

Harnessing Pre-trained Models for Ad-hoc Video Search

Fan Hu^{1,2}, Ruixiang Zhao^{1,2}, Ziyuan Wang^{1,2}, Jingyu Liu^{1,2}, Jiazhen Liu^{1,2}, Zhanhui Kang³, Xirong Li^{1,2}

¹MOE Key Lab of DEKE, Renmin University of China ²AIMC Lab, School of Information, Renmin University of China ³Tencent (TRECVID team ID: RUCMM) <u>https://ruc-aimc-lab.github.io/</u>

2023.11.13

Research questions in Ad-hoc Video Search

- How to apply multi-modal pre-training models for video search?
- How to apply advanced yet computationally heavy models to large-scale retrieval?

 How to effectively fuse the results of multiple models?

Our Solution

Feature Fusion, Multi-Grained Teaching and Learn-to-Rank late fusion

- LAFF [Hu et al., ECCV'22]
 - Focus on feature fusion of multi-modal pre-training models
- TeachCLIP [Tian et al., arXiv'23]
 - Focus on multi-grained teaching, to ensure both precision and efficiency
- Learn-to-Rank late fusion
 - Focus on weighted late fusion to boost the performance

Technique 1 LAFF based Video Retrieval

• LAFF

It supports feature fusion at both text and video ends to exploit diverse (off-the-shelf) features.

4

Video/ Text Feature

Seven video features & three text features

Video Features	Dimensionality
wsl	2048
ircsn	2048
beit	1024
clip	512
blip	256
blip2	256
video-llama	768

Text Features	Dimensionality
CLIP(ViT-L/14)@336	512
BLIP(ViT-B)	256
BLIP-2(Vit-G)	256

Compared to TV22, we have added two new video features and one text feature, extracted by recent multi-modal pretraining models BLIP-2 and Video-LLaMA.

Multi-Grained Teaching for Efficient Retrieval

Technique 2

Effectiveness, efficiency and video-feature storage footprint of presentday (CLIP based) text-to-video retrieval models. Dataset: MSRVTT-1k X-CLIP and X-Pool

- recent advanced heavy fine-grain models.
- not suitable for large-scale retrieval.
- with high precision.

CLIP4Clip:

- coarse-grained CLIP-based model.
- efficient for large-scale retrieval.
- not at the same precision as X-CLIP and X-Pool.

TeachCLIP: The use of state-of-the-art teacher models for fine-grained and coarse-grained teaching ensures the precision and efficiency of student model.

Technique 2 Multi-Grained Teaching for Efficient Retrieval

TeachCLIP for Ad-hoc Video Search

Teacher: • X-CLIP, pretrained on MSR-VTT + TGIF + VATEX

Student:

CLIP4Clip based network

Training datasets:

• MSR-VTT + TGIF + VATEX

7.

Technique 3 Learn-to-Rank late fusion

Choice of (Pre-)Training Data

Three public datasets for training

Dataset	#Videos	#Sentences
MSR-VTT (CVPR2016)	10,000	200,000
TGIF (CVPR2016)	100,855	124,534
VATEX (ICCV2019)	32,239	259,909

Pre-training video-text datasets

#1 a crowd at a music festival#2 a concert with people on the stage

Dataset	Frame/Video Num	Sentence Num
V3C1-PC	1,605,335/219,530	436,203
ChinaOpen	52,170/1,516,598	52,170
WebVid	2,291,129/44,847,987	2,291,129

Internal experiments

• The influence of different pre-training datasets

Model: LAFF with all text and video features.

Pre-training	TV19	TV20	TV21	MEAN(TV19-21)	TV22
V3C1-PC	0.255	0.345	0.352	0.317	0.258
WebVid	0.235	0.333	0.317	0.295	0.230
ChinaOpen	0.252	0.337	0.335	0.308	0.252
ChinaOpen, V3C1-PC	0.252	0.341	0.347	0.313	0.251
WebVid, V3C1-PC	0.256	0.349	0.351	0.319	0.251
ChinaOpen, WebVid, V3C1-PC	0.248	0.337	0.337	0.307	0.247

Internal experiments

• TeachCLIP (TV19-21 performance)

Pre-training	TV19	TV20	TV21	MEAN(TV19-21)	TV22
TeachCLIP	0.115	0.149	0.166	0.143	0.134

• Learn-to-rank Late fusion (TV22 performance)

Fusion Models	Best Model	Step 1	Step 1+Step 2
42 LAFF	0.258	0.276	0.279
42 LAFF + 1 TeachCLIP	0.258	0.278	0.282

RUCMM Video Search Engine@TV23

Benchmark evaluation

Our submissions ranked the 3rd

Retrospective experiments

• Is Learn-to-Rank Late Fusion Effective?

Fusion Models	ТV	22	TV23		
rusion models	Average	Learn-to-rank	Average	Learn-to-rank	
42 LAFF	0.276	0.279	0.249	0.252	
42 LAFF + 1 TeachCLIP	0.277	0.282	0.251	0.254	

NOTE: Search result reranking is not applied.

Learn-to-rank late fusion is more effective than average fusion.

Retrospective experiments

15

• Is narrative queries Effective?

Strategy	TV23
Query	0.279
Narrative	0.242
Query+Narrative	0.268

734: A recording studio.

734narrative: A location that can be identified as a **studio** where **recordings** can take place.

• For '734', narrative makes the main information unclear.

Retrospective experiments

• Is narrative queries Effective?

Strategy	TV23
Query	0.279
Narrative	0.242
Query+Narrative	0.268

infAP

749: A person wearing any kind of face or head mask.749narrative: A person is seen while wearing a type of face mask or head mask

• For '749', narrative provides extra information.

Query structured understanding may be a future research direction

narrative query

duerv

Conclusions

>LAFF is an effective feature fusion block for video retrieval.

TeachCLIP may not have good standalone performance, but it can boost performance through late fusion.

>Learn-to-Rank late fusion could effectively fuse retrieval results.

https://github.com/ruc-aimc-lab

Hufan_hf@ruc.edu.cn