

RUC_AIM3 at TRECVID 2023: Video-to-Text Description

Kaiwen Wei, Zihao Yue, Liang Zhang, Qin Jin Renmin University of China Nov.14, 2023

Introduction

Video-to-Text Description (VTT)

- automatically generate a single-sentence description in natural language for a given

video.

• An Asian man playing an electronic guitar in an indoor setting.

Effective Approach:

- Transferring image-text model pre-training model to VTT task.

Introduction

Our last year's solution:

- BLIP4video: Transferring BLIP to VTT task
- Data Augmentation to obtain sufficient data
- Re-ranking for best candidate selection
- best CIDEr: 60.2, ranking 1st

Introduction

Vision-Language Pre-training Model:

- Image-text model:

lack of temporal modeling ability

- Video-text model:

swinBERT(Lin, et.al.), mPLUG-2(Xu, et.al. 2023)

obtain temporal modeling ability from large-scale video-text pre-training

We select mPLUG-2 (SOTA captioning model) this year.

mPLUG-2

captioning model

Data Augmentation Module

improving both quality and quantity of data

Re-ranking Module

best candidates selection

mPLUG-2: Modularized Multi-modal model across video, image and text.

Pre-trained with 2.5M video-text pairs and 14M image-text pairs.

A spatio-temporal modeling module to capture temporal information.

Methodology - mPLUG-2

Comparison between captioning models:

- Zero-shot:

mPLUG-2 significantly outperforms BLIP4video.

	Approach	wiodei	CIDEr
Supervised Fine-tuning:	Zero-shot	BLIP4video	28.9
Settings:	Zero-snot	mPLUG-2	44.8
- training set: VTT16-21	Fine-tuned	BLIP4video mPLUG-2	50.5 54.4
- validation set: VTT22		mPLUG-2 + SCST	57.1

Ammanah

Madal

mPLUG-2 still outperforms BLIP4video. SCST further improve the performance. www.ruc-aim3.com

CIDE-

Back Translation:

English \Rightarrow Chinese \Rightarrow English

Pseudo Labeling:

- For \underline{VTT} videos
 - Cycle the following procedures:
 - Generate pseudo descriptions by a captioner
 - Filter
 - Add to the training data
 - Re-train the captioner
- For <u>V3C1</u> videos

Generate descriptions for V3C1 by our finalized captioner

Pseudo labeling:

Round 1:

- Train Cap-0 by VTT16-21 using CE loss and SCST.
- Generate captions for VTT videos by Cap-0.

Round 2:

- Train Cap-1 by Aug-1 using CE loss.
- Generate captions for VTT videos by Cap-1.

Round 3:

- Train Cap-2 by Aug-1 using CE loss and SCST.
- Generate captions for V3C1 and VTT videos by Cap-2.

Table 2: Training data of our 4 captioners. CE refers to cross-entropy, and SCST refers to self-critical sequence training.

Madal	Training data						
wiodel	CE	SCST					
Cap-0	VTT16-21	VTT18-21					
Cap-1	Aug-1	-					
Cap-2	Aug-1	VTT18-21					
Cap-3	Aug-2	VTT18-21					

Augment	Data	Description					
Aug-1	VTT16-21 Aug-22 Aug-GT-1	VTT data from 2016 to 2021 Augmentation data from Yue et al. (2022) Pseudo labeling for VTT16-21 by <i>Cap-0</i>					
Aug-2	VTT-22 Aug-BT Aug-GT-2 Aug-GT-3 Aug-V3C1	VTT data 2022 Back translation for VTT16-21 Pseudo labeling for VTT16-21 by <i>Cap-1</i> Pseudo labeling for VTT16-21 by <i>Cap-2</i> Pseudo labeling for V3C1 by <i>Cap-2</i>					

Our augmented data:

Filter:

- CIDEr score for VTT videos.
- VTM (Video-Text Matching) for V3C1 videos.
- Aug-2: More training data filtered by higher threshold.

Data		Aug-1	Aug-2			
Dutu	Count Filter		Count	Filter		
VTT16-21	45,820	_	51,820	1		
Aug-22	34,660	CIDEr > 55	8,902	CIDEr > 80		
Aug-GT	5,598	CIDEr > 55	13,220	CIDEr > 80		
Aug-V3C1	i.	-	4,392	VTM > 60		
Aug-BT	-	-	12,860	CIDEr > 80		
Total	86,078		91,194			

Model	VTT Data	Aug-GT	Aug-BT	Aug-V3C1	CIDEr
Cap0	1				57.1
Cap2	1	1			59.5
Cap2+	1	1		1	59.6
Cap2+	1	1	1		60.0
СарЗ	1	1	1	1	61.0

Ablation study of data augmentation:

- Pseudo Labeling on VTT data helps a lot.
- Back Translation and Pseudo labeling on
 V3C1 also helps.
- Pooling all the augmentation data leads
 to the best performance.

Methodology - Re-ranking

$i \times j \times k$ candidates per video.

- *i* distinct captioning models
- j different random frame selection

methods(TSN) for each video

- k sentences for each selection method

How to select the best caption from candidates?

Methodology - Re-ranking

Measure:

- VTM (Video-Text Matching)
 - Fine-grained video-text alignment
- VTC (Video-Text Contrastive)

Overall video-text alignment

Combine VTM and VTC for re-ranking. (Lowest ranking sum of VTM and VTC)

Our submissions:

<u>**4 runs:**</u> different captioners, different re-ranking strategies

Calaria Ca		tioner Re-ran		nking	Main Task			Robust Task						
Submission	Cap-2	Cap-3	VTM	VTC	C	B@4	Μ	SP	ST	C	B@4	M	SP	ST
run1	1		1	1	38.4	9.21	32.81	14.9	47.0	38.9	9.41	33.05	14.8	20.52
run2		1	1	1	39.4	9.45	33.25	15.2	47.3	38.6	9.68	33.04	15.0	20.50
run3	1	1		1	39.4	9.48	33.19	15.1	47.3	38.4	9.72	33.15	14.9	20.36
run4	1	1	1	1	39.4	9.48	33.16	15.2	47.4	39.0	9.83	33.24	15.1	20.61

C: CIDEr, B@4: BLEU@4, M:METEOR, SP:SPICE, ST:STS

- Run4 stands out marginally.
- Basically the same performance on the main task and robust task.
 - video input augmentation

A view of a snow covered mountain from a paraglider on a sunny day in the mountains.

A white cat with blue eyes is sitting on a fence in a dark room with a green fence.

A person in a purple shirt is bouncing on the trampoline on a park on a sunny day.

Conclusion

RUC_AIM3's solution for VTT

- Video-text model (mPLUG-2) achieves better performance on VTT task.
- We further improve our data augmentation and re-ranking strategies.

CIDEr rank 1st on the main task and robustness sub-task.

Best CIDEr score: 39.4

Limitations

Our model:

Lack detailed desription.

- More detailed test set, but less detailed training set

Increase minimum length:

- Repeat the same word many times

Data Average Length Aug-1 17.35 Aug-2 17.51 VTT23 24.68

Future work:

- Generate more descriptive captions

Limitations

Robust sub-task:

- introduce natural corruptions and perturbations
- robust enough to handle these perturbations

More challenging benchmark:

real-world conditions:

- inadequate lighting
- camera shake.

Thanks!

Feel free to contact us: kaiwenwei@ruc.edu.cn gjin@ruc.edu.cn