

MCPRL

Yang Song , HongPu Zhang , ZeLiang Ma , Zhe Cui, Yanyun Zhao Beijing University of Posts and Telecommunications, China {sy12138, zhp, mzl, cuizhe, zyy}@bupt.edu.cn

The MEVA dataset contains a total of 20 categories of activities, which we roughly divide into 5 activity groups and process them separately:

person-object	person-specific object	vehicle-only	person-vehicle	scene-related and person-person
<pre>person_reads_document, person_texts_on_phone, person_picks_up, person_puts_down, person_sits_own, person_stands_up, person_transfers_object</pre>	person_interacts_ with_laptop	<pre>person_exits_vehicle, person_enters_vehicle, person_opens_vehicledoor, person_closes_vehicledoor</pre>	person_exits_vehicle, person_enters_vehicle, person_opens_vehicle door, person_closes_vehicle door	person_opens _facility_door, person_enters_scene _through_structure, person_exits_scene _through_structure, person_talks_to_person

method - Framework

- 3D detector: Cascade R(2+1)D
- 3D classifier: VideoMAE V2
- 5 different classification methods

* VideoMAEv2: https://arxiv.org/abs/2303.16727

- Model's Outstanding Performance
 Simplified Model Structure
- Effective Video Feature Extraction
 Similarity with Pretraining Dataset

person-object activity group detection

person_reads_document, person_texts_on_phone, person_picks_up, person_puts_down, person_sits_own, person_stands_up, person_transfers_object;

- 3D detector: Cascade RCNN
- 3D classifier: VideoMAEv2+ActionCLIP+Swin Transformer

* ActionCLIP: https://arxiv.org/abs/2109.08472v1

person-object activity group detection

* key issues and solutions

1. Sensitive to background information

Solution: Add more other activity categories in training stage.

2. Difficult to extract the feature information

Solution: Fine-tune the Large-scale model to extract more feature information.

3. Adopting a classifier score merge strategy

Solution: Adopt a classifier score merge strategy to synthesize the results of different classifiers to obtain a more representative score results.

person-specific object activity group

person interacts with laptop;

- 3D detector: Cascade RCNN
- 2D detector: YOLOv8
- 2D pose estimation: KAPAO

* key issue

The generalization of the classifier is poor, resulting in poor results for scenes that do not exist in the training set and validation set on the test set.

the bounding box of person and the key points of the wrist joint

vehicle-only activity detection

vehicle starts, vehicle stops, vehicle turns left, vehicle turns right;

- 3D detector: Cascade R(2+1)D
- 3D classifier: Swin Transformer

- 2D detector: YOLOv8
- Tracker: DeepSORT

* key issues and solutions

1. The Limited Dataset of Reverse Behavior

Solution: Reversing the samples for left and right turn behaviors to create synthetic reverse samples.

2. Method for Assisting Start-Stop Behavior Classification

Solution: Introducing 2D Detection and Tracking, Calculating the Speed of Each Frame in Start-Stop Category, and Assisting in Tracking Based on the Duration of Speed Increase/Decrease.

person-vehicle activity group

person exits vehicle, person enters vehicle, person opens vehicle door, person closes vehicle door;

* key issues: A single action area contains multiple actions

Solution: Grounding DINO

* *Grounding DINO:* https://arxiv.org/pdf/ 2303.05499.pdf

Human-input reference sentences

Text understanding

The left lion

Solution:

Utilizing Grounding DINO to detect individuals engaged in actions and incorporating the vehicle's location information to generate the Activity Region

person-vehicle activity group

* key issues and solutions

1. Relevance between activities

Solution: In the training phase, we employ a multi-task training strategy. We use the same backbone with two separate prediction heads, each predicting one of the two mutually exclusive categories: opening and closing vehicle doors and entering and exiting the vehicle.

scene-related activity group

person opens facility door, person enters scene through structure, person exits scene through structure, person talks to person

* key issues and solutions

1. Unable to resolve the issue of following into and out of scenes

scene-related activity group

person opens facility door, person enters scene through structure, person exits scene through structure, person talks to person

- 3D detector: Cascade RCNN
- 2D detector: YOLOv8

Results in TRECVID 2023 ActEV Self-Reported Leaderboard Challenge

Team	PMiss	
BUPT-MCPRL	0.5781	
mlvc_hdc	0.8952	
WasedaMeiseiSoftbank	0.9985	
FDU_AWS	0.9999	
406	1	
qwer1	1	
hsmw	1	

* Results from: https://actev.nist.gov/SRL#tab_leaderboard

THANKS

