

WHU-NERCMS @ TRECVID 2023: DEEP VIDEO UNDERSTANDING TASK

Ruizhe Li

2020300004016@whu.edu.cn

Hubei Key Laboratory of Multimedia and Network Communication Engineering National Engineering Center for Multimedia Software School of Computer Science, Wuhan University

November 13, 2023

- Introduction
- Approach
- Results
- Conclusion

Introduction

- Approach
- Results
- Conclusion

• Movie KG, entities pic, scene seg, scene KG, scene sum, vocab

Deep Video Understanding(DVU)

Introduction

• 2 Movie-Level Groups & 2 Scene-Level Groups

Introduction

Approach

Results

Conclusions

Framework

Approach

Step 1: Pre-processing

- Segmentation
 - Scene segmentation
 - a. Download scene files.
 - b. Seg with timestamps locally.
 - Shot segmentation
 - a. Shot detection & seg
 - Clip segmentation
 - a. Use YouTube ASR to generate subtitles.
 - b. Seg with timestamps of subtitles.

Step 2: Instance Recognition (shot-based)

- Person Recognition and Track(Shot2Scene)
 - Person recognition: SCRFD + Arcface + Extended Face Database
 - Person Track: faster RCNN + Deepsort
 - Trajectory in Scene: Track + Face Indentity(Voting Mechanism)
- Construction of Track Video
 - Seg Person Track Video with Clip Timestamp

Location Recognition

Resnet + extended location database

Step 3: Feature Extract

- Feature Extract
 - ➢ Text feature: Bert-base extracts a feature of 768 dimensions for a clip.
 - ▶ Visual feature: TSM extracts a feature of 2048 dimensions for a clip.
 - Track feature: Unite results to generate a feature of 2048*2 dimensions for a Person-Person/Person-Location pair in a clip.

Step 4: Interaction & Relation Prediction

- Step 5: Graph Generation
 - KG Tool: neo4j
 - > The interactions and relations are saved in the different graphs
 - Nodes: the person node and location node
 - Lines: recognized interaction in interaction part; recognized relation in relation part

- Step 6: Result Search (KG search + LLM)
 - ChatGPT delete wrong candidates in P2P or P2L questions
 - ChatGPT(shot-scene summary)
 - ChatGPT(video caption, ASR) generates scene summary

- Step 6: Result Search
 - Movie-level Track

```
<DeepVideoUnderstandingTopicQuery question="2" id="1">
<item subject="Person:Rabbi_Brookstein"
predicate="Relation:Unknown_1" object="Person:Debbie"/>
<item description="What is the relation / connection
from Rabbi_Brookstein to Debbie?"/>
<Answers>
<item type="Person" answer="Apprentice Of"/>
<item type="Person" answer="Has Met"/>
<item type="Person" answer="Parent Of"/>
<item type="Person" answer="Takes Care Of"/>
<item type="Person" answer="Child Of"/>
<item type="Person" answer="Child Of"/>
<item type="Person" answer="Mentor Of"/>
<item type="Person" answer="Mentor Of"/>
<item type="Person" answer="Mentor Of"/>
<item type="Person" answer="Child Of"/>
<item type="Person" answer="Mentor Of"/>
<item type="Person" answer="Child Of"/>
<item type="Person" answer="Mentor Of"/>
```

KG SQL search sequences:

MATCH (a:person_id)-[r]->(b:person_id) where a.name='Rabbi_Brookstein' and b.name='Debbie' and r.type='rela' return type(r),r.score order by toInteger(r.score)DESC

Using ChatGPT to narrow down the answer space

- Step 6: Result Search
 - Movie-level Track

```
<DeepVideoUnderstandingTopicQuery question="2" id="17">
<item description="Why did Christopher accompany the family on the holiday?"/>
<Answers>
<item answer="he is a cousin of Patricia"/>
<item answer="he is an artist and was hired to give painting lessons"/>
<item answer="he is a friend of Edward"/>
<item answer="he is William's brother"/>
<item answer="he is a neighbor of Cynthia"/>
<item answer="he is Cynthia's romantic partner"/>
</Answers>
</DeepVideoUnderstandingTopicQuery>
```

GPT solves the problem:

- Step 6: Result Search
 - Scene-level Track

```
<DeepVideoUnderstandingTopicQuery question="2" id="1">
<item subject="Person:Debbie" scene="18" predicate="Interaction:talks to"
object="Person:Co-Worker"/>
<item description="In Scene 18, Debbie talks to Co-Worker. What is the immediate
next / following interation between Co-Worker and Debbie, in scene 18?"/>
<Answers>
<item type="Interaction" scene="18" answer="greets"/>
<item type="Interaction" scene="18" answer="hits"/>
<item type="Interaction" scene="18" answer="shots"/>
</tempe>>
```

KG SQL search sequences:

match(a:person_id)-[r]->(b:person_id) where r.scence='18' and a.name='Debbie' and b.name='Co-Worker' return id(r),type(r) order by id(r)

Using shot-scene summary for ChatGPT to generate another answer list

- Step 6: Result Search
 - Scene-level Track

```
<DeepVideoUnderstandingTopicQuery question="5" id="6">
<item subject="Scene:Unknown" predicate="Description"/>
```

```
<item description="Patricia has an argument with her husband on the phone before joining Edward and Cynthia for dinner."/>
```

<Answers>

```
<item type="Integer:Scene" answer="12"/>
<item type="Integer:Scene" answer="47"/>
<item type="Integer:Scene" answer="44"/>
<item type="Integer:Scene" answer="35"/>
<item type="Integer:Scene" answer="32"/>
<item type="Integer:Scene" answer="32"/>
<item type="Integer:Scene" answer="28"/>
<item type="Integer:Scene" answer="28"/>
<item type="Integer:Scene" answer="1"/>
<item type="Integer:Scene" answer="1"/></texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</texter</tr>
```

Treat it as a video retrive task

- Introduction
- Approach
- Results
- Conclusion

Results

Overall Result

• Movie-level & Scene-level

Result in TRECVID 2023 Grand DVU Task(%)						
Movie	Scene-level				Movie-level	
	s1(MRR)	s2&s3(ACC)	s4(ACC)	s5(ACC)	s1(MRR)	s2(ACC)
Archipelago	12.5	62.5	40	33.3	81.25	33.3
Bonneville	37.5	25	50	66.7	62.5	39.1
Heart_ Machine	25	50	60	33.3	37.5	61.5
Little Rock	18.8	0	60	33.3	62.5	30
Memphis	8.32	12.5	60	66.7	54.2	59.1
total	26.8(Group1)		51.2(Group2)		59.6(Group1)	43.7(Group2)

Results

Overall Result

• Compare with Other team

Results

Overall Result

• Compare with Other team

Introduction

Approach

- Results
- Conclusions

Such as "talks to" "ask" "yell at"

Some actions are hard to distinguish

Conclusion

•

- Annotation is inadequate
 - The labels in the training data have a long-tailed distribution

Thanks for your time!

Hubei Key Laboratory of Multimedia and Network Communication Engineering National Engineering Center for Multimedia Software School of Computer Science, Wuhan University