Waseda_Meisei_SoftBank at TRECVID 2023 Ad-hoc Video Search

Kazuya Ueki (presenter)

Meisei University, Waseda University

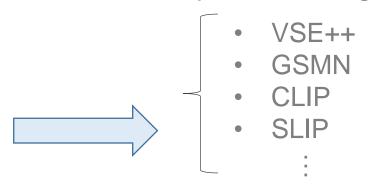
Takayuki Hori,

Softbank Corporation, Waseda University

Yuma Suzuki, Hiroki Takushima, Haruki Sato, Takumi Takada, Hideaki Okamoto, Hayato Tanoue Aiswariya Manoj Kumar

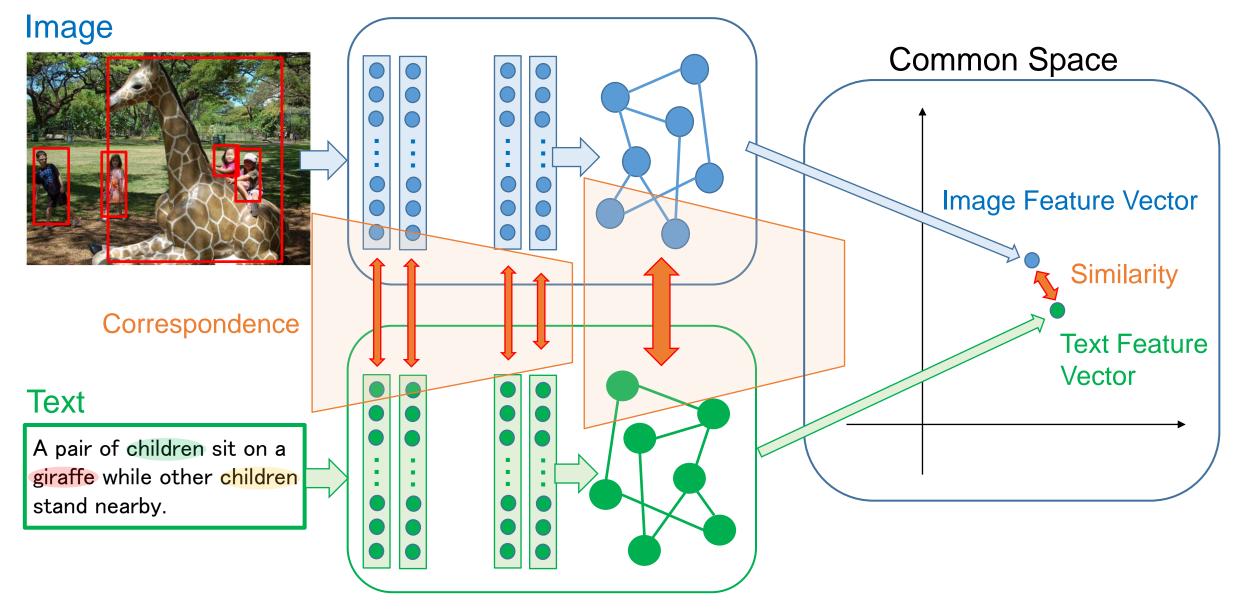
Softbank Corporation

TRECVID 2023 Workshop November 13th, 2023

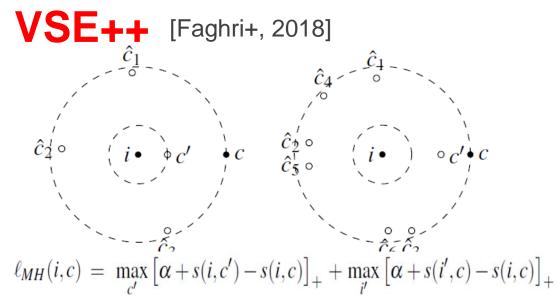

1. Highlights

• Overview

Highlights

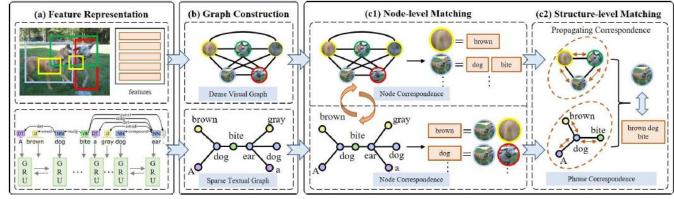

- Submission type
 - ✓ Fully-automatic
- Basic approach
 - ✓ Visual-semantic embedding approach
- This year's update

Fusion of multiple embedding models

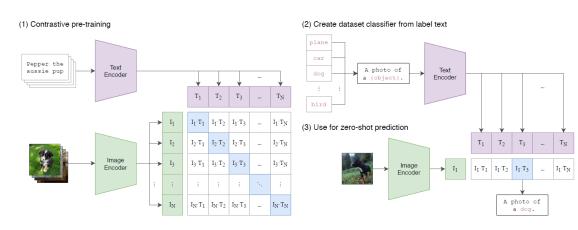


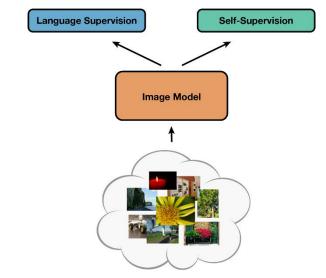
- ✓ Implementation of the latest pre-trained models provided by OpenCLIP
- ✓ Query expansion by generative language model
- Results
 - $\checkmark~2^{nd}$ position for main task
 - ✓ Best for progress subtask

Visual-semantic embedding approach

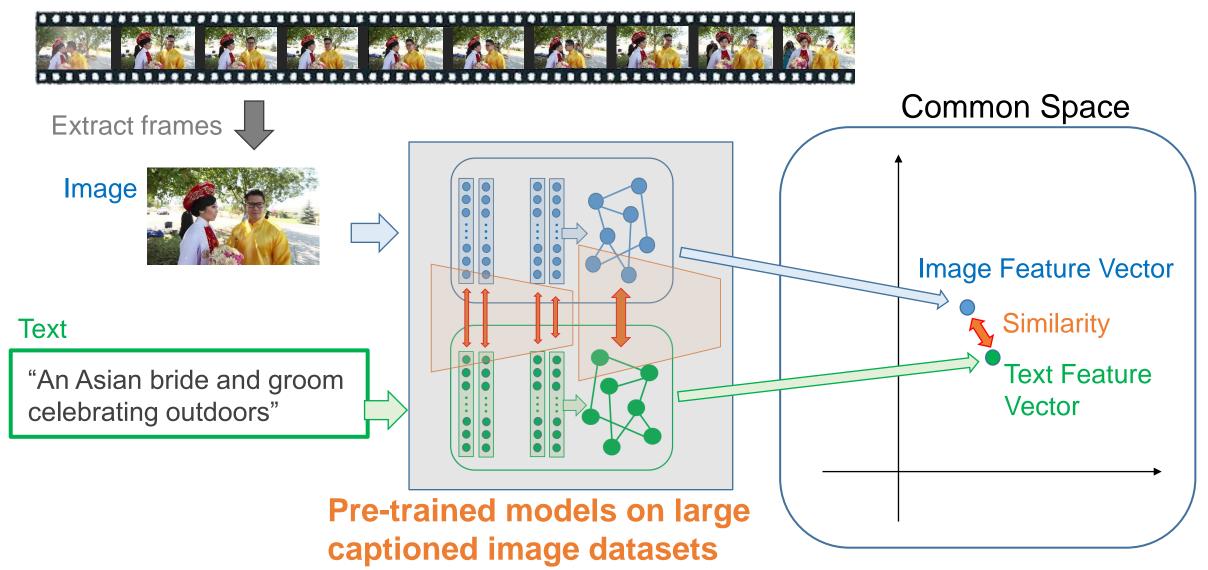


Representative approaches




GSMN [Liu+, 2020]

SLIP [Mu+, 2021]


CLIP [Radford+, 2021]

Zero-shot video retrieval techniques

Video

5

Image caption datasets

Backend url: https://knn5.laior Index:

laion_SB

Clip retrieval work by converting the text query to a CLIP embedding then using that embedding to query a knn index of clip image embeddding

french cat

Video caption datasets

MSR-VTT

10,000 videos 200,000 captions

1. A black and white horse runs around. 2. A horse galloping through an open field. 3. A horse is running around in green lush grass. 4. There is a horse running on the grassland. 5. A horse is riding in the grass.

VATEX

41,250 videos 825.000 captions

	020,000 Oup
 English Descriptions: A person waring a bear costume is inside an inflatable play area as they lose their balance and fall over. A person in a bear costumer stands in a bounce house and falls down as people talk in the background. A person dressed in a cartoon bear costume attempts to walk in a bounce house. A person in a mascot uniform trying to maneuver a bouncy house. A person in a comic bear suit falls and rolls around in a monobounce. 	10 Chinese Descriptions: ◦ 一个人穿着熊的有像外套倒在了蹦床上。 ◦ 一个人穿着熊的木服装在充气罐翻床上摔 倒了。 ◦ 一个穿着熊小衣的人在充气垫子上摔倒了。 ◦ 一个穿着熊的太阳的人正在蹦蹦床上。 ◦ 在一个充定气达型玩具里有一个人穿着熊的 衣服站了一下之后就摔倒了。
A person dressed as a teddy bear stands in a bouncy house and then falls over. Someone dressed in a bear costume falling over in a bouncy castle. A person dressed up as a bear is standing in a bouncy castle and falls down. A man in a bear costume is balancing in a bouncy castle before they tumble to the floor. A man in costume was trying to stand straight on a bouncy	 ○一个打扮成奏道照的人站在充气房上,然后 挂倒了。 ○有个穿着熊装的人在充气城堡排倒了。 ○一个装扮成能的人站在充气蹦床里,然后摔 倒了。 ○一个穿着熊服装的人在一个有弹性的城堡里 平衡,然后他们就倒在了吃饭上。 ○一个穿着布绸熊的人就因站在一个充气城堡 上,但却操作了。

While there is an abundance of image datasets with captions, the availability of video datasets with accompanying captions is not as extensive.

YFCC100M

周友挑戰「加裝筆書

出最創意貓咪圖片」

等到分氣之後我也手

LAION-5B

QO.V.

2. This year's update

- Implementation of the latest pre-trained models provided by OpenCLIP
- Query expansion by generative language model

7

OpenCLIP

open_clip / docs / openclip_results.csv

https://github.com/mlfoundations/open_clip/blob/main/docs/openclip_results.csv

revi	ew Code Blame	120 lines (120 loc) · 37.3 KB									Raw 🖸
Q	Search this file										
1	name	pretrained	params (M)	FLOPs (B)	Average perf. on 38 datasets	ImageNet 1k	Caltech-101	CIFAR-10	CIFAR-100	CLEVR Counts	CLEVR Distance
2	ViT-H-14-378-quickgelu	dfn5b	986.71	1054.05	0.7079	0.8437	0.9517	0.9880	0.9043	0.3596	0.2085
3	ViT-H-14-quickgelu	dfn5b	986.11	381.68	0.6961	0.8344	0.9552	0.9878	0.9051	0.2967	0.2117
1	EVA02-E-14-plus	laion2b_s9b_b144k	5044.89	2362.19	0.6930	0.8201	0.9535	0.9934	0.9316	0.2991	0.1998
5	ViT-SO400M-14-SigLIP-384	webli	877.96	723.48	0.6921	0.8308	0.9599	0.9672	0.8357	0.4071	0.2246
5	ViT-bigG-14-CLIPA-336	datacomp1b	2517.76	2271.58	0.6842	0.8309	0.9529	0.9904	0.9123	0.1399	0.2161
7	ViT-bigG-14-CLIPA	datacomp1b	2517.22	1007.93	0.6822	0.8270	0.9513	0.9912	0.9135	0.1357	0.2113
3	ViT-SO400M-14-SigLIP	webli	877.36	233.54	0.6808	0.8203	0.9600	0.9679	0.8417	0.4210	0.2213
Э	EVA02-E-14	laion2b_s4b_b115k	4704.59	2311.42	0.6690	0.8196	0.9541	0.9925	0.9258	0.1632	0.2499
0	ViT-L-14-quickgelu	dfn2b	427.62	175.33	0.6687	0.8141	0.9532	0.9836	0.8837	0.3325	0.2481
1	ViT-L-16-SigLIP-384	webli	652.48	422.91	0.6683	0.8207	0.9611	0.9605	0.8188	0.3275	0.2077
2	ViT-H-14-CLIPA-336	datacomp1b	968.64	800.88	0.6677	0.8180	0.9467	0.9890	0.8968	0.1326	0.2254
3	ViT-H-14-quickgelu	metaclip_fullcc	986.11	381.68	0.6671	0.8051	0.9536	0.9804	0.8634	0.2115	0.1881
4	ViT-bigG-14	laion2b_s39b_b160k	2539.57	1065.36	0.6667	0.8009	0.9484	0.9824	0.8752	0.2989	0.2002

Currently, there are over 100 available models.

OpenCLIP provides a wide range of pretrained embedding models, and the updates come swiftly.

Retieival results on tv22 queries

CLIP (o	fficial)	_	OpenCLIP			
Model name	mAP		Model name	Pre-trained	mAP	
RN50	0.0962	Γ		laion400m_e31	0.1240	
RN101	0.1112				laion400m_e32	0.1235
RN50x4	0.1075			ViT-B-32	laion2b_e16	0.1337
RN50x16	0.1053					
RN50x64	0.0976			laion2b_s34b_b79k	0.1425	
ViT-B/32	0.1060			laion400m_e31	0.1226	
ViT-B/16	0.1209		ViT-L-14	laion400m_e32	0.1228	
ViT-L/14	0.1010			laion2b_s32b_b82k	0.1460	

The pre-trained models available in OpenCLIP often exhibit higher accuracy compared to official CLIP models, thanks to their training on extensive datasets such as LAION.

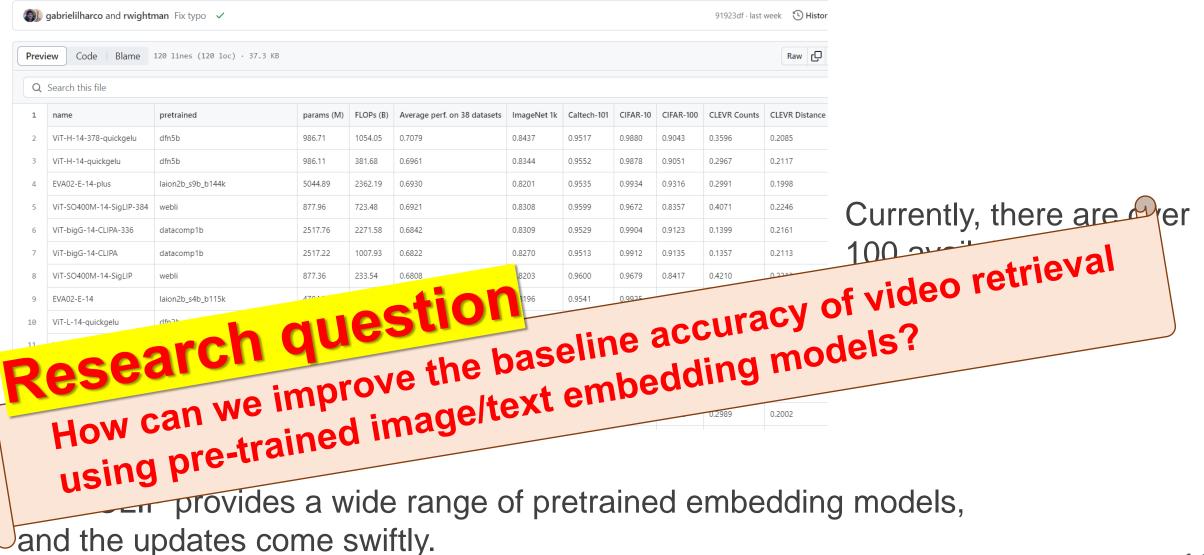
Retieival results on tv22 queries

CLIP (official)

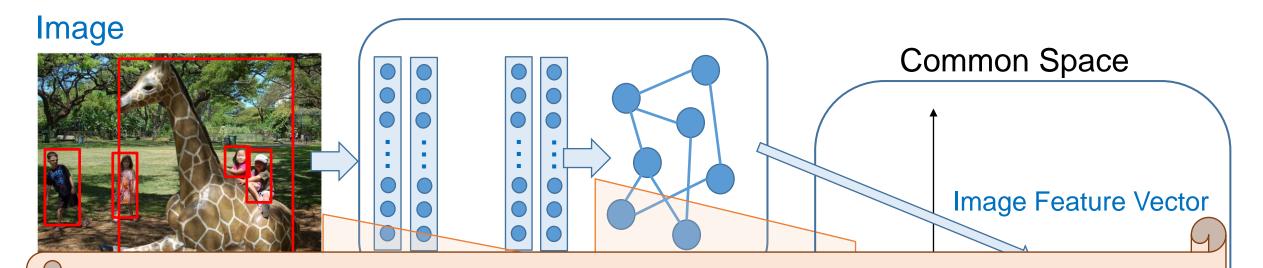
Model name	mAP
RN50	0.0962
RN101	0.1112
RN50x4	0.1075
RN50x16	0.1053
RN50x64	0.0976
ViT-B/32	0.1060
ViT-B/16	0.1209
ViT-L/14	0.1010
ViT-L/14@336px	0.0975
Fusion	0.1941

Due to the complementary nature of each model, even a simple score fusion can lead to a significant improvement in accuracy.

simple score fusion

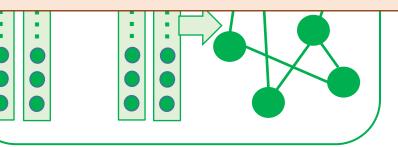

This year, we adjusted the fusion weights based on the previous year's ground truth to optimize the mean average precision.

OpenCLIP

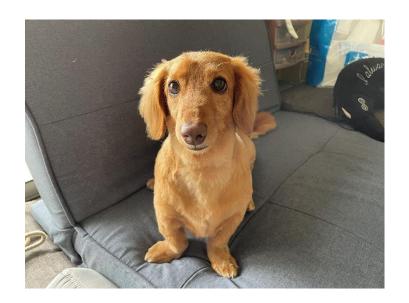

D

open_clip / docs / openclip_results.csv

https://github.com/mlfoundations/open_clip/blob/main/docs/openclip_results.csv



Visual-semantic embedding approach

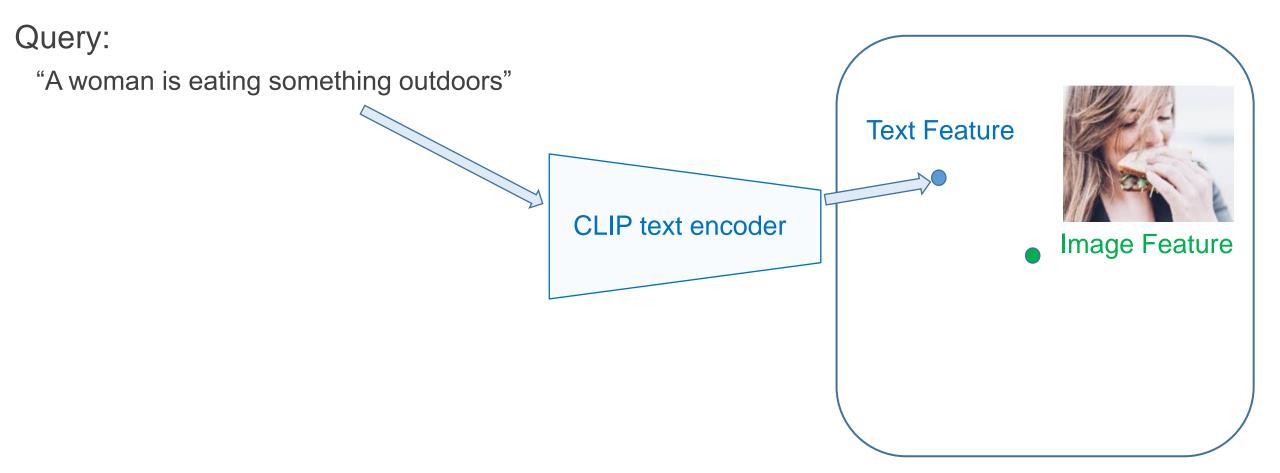


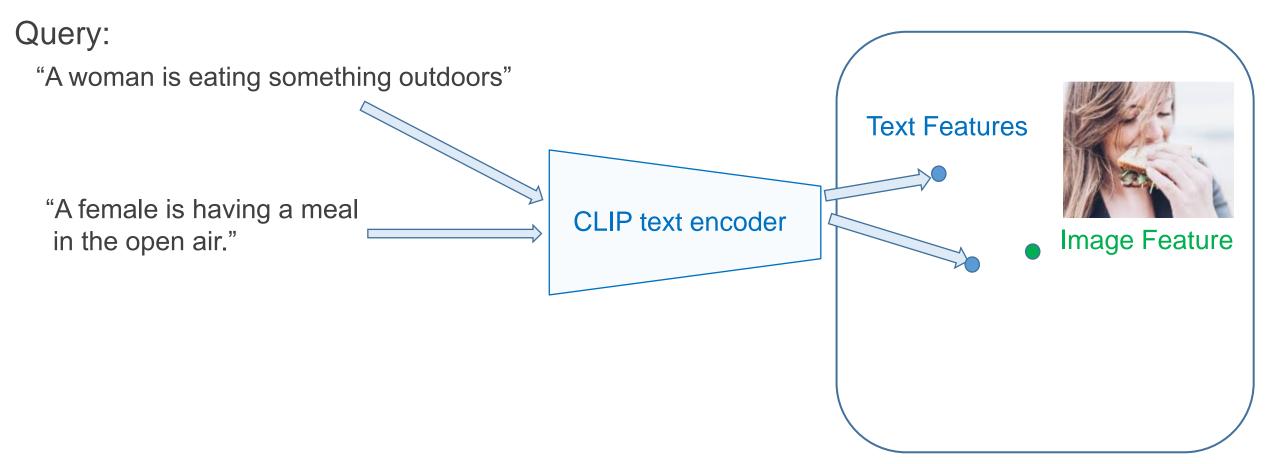
The current visual-semantic embedding methods attempt to establish a one-to-one correspondence between images and text. Is this approach truly optimal?

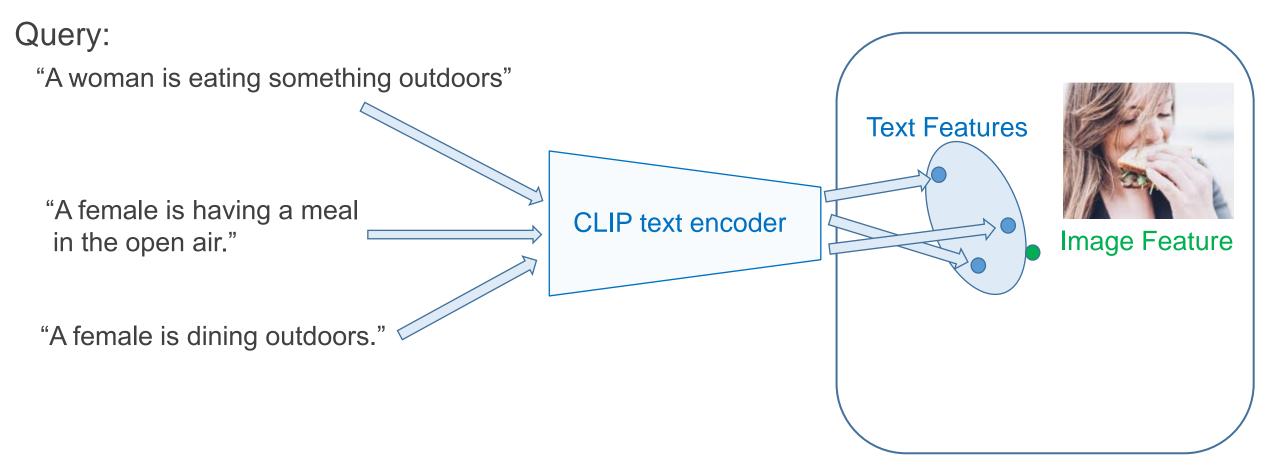
raffe while other children stand nearby.

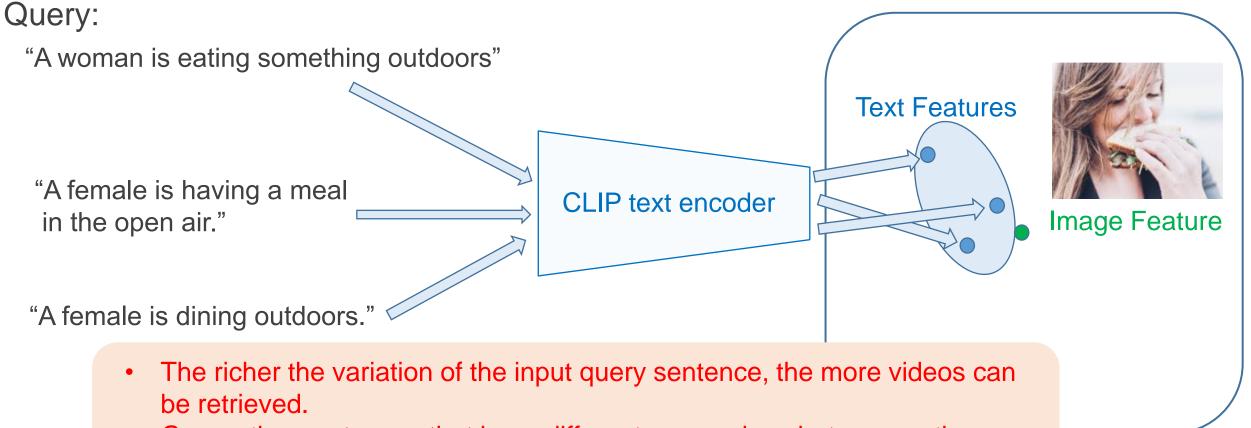
One-to-many relationship

There is a dog in the room.

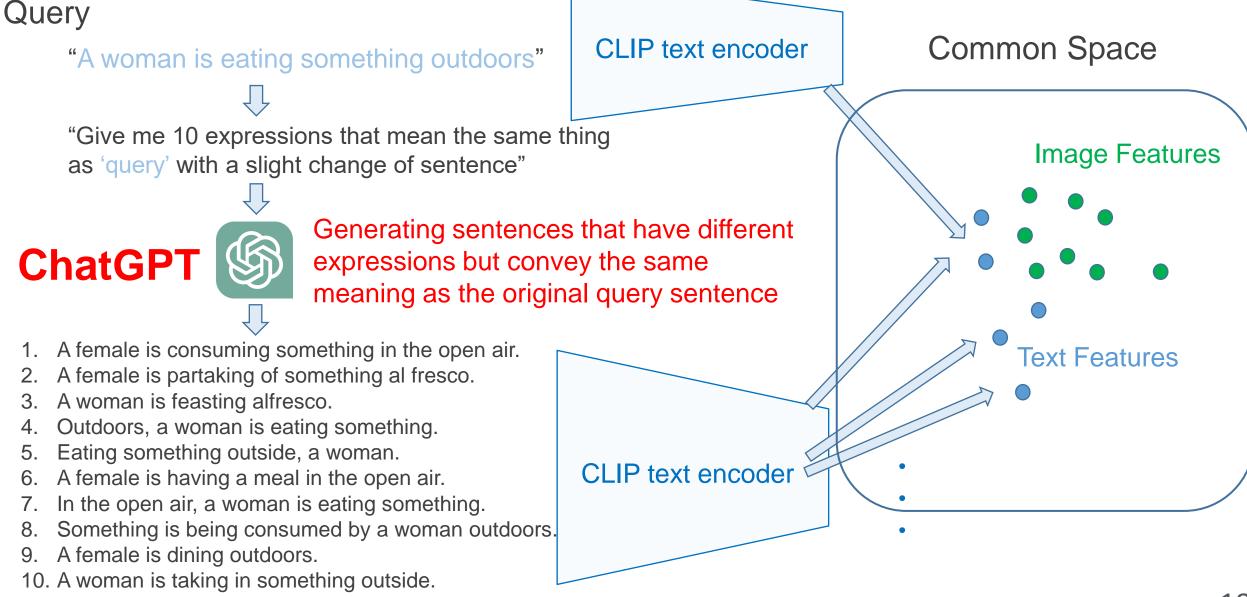

A lovely chestnut-colored miniature dachshund is sitting on the sofa.


 \Box There is a gray sofa inside the room.


 \downarrow Marron wants something to eat.



There are many textual representations for a single image. Isn't a rich variety of textual descriptions necessary to search for target videos?

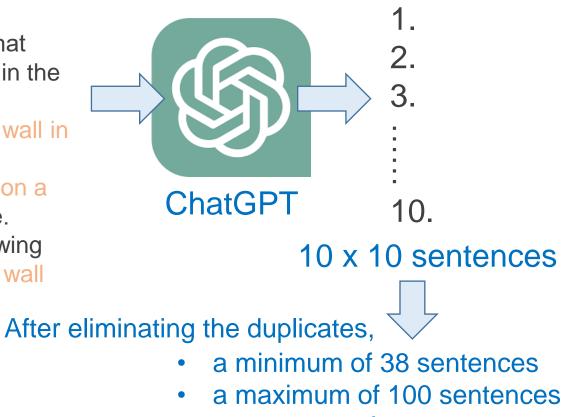


• Generating sentences that have different expressions but convey the same meaning as the original query sentence is probably very effective.

Query Expansion using ChatGPT

3. Experiment

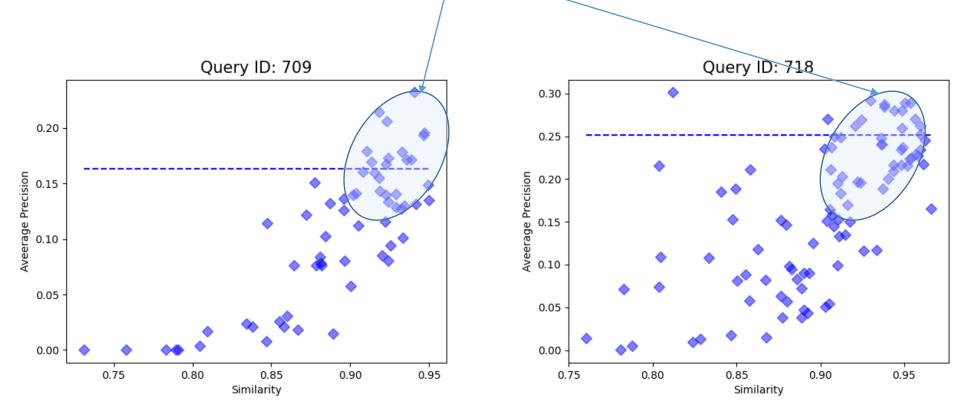
• Query expansion using ChatGPT


Query Expansion using ChatGPT

Original query : "A clock on a wall in a room"

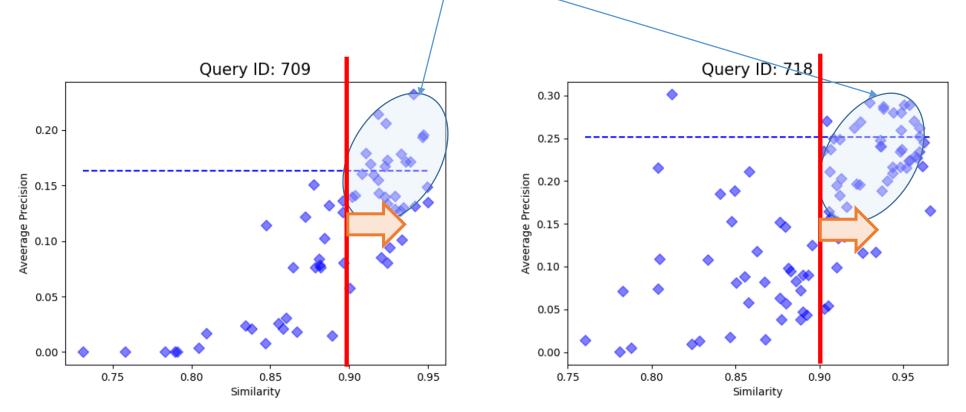
We attempted to input the five prompts into ChatGPT twice.

- Give me 10 sentences that mean exactly the same as "A clock on a wall in a room" with slight changes.
- Give me 10 examples of "A clock on a wall in a room" that means exactly the same thing, but with a slight change in the sentence.
- List 10 sentences that mean the same as "A clock on a wall in a room" with slight modifications.
- List 10 examples that mean the same thing as "A clock on a wall in a room," but with a slight change in the sentence.
- Give me 10 sentences that mean the same as the following sentence with a slight change of wording: "A clock on a wall in a room"


Generated sentences

• an average of 85.2 sentences 20

Analysis of the Appropriateness of Generated Sentences


The highly accurate generated sentences exhibited a relatively high level of similarity with the original query sentence!!

Relationship between "similarity between original and generated sentences" and "retrieval accuracy"

Analysis of the Appropriateness of Generated Sentences

The highly accurate generated sentences exhibited a relatively high level of similarity with the original query sentence!!

Relationship between "similarity between original and generated sentences" and "retrieval accuracy"

Retieival results on tv22 queries

CLIP (official)

	mAP		
Model name	Original query	+ Generated query	
RN101	0.1112	0.1218	
ViT-B/32	0.1060	0.1123	
ViT-L/14@336px	0.0975	0.1042	

After conducting evaluations on randomly selected pre-trained models provided by CLIP and OpenCLIP, a slight improvement in the accuracy of video search was observed.

OpenCLIP

		mAP		
Model name	Pre-trained	Original query	+ Generated query	
ViT-L-14	datacomp_xl_s13b_b90k	0.1331	0.1392	
convnext_xxlarge	Laion2b_s34b_k82k_augreg_rewind	0.1563	0.1618	
	•			

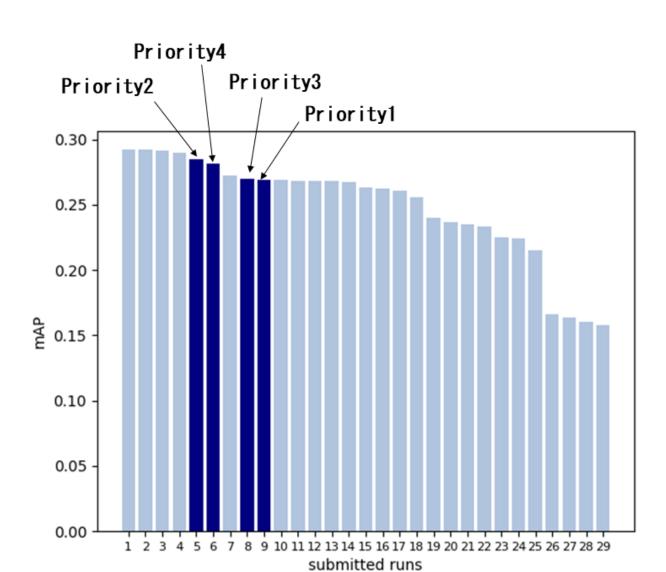
4. Submission results

- Results for main task
- Results for progress task

Submissions and results

Run	Fusion weight	Query expansion (ChatGPT)	mean average precision		
priority			Main task	Progress task	
1	Soft	\checkmark	0.269	0.272	
2	Hard	✓	0.285	0.286	
3	Soft		0.270	0.269	
4	Hard		0.281	0.283	

- This year, we created four different automatic systems and submitted the results.
- The distinctions among these systems lie in the approach used for integrating models, whether by determining hard weights or setting soft weights, as well as the inclusion or exclusion of query expansion using ChatGPT.


Main task (fully-automatic runs)

The best-performing system achieved an mAP of 0.285 in the main task, securing the second position among the participating teams.

F D F D

FD

F D F D F D F D

C D WasedaMeiseiSoftbank.23 3 0.270 C D WasedaMeiseiSoftbank.23 1 0.269 C D RUC AIM3.23 1 0.269 C D RUC AIM3.23 1 0.268 C D RUCMM.23 3 0.268 C D RUCMM.23 2 0.267 C D RUC AIM3.23 2 0.267 C D RUC AIM3.23 2 0.267 C D RUC AIM3.23 3 0.263 C D RUC AIM3.23 4 0.262 C D RUCMM.23 4 0.261 C D VIREO.23 3 0.256 C D ITI CERTH.23 3 0.240 C D VIREO.23 1 0.237 C D VIREO.23 5 0.235 C D ITI CERTH.23 4 0.233 C D ITI CERTH.23 1 0.225 C D ITI CERTH.23 2 0.224 C D VIREO.23 2 0.215 C D NII UIT.23 1 0.166 C D NII UIT.23 2 0.160 C D NII UIT.23 4 0.158	C_D_WHU_NERCMS.23 C_D_WHU_NERCMS.23 C_D_WHU_NERCMS.23 C_D_WHU_NERCMS.23 C_D_WHU_NERCMS.23 C_D_WasedaMeiseiSoftbank.23 C_D_WasedaMeiseiSoftbank.23 C_D_WasedaMeiseiSoftbank.23	2 0.292 1 0.292 3 0.291 4 0.290 2 0.285 4 0.281 1 0.272
C_D_RUC_AIM3.23 1 0.269 C_D_VIRE0.23 4 0.268 C_D_RUCMM.23 3 0.268 C_D_RUCMM.23 2 0.267 C_D_RUC_AIM3.23 2 0.267 C_D_RUC_AIM3.23 3 0.263 C_D_RUC_AIM3.23 4 0.262 C_D_RUC_AIM3.23 4 0.262 C_D_VIRE0.23 3 0.256 C_D_ITI_CERTH.23 3 0.240 C_D_VIRE0.23 1 0.237 C_D_VIRE0.23 5 0.235 C_D_ITI_CERTH.23 4 0.233 C_D_ITI_CERTH.23 1 0.225 C_D_ITI_CERTH.23 1 0.225 C_D_ITI_CERTH.23 2 0.224 C_D_VIRE0.23 2 0.215 C_D_NII_UIT.23 1 0.166 C_D_NII_UIT.23 2 0.160	C_D_WasedaMeiseiSoftbank.23	3 0.270
	C_D_RUC_AIM3.23 C_D_VIRE0.23 C_D_RUCMM.23 C_D_RUCMM.23 C_D_RUC_AIM3.23 C_D_RUC_AIM3.23 C_D_RUC_AIM3.23 C_D_RUC_AIM3.23 C_D_VIRE0.23 C_D_VIRE0.23 C_D_VIRE0.23 C_D_VIRE0.23 C_D_VIRE0.23 C_D_ITI_CERTH.23 C_D_VIRE0.2	$\begin{array}{c} 1 & 0.269 \\ 4 & 0.268 \\ 3 & 0.268 \\ 2 & 0.268 \\ 2 & 0.267 \\ 3 & 0.263 \\ 4 & 0.262 \\ 4 & 0.261 \\ 3 & 0.256 \\ 3 & 0.240 \\ 1 & 0.237 \\ 5 & 0.235 \\ 4 & 0.235 \\ 4 & 0.235 \\ 4 & 0.235 \\ 2 & 0.224 \\ 2 & 0.215 \\ 1 & 0.166 \\ 3 & 0.164 \\ 2 & 0.160 \end{array}$

Progress task (fully-automatic runs)

This increase in accuracy is attributed to the Priority4 Priority1 influence of the newly introduced models this (2023)(2023)Priority3(2023) Priority2 year and the query expansion using ChatGPT. (2023)Priority3(2022) 0.30 Priority1 2022 Priority2 (2022) Priority4 0.25 (2022)0.20 de 0.15 0.10 0.05 0.00 123456 7 9 10 11 12 13 14 15 16 17 8 1819 2021 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 submitted runs

5. Summary

- What we have done this year
- Future work

Summary

- In the systems submitted this year, we made efforts to enhance the accuracy of image retrieval by incorporating a multitude of pre-trained models provided by OpenCLIP.
- This year's system update involved not only incorporating newly available high-performance pre-trained models but also experimenting with query expansion using ChatGPT.

Future work

• In the future, we plan to conduct further analysis to understand under which conditions accuracy improves and to refine our approach accordingly.