation (MT). BLEU was one of the first
metrics to achieve a high correlation with human
judgments of quality. It is known to perform poorly
if it is used to evaluate the quality of individual sen-
tence variations rather than sentence variations at a
corpus level. In the VTT task the videos are inde-
pendent and there is no corpus to work from. Thus,
our expectations are lowered when it comes to evalu-
ation by BLEU. METEOR is based on the harmonic
mean of unigram or n-gram precision and recall in
terms of overlap between two input sentences. It re-
dresses some of the shortfalls of BLEU such as better
matching synonyms and stemming, though the two
measures seem to be used together in evaluating MT.
The CIDEr (Consensus-based Image Description

Evaluation) metric [Vedantam et al., 2015] is bor-
rowed from image captioning. It computes TF-IDF
(term frequency inverse document frequency) for each
n-gram to give a sentence similarity score. The

CIDEr metric has been reported to show high agree-
ment with consensus as assessed by humans. We also
report scores using CIDEr-D, which is a modification
of CIDEr to prevent “gaming the system”.

The SPICE (Semantic Propositional Image Cap-
tion Evaluation) metric [Anderson et al., 2016] is an-
other metric that has gained popularity in image cap-
tioning evaluation. The metric uses scene graph sim-
ilarity between generated captions and the ground
truth instead of n-grams.

The STS (Semantic Textual Similarity) metric
[Han et al., 2013] was also applied to the results, as in
the previous years of this task. This metric measures
how semantically similar the submitted description is
to one of the ground truth descriptions.

In addition to automatic metrics, the description
generation task includes human evaluation of the
quality of automatically generated captions. Recent
developments in Machine Translation evaluation have
seen the emergence of DA (Direct Assessment), a
method shown to produce highly reliable human eval-
uation results for MT and Natural Language Gen-
eration [Graham et al., 2016, Mille et al., 2020]. DA
now constitutes the official method of ranking in
main MT benchmark evaluations [Bojar et al., 2017,
Barrault et al., 2020].

With respect to DA for evaluation of video cap-
tions (as opposed to MT output), human assessors
are presented with a video and a single caption. After
watching the video, assessors rate how well the cap-
tion describes what took place in the video on a 0–100
rating scale [Graham et al., 2018]. Large numbers of
ratings are collected for captions before ratings are
combined into an overall average system rating (rang-
ing from 0 to 100%). Human assessors are recruited
via Amazon’s Mechanical Turk (AMT), with qual-
ity control measures applied to filter out or down-
grade the weightings from workers unable to demon-
strate the ability to rate good captions higher than
lower quality captions. This is achieved by deliber-
ately “polluting” some of the manual (and correct)
captions with linguistic substitutions to generate cap-
tions whose semantics are questionable. For instance,
we might substitute a noun for another noun and turn
the manual caption “A man and a woman are dancing
on a table” into “A horse and a woman are dancing
on a table”, where “horse” has been substituted for
“man”. We expect such automatically-polluted cap-
tions to be rated poorly and when an AMT worker
correctly does this, the ratings for that worker are
improved.
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DA was first used as an evaluation metric in
TRECVID 2017. This metric has been used every
year since then to rate each team’s primary run.

Results

The metric score for each run is calculated as the
average of the metric scores for all the descriptions
within that run. Table 16 shows the top performance
per team across all automatic metrics. The STS met-
ric allows the comparison between two sentences. For
this reason, the captions are compared to a single
ground truth description at a time, resulting in 5
STS scores. We report the average of these scores
as the STS score. It can be shown the two teams
(RUC AIM3 and WasedaMeiseiSoftbank) performed
the highest in all metrics, followed by BUPT MCPRL
and then the two teams Kslab and MLVC HDU per-
formed lowest. Table 17 ,on the other hand, shows
the results for the two teams that participated in the
robustness sub-task (introducing noise to the test-
ing dataset). We can see that both teams’ perfor-
mance in general did not get affected to a big extent.
Specifically, RUC AIM3 team surprisingly improved
slightly in 3 metrics and worsened in the other 3 met-
rics (CIDER-D, SPICE and STS). The WasedaMei-
seiSoftbank performed slightly lower in all metrics.
The metric that reported the lowest performances in
both teams was the STS metric (about a 50% de-
crease).
Table 18 shows the correlation between the differ-

ent metric scores for all the runs. The metrics cor-
relate very well, which shows that they agree on the
overall scoring of the runs. The correlation scores
ranged between 0.876 and 0.989.
Teams were asked to provide a confidence score for

each generated sentence. Figure 20 shows the sub-
mitted average confidence scores for each run against
each metric score. There seems to be some correla-
tion (not very strong) between confidence and met-
ric scores. It can be shown that a few runs (by
RUC AIM3) achieved very high CIDER scores at mid
level confidence.
Figure 21 shows the average DA score per system

after it is standardized per individual AMT worker’s
mean and standard deviation score. The DA raw
scores are micro-averaged per caption, and then av-
eraged over all videos. The DA experiment was con-
ducted on only 1 primary run per team that they
selected when submitted their runs. The HUMAN
systems represent manual captions provided by asses-
sors. As expected, captions written by assessors out-

perform the automatic systems. They are followed by
two systems (RUC AIM3 and BUPT MCPRL) out-
performing the other 3 systems based on the DA
experiments. To check how significant are system
performance in comparison to each other and hu-
man captions, a significance testing indicated that the
top 4 human systems as well as the 2 top automatic
systems (RUC AIM3 and BUPT MCPRL) were not
significantly better than each other while they are
all better than the other 3 systems (WasedaMei-
seisoftbank, Kslab, and MLVC HDU). In addition,
WasedaMeiseisoftbank and Kslab is significantly bet-
ter than MLVC HDU.

Table 19 shows the correlation between different
overall metric scores for the primary runs of all teams
and the ‘DA Z’ metric score (DA Z is the standard-
ized score per individual worker’s mean and standard
deviation score) generated by humans. The score cor-
relates positively with all metrics. The correlation
ranged between 0.81 to 0.98 with CIDER and STS
achieving the highest correlation with DA.

Table 20 shows the automatic metrics scores for the
progress sub-task which evaluated runs on 300 fixed
videos between 2021 and 2023. The table shows only
teams who submitted in at least two years. It can be
shown that most teams performed in 2023 better than
2022 or 2021 with one exception for team MLV HDU
were they performed consistently in 2022 better than
2023. Finally, the DA experiment was also conducted
on the progress sub-task videos for the primary runs
submitted in the three years. Figure 22 shows the
results where it can be seen that the top 3 teams
(RUC AIM, BUPT MCPRL, and WasedaMeiseSoft-
bank) 2023 results are better than other 2022 and
2021 progress results based on the human evaluation
in DA metric.

Figure 20: VTT: system reported sentence confidence
scores against the various metric scores.
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BLEU METEOR CIDER CIDER-D SPICE STS

Kslab 0.054 0.227 0.501 0.14 0.078 0.39
MLVC HDU 0.023 0.220 0.233 0.096 0.077 0.339
RUC AIM3 0.094 0.332 0.738 0.394 0.152 0.474
BUPT MCPR 0.091 0.332 0.706 0.357 0.150 0.471
WasedaMeiseiSoftbank 0.108 0.335 0.682 0.348 0.152 0.475

Table 16: VTT: Top score by each team for all automatic metrics.

BLEU METEOR CIDER CIDER-D SPICE STS

RUC AIM3 0.099 0.332 0.739 0.390 0.151 0.206
WasedaMeiseiSoftbank 0.105 0.331 0.677 0.340 0.151 0.224

Table 17: VTT: Top score by each team participated in the robustness sub-task for all automatic metrics.

CIDER CIDER-D SPICE METEOR BLEU STS

CIDER 1.000 0.931 0.877 0.886 0.912 0.959
CIDER-D 0.931 1.000 0.971 0.966 0.916 0.959
SPICE 0.877 0.971 1.000 0.989 0.876 0.963
METEOR 0.886 0.966 0.989 1.000 0.923 0.971
BLEU 0.912 0.916 0.876 0.923 1.000 0.925
STS 0.959 0.959 0.963 0.971 0.925 1.000

Table 18: VTT: Correlation between overall run scores for automatic metrics.

CIDER CIDER-D SPICE METEOR BLEU STS

DA Z 0.98 0.87 0.81 0.82 0.89 0.94

Table 19: VTT: Correlation between DA and automatics metrics for the primary runs only

BLEU METEOR CIDER CIDER-D SPICE STS

RUC AIM3 (2021) 0.042 0.335 0.651 0.387 0.128 0.454
RUC AIM3 (2022) 0.113 0.384 0.85 0.545 0.173 0.488
RUC AIM3 (2023) 0.094 0.397 0.906 0.552 0.181 0.474
WasedaMeiseiSoftbank (2022) 0.036 0.271 0.417 0.216 0.09 0.378
WasedaMeiseiSoftbank (2023) 0.108 0.398 0.82 0.499 0.178 0.475
Kslab (2021) 0.005 0.204 0.163 0.07 0.047 0.26
Kslab (2022) 0.085 0.295 0.607 0.261 0.099 0.40
Kslab (2023) 0.054 0.278 0.62 0.267 0.1 0.39
MLVC HDU (2022) 0.071 0.283 0.364 0.201 0.1 0.367
MLVC HDU (2023) 0.023 0.272 0.32 0.189 0.096 0.339

Table 20: VTT: Top score by each team participated in the progress sub-task (2021 to 2023) for all automatic
metrics.
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Figure 21: VTT: Average DA score per system af-
ter standardization per individual worker’s mean and
standard deviation score.

Figure 22: VTT: Average DA score per system, for
progress task, after standardization per individual
worker’s mean and standard deviation score.

Task observations and conclusions

The VTT task continues to have stable participation.
Given the challenging nature of the task, and the in-
creasing interest in video captioning in the computer
vision community, we hope the dataset resources gen-
erated from the task as well as algorithms by teams
inspire more improvements for the task in the future.

This was the first year using the V3C3 test data as
well as the first year to introduce a robustness sub-
task. The robustness sub-task setup will need to be
updated to incorporate more real world harder trans-
formations such as change in lighting, camera shak-
ing, etc. This year’s robustness results proved that
systems were able to cope with the introduced noise
and performance did not change significantly. The
progress subtask concludes that this year’s systems
are better than the previous two years in most cases.
High correlation exists between all automatic metrics.
Audio features were used by only two runs. Based on
the DA evaluation, human captions are still better
than the best automatic system but automatic sys-
tems are generally getting better and closer to human
captions. With increasing interest in video caption-
ing, participants have many options of open datasets
available to train their systems.

For detailed information about the approaches
and results for individual teams’ performance and
runs, we refer the reader to the site reports
[TV23Pubs, 2023] in the online workshop notebook
proceedings.

3.5 Activities in Extended Video

The Activities in Extended Video (ActEV) evalu-
ation series is designed to accelerate the develop-
ment of robust, multi-camera, automatic human ac-
tivity detection systems for forensic and real-time
alerting applications. In this evaluation, an activ-
ity is defined as “one or more people performing
a specified movement or interacting with an object
or group of objects (including driving)”, while an
instance indicates an occurrence (time span of the
start and end frames) associated with the activ-
ity. This year’s TRECVID’23 ActEV Self-Reported
Leaderboard (SRL) Challenge is based on the Multi-
view Extended Video with Activities (MEVA) Known
Facility (KF) dataset [Kitware, 2020]. The large-
scale MEVA dataset is designed for activity detec-
tion in multi-camera environments. The same MEVA
dataset was used for TRECVID’22 ActEV SRL eval-
uation. The ActEV task evaluations in 2021 and 2020
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used the VIRAT dataset which had 35 target activ-
ities [Oh et al., 2011]. The NIST TRECVID ActEV
series was initiated in 2018 to support the Intelligence
Advanced Research Projects Activity (IARPA) Deep
Intermodal Video Analytics (DIVA) Program.

The TRECVID 2018 ActEV (ActEV18) evaluated
system detection performance on 12 activities for
the self-reported evaluation and 19 activities for the
leaderboard evaluation using the VIRAT V1 and V2
datasets [Lee et al., 2018]. For the self-reported eval-
uation, the participants ran their software on their
hardware and configurations and submitted the sys-
tem outputs with the defined format to the NIST
scoring server.

The ActEV18 evaluation addressed two different
tasks: 1) identify a target activity along with the
time span of the activity (AD: activity detection), 2)
detect objects associated with the activity occurrence
(AOD: activity and object detection).

For the TRECVID 2019 ActEV (ActEV19) evalu-
ation, we primarily focused on 18 activities and in-
creased the number of instances for each activity.
ActEV19 included the test set from both VIRAT V1
and V2 datasets and the systems were evaluated on
the activity detection (AD) task only.

The TRECVID 2020 ActEV (ActEV20) SRL is
based on the VIRAT V1 and V2 datasets with 35 ac-
tivities with updated names to make it easier to use
the MEVA dataset to train systems for TRECVID
ActEV leaderboard. The TRECVID 2021 ActEV
(ActEV21) was based on the same 35 activities as
ActEV20 and on the VIRAT V1 and V2 datasets and
systems are evaluated on the activity detection (AD)
task only.

Figure 23 illustrates an example of representa-
tive activities that were used in the TRECVID 2023
ActEV SRL based on the MEVA dataset.

All these evaluations are primarily targeted for
forensic analysis applications that process an entire
corpus prior to returning a list of detected activity
instances.

In this section, we first discuss the task and
datasets used and introduce the metrics to evaluate
algorithm performance. In addition, we present the
results for the TRECVID’23 ActEV SRL submissions
and discuss observations and conclusions.

Task and Dataset

In the TRECVID’23 ActEV SRL evaluation, there
are two tasks for systems; the primary task is Activity

Figure 23: Example of activities for MEVA dataset
used ActEV SRL evaluation. IRB (Institutional Re-
view Board): ITL-00000755

and Object Detection (AOD) and the secondary task
is Activity Detection (AD)

Task1 (AOD): for the AOD task, given the pre-
defined activity classes, the objective is to automati-
cally detect the presence of the target activity, spatio-
temporally localize all instances of the activity, and
provide a confidence score indicating the strength of
evidence that the activity is present. This task re-
quires spatiotemporal localization of objects involved
in the activity (as one bounding box per frame that
encompasses people, vehicles, and other objects). For
a system-identified activity instance to be evaluated
as correct, the activity class must be correct and
the spatiotemporal overlap must fall within a mini-
mal requirement. The evaluation tool, ActEV Scorer,
transforms the localization bounding boxes of both
the system and reference files on the fly so that de-
velopers have the flexibility to spatially localize indi-
vidual objects or a single encompassing box.

Task2 (AD): for the AD task, given the prede-
fined activity classes, the objective is to automatically
detect the presence of the target activity, temporally
localize all instances, and provide a presence confi-
dence score indicating the strength of evidence that
the activity is present. This task does not require
spatiotemporal localization of objects. For a system-
identified activity instance to be evaluated as correct,
the activity class must be correct and the temporal
overlap must fall within a minimal requirement.

The ActEV SRL evaluation is based on the Known
Facilities (KF) data from the Multiview Extended
Video with Activities (MEVA) dataset. The KF data
was collected at the Muscatatuck Urban Training
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Table 21: A list of activity names for TRECVID ActEV SRL evaluation, there were 20 activities based on
the MEVA dataset.

person closes vehicle door person closes vehicle door
person enters scene through structure person enters scene through structure
person enters vehicle person enters vehicle
person exits scene through structure person exits scene through structure
person exits vehicle person exits vehicle
person interacts with laptop person interacts with laptop
person opens facility door person opens facility door
person opens vehicle door person opens vehicle door
person picks up object person picks up object
person puts down object person puts down object

Center (MUTC) with a team of over 100 actors per-
forming in various scenarios. The KF dataset has two
parts: (1) the public training and development data
and (2) SRL test dataset.

For this evaluation, we used 20 activities from the
MEVA dataset and the activities were annotated by
Kitware, Inc. The CVPR’22 ActivityNet ActEV SRL
test dataset is a 16-hour collection of videos that
only consists of Electro-Optics (EO) camera modal-
ities from public cameras. The ActEV SRL test
dataset is the same as the one used for WACV’22
HADCV workshop ActEV SRL challenge and for
the CVPR ActivityNet 2022 ActEV SRL challenge.
The detailed definition of each activity and evalua-
tion requirements are described in the evaluation plan
[ActEV23, 2023].

Table 21 lists the 20 activity names for TRECVID
ActEV SRL evaluation, based on the MEVA dataset.

Performance Measures

ActEV is not a discrete detection task unlike speaker
recognition [Greenberg et al., 2020] and fingerprint
identification [Karu and Jain, 1996], it is a stream-
ing detection task where multiple activity instances
can overlap temporally or spatially and is similar to
keyword spotting in audio [Le et al., 2014]. From
a metrology perspective, the difference between dis-
crete and streaming detection tasks is that non-target
trials (i.e., test probes not belonging to the class)
are not countable for streaming detection because
the number of unique temporal/spatial instances is
practically infinite. To account for this difference,
the ActEV evaluations used two methods to nor-
malize the measured false alarm performance. The
first, “Rate of False Alarms” (Rfa), is an instance-
based false alarm measure that uses the number of

video minutes as an estimate of the number of non-
target trials as the false alarm denominator. The
second, “Time-based False Alarms” (Tfa), is a time-
based false alarm measure that uses the sum of non-
target time as the denominator. The two variations
correspond to two views concerning the impact false
alarms have on a user reviewing detections. The for-
mer is instance-based which implies the user effort
would scale linearly with the detected instances and
the latter is time-based which implies the user effort
would scale linearly with the duration of video re-
viewed.

For both the AOD (primary) and AD (secondary)
tasks for TRECVID’23 ActEV SRL, the submitted
results are measured by Probability of Missed Detec-
tion (Pmiss) at a Rate of Fixed False Alarm (Rfa) of
0.1 (denoted Pmiss@0.1RFA). RateFA is the average
number of false alarm activity instances per minute.
Pmiss is the portion of activity instances where the
system did not detect the activity within the required
temporal (AD) and spatio-temporal (AOD) overlap
requirements. Submitted results are scored for Pmiss
and RateFA at multiple thresholds (based on con-
fidence scores produced by the systems), creating a
detection error tradeoff (DET) curve.

The primary measure of performance for
TRECVID ActEV21 was the normalized, par-
tial Area Under the DET Curve (nAUDC) from 0
to a fixed value a , denoted nAUDCa, representing
a Rate of False Alarms (Rfa) nAUDC RFA which
is a different metric than used for the TRECVID
ActEV20 and ActEV19 evaluations which used
Tfa. The switch to Rfa coincided with a new
experimental finding. Tfa-optimized systems tend to
hyper-segment detections to maximize performance
on the metrics. When evaluators reviewed the
detections of top systems, the number of detections
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to review overwhelmed the reviewer. Consequently,
changing the primary metric to use Rfa greatly pe-
nalized hyper fragmentation and produced systems
with fewer, higher quality detections. All ActEV
performance measurements were on a per-activity
basis and then performance was aggregated by
averaging over activities. While presence confidence
scores were used to compute performance, cross-
activity presence confidence score normalization was
not required nor evaluated.

Figure 24: Performance measure calculation and De-
tection Error Tradeoff (DET) curves

Figure 24 shows a summary of performance metric
calculation. For given reference annotation and sys-
tem output, the steps are 1) Align the reference ac-
tivity instance with each relevant system’s instance;
2)Compute detection confusion matrix; 3)Compute
summary performance metrics; and 4) Visualize the
results such as DET curve shown here, which the x-
axis is the Time-based False Alarm (TFA) Rate and
y-axis is the probability of missed detection. For
both the AOD (primary) and AD tasks, the sub-
mitted results are measured by the Probability of
Missed Detection (Pmiss) at a Rate of Fixed False
Alarm (RateFA) of 0.1 (Pmiss@0.1RFA). RateFA
is the average number of false alarm activity in-
stances per minute. Pmiss is the portion of ac-
tivity instances where the system did not detect
the activity within the required temporal (AD) and
spatio-temporal (AOD) overlap requirements. For
TRECVID’23 ActEV SRL evaluation primary metric
was the AOD mean Normalized partial Area Under
the DET Curve nAUDC.
As shown in Figure 25, the detection confusion ma-

trix is calculated with an alignment between refer-
ence and system output instances per target activity;
Correct Detection (CD) indicates that the reference
and system output instances are correctly mapped
(instances marked in blue). Missed Detection (MD)
indicates that an instance in the reference has no cor-

respondence in the system output (instances marked
in yellow) while False Alarm (FA) indicates that an
instance in the system output has no correspondence
in the reference (instances marked in red). After cal-
culating the confusion matrix, we summarize system
performance: for each instance, a system output pro-
vides a confidence score that indicates how likely the
instance is associated with the target activity. The
confidence scores are not used as a decision threshold.
Rather, a decision threshold is applied to the scores
to determine the error counts (NFA and Nmiss).

In the ActEV22 evaluation, a probability of missed
detections (Pmiss) and a rate of false alarms (RFA)
were used and computed at a given decision thresh-
old:

Pmiss(τ) =
NMD(τ)

NTrueInstance

RFA(τ) =
NFA(τ)

VideoDurInMinutes

where NMD (τ) is the number of missed detections
at the threshold τ , NFA(τ) is the number of false
alarms, and VideoDurInMinutes is the video dura-
tion in minutes. NTrueInstance is the number of ref-
erence instances annotated in the sequence per ac-
tivity. Lastly, the Detection Error Tradeoff (DET)
curve [Martin et al., 1997] is used to visualize system
performance.

To understand system performance better and to
be more relevant to the human review use case, we
used the normalized, partial area under the DET
curve (nAUDC) from 0 to a fixed (Rfa) to evaluate
algorithm performance. The partial area under DET
curve is computed separately for each activity over all
videos in the test collection and then is normalized to
the range [0, 1] by dividing by the maximum partial
area. nAUDCa = 0 represents a perfect score. The
nAUDCa is defined as:

nAUDCa =
1

a

∫ a

x=0

Pmiss(x)dx, x = Rfa

where x is integrated over the set of Rfa and Pmiss

as defined above.
In the AOD task, a system detects the target activ-

ity, temporally localizes it, and also spatio-temporally
localizes the objects that are associated with a given
activity by providing the coordinates of object bound-
ing boxes and object presence confidence scores.

The primary metric is similar to AD, however,
the instance alignment step uses an additional align-
ment term for object detection congruence to opti-
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Figure 25: Illustration of activity instance alignment. R is the set of reference instances and S is the set of
the system instances. Green arrows connect R and S instances that are determined to be aligned and thus
labeled correct detections.

mally map reference and system output instances—
this is covered in further detail in the evaluation plan
[ActEV23, 2023].
For the object detection (secondary) metric, we

employed the Normalized Multiple Object Detection
Error (N MODE) described in [Kasturi et al., 2009]
and [Bernardin and Stiefelhagen, 2008]. N MODE
evaluates the relative number of false alarms and
missed detections for all objects per activity instance.
Note that the metric is applied only to the frames
where the system overlaps with the reference. The
metric also uses the Hungarian algorithm to align ob-
jects between the reference and system output at the
frame level. The confusion matrix for each frame t
is calculated from the confidence scores of the ob-
jects’ bounding boxes, referred to as the object pres-
ence confidence threshold τ . CDt(τ) is the count of
reference and system output object bounding boxes
that are correctly mapped for frame t at threshold τ .
MDt(τ) is the count of reference bounding boxes not
mapped to a system object bounding box at thresh-
old τ . FAt(τ) is the count of system bounding boxes
that are not aligned to reference bounding boxes. The
equation for N MODE follows:

NMODE(τ) =

Nframes∑
t=1

(CMD ×MDt (τ) + CFA × FAt (τ))∑Nframes
t=1 N t

R

Nframes is the number of frames in the sequence for the
reference instance and N t

R is the number of reference ob-
jects in frame t. For each instance-pair, the minimum
N MODE value (minMODE) is calculated for object de-
tection performance and PMiss at RFA points are reported
for both activity-level and object-level detections. For
the activity-level detection, we used the same operating
points Pmiss at RFA = 0.1 and Pmiss at RFA = .2 while
Pmiss at RFA = 0.1 was used for the object-level detection.
We used 1- minMODE for the object detection congru-
ence term to align the instances for the target activity de-
tection. In this evaluation, the spatial object localization

(that is, how precisely systems can localize the objects)
is not addressed.

ActEV Results

A total of six teams from academia and industry from 3
countries participated in the ActEV23 evaluation. Each
participant was allowed to submit multiple system out-
puts and a total of 38 submissions were received. Table
22 lists the participating teams along with results ordered
by mean Pmiss@.1RFA values scores for the top per-
forming system per team along with nAUDC@0.2RFA
values. The top mean Pmiss@.1RFA performance on ac-
tivity detection is by BUPT-MCPRL at 57.81% followed
by Mlvc hdu at 89.52% and hsmw is third at 98.41%.

Figure 26 shows the performance based on the Activ-
ity and Object Detection (AOD) DET Curve for the 5
teams. The x-axis is the Rate of False Alarms, the y-
axis is the Probability of Missed Detection and a smaller
value is considered better performance. We observed that
the new low for mean Pmiss@.1RFA of 57.8% for team
BUPT-MCPRL, states a relative reduction of 8.4% from
the previous year.

Figure 27 shows the AOD performance for all individ-
ual activities for all the teams. The x-axis shows the 20
activities and the y-axis shows the mean Pmiss@.1RFA.
The vehicles activities remain easier than people only ac-
tivities and people and object interaction activities.

Figure 28 shows the AD vs. AOD Detection Perfor-
mance for the six teams for all the activities. The x-axis
shows the scores for AD and AOD tasks and the y-axis
shows the mean Pmiss@.1RFA. As expected for every
team, their AOD system has higher mean Pmiss@.1RFA
rates than AD.

To examine the localization performance for correct
AOD instances, Figure 29 shows the localization per-
formance varies across the 6 teams that participated
in AOD evaluations. The x-axis shows the 20 activi-
ties and the y-axis shows the localization performance
nMODE@0.1RFA. The missing points in the graph in-
dicate no correct AOD detections. The BUPT-MCPRL
team localizes well for most of the activities.
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Table 22: Summary of participants’ information and results ordered by AOD, µnAUDC values. The AOD
values of mean Pmiss@.1RFA values along with the nMODE@.1RFA are also presented. We also present
the AD values of nAUDC@.2RFA and mean Pmiss@.1RFA. Each team was allowed to have multiple
submissions.

Team Organization

Primary Task: Activ-
ity and Object Detec-
tion

Secondary Task: Ac-
tivity Detection

(AOD) (AD)

Pmiss
@0.1RFA

nMODE
@0.1RFA

Pmiss
@0.1RFA

nAUDC
@0.2RFA

BUPT-MCPRL Beijing University of Posts and
Telecommunications, China

0.5781 0.0206 0.5145 0.5611

mlvc hdu Hangzhou Dianzi University 0.8952 0.3167 0.8746 0.885

HSMW (late) University of Applied Sciences 0.9841 0.1349 0.9641 0.9669

Waseda Meisei
Softbank

Waseda University, Meisei Univer-
sity, SoftBank Corporation

0.9985 0.0614 0.9940 0.9948

FDU AWS Fudan University, Amazon Web Ser-
vice

0.9999 0.0 0.9999 0.9916

QWER Fudan University, Amazon Web Ser-
vice

1.0 1.0

Figure 26: Activity and Object Detection (AOD)
DET Curve for the six teams.

Summary

In this section, we presented the TRECVID’23 ActEV
SRL evaluation task, the performance metric and results
for human activity detection for both the Activity and
Object Detection and the Activity Detection tasks. We
primarily focused on the activity detection task only and
the time-based false alarms were used to have a better
understanding of the system’s behavior and to be more
relevant to the use cases. The TRECVID’23 ActEV eval-
uation was based on the MEVA [Kitware, 2020] dataset
and had 20 target activities in total. This was the fourth
time the MEVA dataset has been used for a ActEV eval-
uation. Six teams from 3 countries participated in the
ActEV SRL evaluation and made a total of 118 submis-
sions. We observed that, given the datasets and sys-
tems, the vehicles activities remain easier than people
and people and object interaction activities. The teams
MLVC hdu and WadsedaMeiselSoftbank participated for
the first time in the ActEV evaluation. The BUPT team
had the top performing system followed by the mlvc hdu
team. The BUPT AOD performance improved 8.4% rela-
tive to last year. The Detection and Localization (AOD)
still remains a more difficult task for the teams.

The TRECVID’23 ActEV SRL evaluation provided re-
searchers an opportunity to evaluate their activity detec-
tion algorithms on a self-reported leaderboard. We hope
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Figure 27: The AOD Activity Specific Performance for the six teams

Figure 28: AD vs. AOD Detection Performance

34



Figure 29: Localization Performance for Correct AOD Instances

the TRECVID’23 ActEV SRL evaluation, and the asso-
ciated datasets will facilitate the development of activity
detection algorithms. This will in turn provide an impe-
tus for more research worldwide in the field of activity
detection in videos.

4 Summing up and moving on

In this overview paper to TRECVID 2023, we provided
basic information for all tasks we run this year and
particularly on the goals, data, evaluation mechanisms,
and metrics used. Further details about each particular
group’s approach and performance for each task can be
found in that group’s site report. The raw results for each
submitted run can be found in the online proceedings of
the workshop [TV23Pubs, 2023]. Finally, we are looking
forward to continuing a new evaluation cycle in 2024 after
refining the current tasks and introducing any potential
new tasks.

5 Authors’ note

TRECVID would not have happened in 2023 without sup-
port from the National Institute of Standards and Tech-
nology (NIST). The research community is very grateful
for this. Beyond that, various individuals and groups de-
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Vocapia Research provided ASR for the IACC.3
videos.

• Luca Rossetto of University of Basel for providing
the V3C dataset collection.

• Baptiste Chocot of NIST associate for supporting
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Finally, we want to thank all the participants and other
contributors on the mailing list for their energy and per-
severance.
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A Ad-hoc 2023 main task query topics

731 A man is seen with a baby
732 A woman with red hair
733 A golf course
734 A recording studio
735 A toy vehicle
736 A person opens a door and enters a location
737 A woman wearing (dark framed) glasses
738 A police officer wearing a helmet
739 Two or more persons are seen in front of a chain link fence
740 A heavy man indoors
741 A red or blue scarf around someone’s neck
742 A child climbs an object outdoors
743 A man is talking in a small window located in the lower corner of the screen
744 A person taking picture using a cell phone camera
745 A person wearing gloves while biking
746 A man riding a scooter
747 At least two persons are working on their laptops together in the same room indoors.
748 A man carrying a bag on one of his shoulders (excluding backbags)
749 A person wearing any kind of face or head mask
750 A man with an earring in his left ear

B Ad-hoc query topics - 20 progress topics

681 A woman with a ponytail
682 A person’s Hands with a red nail polish
683 A building with balconies seen from the outside during daytime
684 A room with a wood floor
685 A wooden bridge
686 A round table
687 A person is throwing an object away
688 A person is washing oneself or another thing
689 A man wearing a lanyard around his neck
690 A man is seen at a gas station
691 A vehicle driving under a tunnel
692 A big building that is being camera panned or tilted from the outside
693 A person is lying on the ground outdoors
694 A person is rubbing part of their face using their hands
695 A man holding a gun but not shooting
696 A person is pouring liquid into a type of container
697 A man holding a fishing rod while being dipped in a body of water
698 A person holding a long stick which is not a drum stick outdoors
699 A person wearing a ring in their nose
700 A man wearing a dark colored hooded jacket outdoors
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