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Abstract

In this paper we describe our TRECVID 2005 experiments. The

UvA-MediaMill team participated in four tasks. For the detection

of camera work (runid: A CAM) we investigate the benefit of

using a tessellation of detectors in combination with supervised

learning over a standard approach using global image informa-

tion. Experiments indicate that average precision results increase

drastically, especially for pan (+51%) and tilt (+28%). For con-

cept detection we propose a generic approach using our semantic

pathfinder. Most important novelty compared to last years sys-

tem is the improved visual analysis using proto-concepts based on

Wiccest features. In addition, the path selection mechanism was

extended. Based on the semantic pathfinder architecture we are

currently able to detect an unprecedented lexicon of 101 semantic

concepts in a generic fashion. We performed a large set of exper-

iments (runid: B vA). The results show that an optimal strategy

for generic multimedia analysis is one that learns from the train-

ing set on a per-concept basis which tactic to follow. Experiments

also indicate that our visual analysis approach is highly promis-

ing. The lexicon of 101 semantic concepts forms the basis for our

search experiments (runid: B 2 A-MM). We participated in au-

tomatic, manual (using only visual information), and interactive

search. The lexicon-driven retrieval paradigm aids substantially

in all search tasks. When coupled with interaction, exploiting

several novel browsing schemes of our semantic video search en-

gine, results are excellent. We obtain a top-3 result for 19 out of

24 search topics. In addition, we obtain the highest mean average

precision of all search participants. We exploited the technology

developed for the above tasks to explore the BBC rushes. Most

intriguing result is that from the lexicon of 101 visual-only mod-

els trained for news data 25 concepts perform reasonably well on

BBC data also.

1 Introduction

Despite the emergence of commercial video search engines,
such as Google [9] and Blinkx [3], multimedia retrieval is
by no means a solved problem. In fact, present day video
search engines rely mainly on text - in the form of closed
captions [9] or transcribed speech [3] - for retrieval. This re-
sults in disappointing performance when the visual content
is not reflected in the associated text. In addition, when

the videos originate from non-English speaking countries,
such as China or The Netherlands, querying the content be-
comes even harder as automatic speech recognition results
are much poorer. For videos from these sources, an ad-
ditional visual analysis potentially yields more robustness.
For effective video retrieval there is a need for multimedia
analysis; in which text retrieval is an important factor, but
not the decisive element. We advocate that the ideal mul-
timedia retrieval system should first learn a large lexicon of
concepts, based on multimedia analysis, to be used for the
initial search. Then, the ideal system should employ simi-
larity and interaction to refine the search until satisfaction.

We propose a multimedia retrieval paradigm built on
three principles: learning of a lexicon of semantic concepts,
multimedia data similarity, and user interaction. Within the
proposed paradigm, we explore the combination of query-
by-concept, query-by-similarity, and interactive filtering us-
ing advanced visualizations of the MediaMill semantic video
search engine. To demonstrate the effectiveness of our mul-
timedia retrieval paradigm, several components are evalu-
ated within the 2005 NIST TRECVID video retrieval bench-
mark [16].

The organization of this paper is as follows. First, we dis-
cuss our general learning architecture and data preparation
steps. Our system architecture for generic semantic index-
ing is presented in Section 3. We describe our approach
for camera work indexing in Section 4. Our multimedia re-
trieval paradigm is presented in Section 5. Our explorative
work on BBC rushes is addressed in Section 6.

2 Preliminaries

The MediaMill semantic video search engine exploits a com-
mon architecture with a standardized input-output model to
allow for semantic integration. The conventions to describe
the modular system architecture are indicated in Fig. 1.

2.1 General Learning Architecture

We perceive of video indexing as a pattern recognition prob-
lem. We first need to segment a video. We opt for cam-
era shots [18], indicated by i, following the standard in
TRECVID evaluations. Given pattern x, part of a shot,
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Figure 1: Data flow conventions as used in this paper. Different
arrows indicate difference in data flows.

the aim is to detect an index ω from shot i using proba-
bility pi(ω|xi). We exploit supervised learning to learn the
relation between ω and xi. The training data of the multi-
media archive, together with labeled samples, are for learn-
ing classifiers. The other data, the test data, are set aside
for testing. The general architecture for supervised learning
in the MediaMill semantic video search engine architecture
is illustrated in Fig. 2.

We can choose from a large variety of supervised machine
learning approaches to obtain pi(ω|xi). For our purpose,
the method of choice should be capable of handling video
documents. To that end, ideally it must learn from a limited
number of examples, it must handle unbalanced data, and
it should account for unknown or erroneously detected data.
In such heavy demands, the Support Vector Machine (SVM)
framework [35, 4] has proven to be a solid choice [1, 29]. The
usual SVM method provides a margin in the result. We
prefer Platt’s conversion method [19] to achieve a posterior
probability of the result. SVM classifiers thus trained for ω,
result in an estimate pi(ω|xi, ~q), where ~q are parameters of
the SVM yet to be optimized.

The influence of the SVM parameters on video indexing
is significant [14]. We obtain good parameter settings for a
classifier, by using an iterative search on a large number of
SVM parameter combinations. We measure average preci-
sion performance of all parameter combinations and select
the combination that yields the best performance, ~q∗. Here
we use 3-fold cross validation [11] with 3 repetitions to pre-
vent overfitting of parameters. The result of the parameter
search over ~q is the improved model p∗i (ω|xi, ~q

∗). In the
following we drop ~q∗ where obvious.

2.2 Data Preparation

Supervised learning requires labeled examples. In part, we
rely on the provided ground truth of the TRECVID 2005
common annotation effort [36]. It is extended manually to
arrive at an incomplete, but reliable ground truth for an
unprecedented amount of 101 semantic concepts in lexicon
ΛS . In addition, we manually labeled a substantial part of
the training set with respect to dominant type of camera
work, i.e. pan, tilt, and/or zoom , if present.

In order to recognize concepts based on low-level visual
analysis, we annotated 15 different proto-concepts: building
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Figure 2: General architecture for supervised learning in in the
MediaMill semantic video search engine, using the conventions of
Fig. 1.

(321), car (192), charts (52), crowd (270), desert (82), fire
(67), US-flag (98), maps (44), mountain (41), road (143),
sky (291), smoke (64), snow (24), vegetation (242), water
(108), where the number in brackets indicates the number
of annotation samples of that concept. We again used the
TRECVID 2005 common annotation effort as a basis for
selecting relevant shots containing the proto-concepts. In
those shots, we annotated rectangular regions where the
proto-concept is visible for at least 20 frames.

We split the training data a priori into four non-
overlapping training and validation sets to prevent overfit-
ting of classifiers. Training sets A, B, and C contain 30%
percent of the 2005 training data, validation set D contains
the remaining 10%. We assign all shots in the training set
randomly to either set A, B, C, or D.

3 Semantic Pathfinder Indexing

The central assumption in our semantic indexing architec-
ture is that any broadcast video is the result of an author-
ing process. When we want to extract semantics from a
digital broadcast video this authoring process needs to be
reversed. For authoring-driven analysis we proposed the
semantic pathfinder [30]. The semantic pathfinder is com-
posed of three analysis steps. It follows the reverse author-
ing process. Each analysis step in the path detects seman-
tic concepts. In addition, one can exploit the output of an
analysis step in the path as the input for the next one. The
semantic pathfinder starts in the content analysis step. In
this analysis step, we follow a data-driven approach of in-
dexing semantics. The style analysis step is the second anal-
ysis step. Here we tackle the indexing problem by viewing
a video from the perspective of production. This analysis
step aids especially in indexing of rich semantics. Finally,
to enhance the indexes further, in the context analysis step,
we view semantics in context. One would expect that some
concepts, like vegetation, have their emphasis on content
where the style (of the camera work that is) and context (of
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Figure 3: The semantic pathfinder for one concept, using the con-
ventions of Fig. 1.

concepts like graphics) do not add much. In contrast, more
complex events, like people walking, profit from incremental
adaptation of the analysis to the intention of the author.
The virtue of the semantic pathfinder is its ability to find
the best path of analysis steps on a per-concept basis. An
overview of the semantic pathfinder is given in Fig. 3.

3.1 Content Analysis Step

We view of video in the content analysis step from the data
perspective. In general, three data streams or modalities
exist in video, namely the auditory modality, the textual
modality, and the visual one. As speech is often the most
informative part of the auditory source, we focus on visual
features, and on textual features obtained from transcribed
speech. After modality specific data processing, we combine
features in a multimodal representation using early fusion
and late fusion [32].

3.1.1 Visual Analysis

Modeling visual data heavily relies on qualitative features.
Good features describe the relevant information in an image
while reducing the amount of data representing the image.
To achieve this goal, we use Wiccest features as introduced
in [6]. Wiccest features combine color invariance with nat-
ural image statistics. Color invariance aims to remove ac-
cidental lighting conditions, while natural image statistics
efficiently represent image data.

Color invariance aims at keeping the measurements con-
stant under varying intensity, viewpoint and shading. In [7]
several color invariants are described. We use the W in-
variant that normalizes the spectral information with the
energy. This normalization makes the measurements in-
dependent of illumination changes under uniform lighting
conditions.

When modeling scenes, edges are highly informative.
Edges reveal where one region ends and another begins.
Thus, an edge has at least twice the information content
then a uniformly colored patch, since an edge contains in-
formation about all regions it divides. Besides serving as
region boundaries, an ensemble of edges describes texture
information. Texture characterizes the material an object is
made of. Moreover, a compilation of cluttered objects can

Figure 4: An example of dividing an image up in overlapping re-
gions. In this particular example, the region size is a 1

2
of the image

size for both the x-dimension and y-dimension. The regions are uni-
formly sampled across the image with a step size of half a region.
Sampling in this manner identifies nine overlapping regions.

be described as texture information. Therefore, a scene can
be modeled with textured regions.

Texture is described by the distribution of edges at a cer-
tain region in an image. Hence, a histogram of a Gaussian
derivative filters represents the edge statistics. Since there
are more non-edge pixels then there are edge pixels, the dis-
tribution of edge responses for natural images always has a
peak around zero, i.e.: many pixels have no edge responses.
Additionally, the shape of the tails of the distribution is
often in-between a power-law and a Gaussian distribution.
This specific distribution can be well modeled with an in-
tegrated Weibull distribution [8]. This distribution is given
by
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where r is the edge response to the Gaussian derivative
filter and Γ(·) is the complete Gamma function, Γ(x) =
∫

∞

0
tx−1e−1dt. The parameter β denotes the width of the

distribution, the parameter γ represents the ’peakness’ of
the distribution, and the parameter µ denotes the origin of
the distribution.

To assess the similarity between Wiccest features, a
goodness-of-fit test is utilized. The measure is based on the
integrated squared error between the two cumulative distri-
butions, which is obtained by a Cramér-von Mises measure.
For two Weibull distributions with parameters Fβ , Fγ and
Gβ , Gγ a first order Taylor approximation of the Cramér-
von Mises statistic yields the log difference between the pa-
rameters. Therefore, a measure of similarity between two
Weibull distributions F and G is given by the ratio of the
parameters,

W2(F,G) =

√

min(Fβ , Gβ)

max(Fβ , Gβ)

min(Fγ , Gγ)

max(Fγ , Gγ)
. (2)

The µ parameter represents the mode of the distribution.
The position of the mode is influenced by uneven illumi-
nation and colored illumination. Hence, to achieve color
constancy the values for µ may be ignored.

In summary, Wiccest features provide a color invariant
texture descriptor. Moreover, the features rely heavily on
natural image statistics to compactly represent the visual
information.



3.1.2 Contextures: Regional Texture Descriptors and

their Context

The visual detectors aim to decompose an image in proto-
concepts like vegetation, water, fire, sky etc. To achieve this
goal, an image is divided up in several overlapping rectan-
gular regions. The regions are uniformly sampled across the
image, with a step size of half a region. The region size has
to be large enough to assess statistical relevance, and small
enough to capture local textures in an image. We utilize
a multi-scale approach, using small and large regions. An
example of region sampling is displayed in figure 4.

A visual scene is characterized by both global as well as
local texture information. For example, a picture with an
aircraft in mid air might be described as “sky, with a hole
in it”. To model this type of information, we use a proto-
concept occurrence histogram where each bin is a proto-
concept. The values in the histogram are the similarity
responses of each proto-concept annotation, to the regions
in the image.

We use the proto-concept occurrence histogram to char-
acterize both global and local texture information. Global
information is described by computing an occurrence his-
togram accumulated over all regions in the image. Local
information is taken into account by constructing another
occurrence histogram for only the response of the best re-
gion. For each proto-concept, or bin, b the accumulated oc-
currence histogram and the best occurrence histogram are
constructed by,

Haccumulated(b) =
∑

r∈R(im)

∑

a∈A(b)

W2(a, r) ,

Hbest(b) = arg max
r∈R(im)

∑

a∈A(b)

W2(a, r) ,

where R(im) denotes the set of regions in image im, A(b)
represents the set of stored annotations for proto-concept b,
and W2 is the Cramér-von Mises statistic as introduced in
equation 2.

We denote a proto-concept occurrence histogram as a con-
texture for that image. We have chosen this name, as our
method incorporates texture features in a context. The tex-
ture features are given by the use of Wiccest features, using
color invariance and natural image statistics. Furthermore,
context is taken into account by the combination of both
local and global region combinations.

Contextures can be computed for different parameter set-
tings. Specifically, we calculate the contextures at scales
σ = 1 and σ = 3 of the Gaussian filter. Furthermore, we
use two different region sizes, with ratios of 1

2 and 1
6 of

the x-dimension and y-dimensions of the image. Moreover,
contextures are based on one image, and not based on a
shot. To generalize our approach to shot level, we extract 1
frame per second out of the video, and then aggregate the
frames that belong to the same shot. We use two ways to
aggregate frames: 1) average the contexture responses for
all extracted frames in a shot and 2) keep the maximum
response of all frames in a shot. This aggregation strategy

accounts for information about the whole shot i, and in-
formation about accidental frames, which might occur with
high camera motion. The combination of all these param-
eters yields a vector of contextures ~vi, containing the final
result of the visual analysis.

3.1.3 Textual Analysis

In the textual modality, we aim to learn the association be-
tween uttered speech and semantic concepts. A detection
system transcribes the speech into text. For the Chinese
and Arabic sources we exploit the provided machine trans-
lations. The resulting translation is mapped from story level
to shot level. From the text we remove the frequently oc-
curring stopwords. After stopword removal, we are ready to
learn semantics.

To learn the relation between uttered speech and con-
cepts, we connect words to shots. We make this connection
within the temporal boundaries of a shot. We derive a lex-
icon of uttered words that co-occur with ω using the shot-
based annotations of the training data. For each concept ω,
we learn a separate lexicon, Λω

T , as this uttered word lexi-
con is specific for that concept. For feature extraction we
compare the text associated with each shot with Λω

T . This
comparison yields a text vector ~ti for shot i, which contains
the histogram of the words in association with ω.

3.1.4 Early Fusion

Indexing approaches that rely on early fusion first extract
unimodal features of each stream. The extracted features of
all streams are combined into a single representation. After
combination of unimodal features in a multimodal repre-
sentation, early fusion methods rely on supervised learning
to classify semantic concepts. Early fusion yields a truly
multimedia feature representation, since the features are
integrated from the start. An added advantage is the re-
quirement of one learning phase only. Disadvantage of the
approach is the difficulty to combine features into a com-
mon representation. The general scheme for early fusion is
illustrated in Fig. 5a.

We rely on vector concatenation in the early fusion
scheme to obtain a multimodal representation. We con-
catenate the visual vector ~vi with the text vector ~ti. After
feature normalization, we obtain early fusion vector ~ei.

3.1.5 Late Fusion

Indexing approaches that rely on late fusion also start with
extraction of unimodal features. In contrast to early fusion,
where features are then combined into a multimodal rep-
resentation, approaches for late fusion learn semantic con-
cepts directly from unimodal features. In general, late fu-
sion schemes combine learned unimodal concept scores into
a multimodal representation. Then late fusion methods rely
on supervised learning to classify semantic concepts. Late
fusion focuses on the individual strength of modalities. Uni-
modal concept detection scores are fused into a multimodal
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Figure 5: (a) General scheme for early fusion. Output of unimodal analysis is fused before a concept is learned. (b) General scheme
for late fusion. Output of unimodal analysis is used to learn separate scores for a concept. After fusion a final score is learned for the
concept. We use the conventions of Fig. 1.

semantic representation rather than a feature representa-
tion. A big disadvantage of late fusion schemes is its expen-
siveness in terms of the learning effort, as every modality
requires a separate supervised learning stage. Moreover,
the combined representation requires an additional learning
stage. Another disadvantage of the late fusion approach is
the potential loss of correlation in mixed feature space. A
general scheme for late fusion is illustrated in Fig. 5b.

For the late fusion scheme, we concatenate the probabilis-
tic output score after visual analysis, i.e. p∗

i (ω|~vi, ~q
∗), with

the probabilistic score resulting from textual analysis, i.e.
p∗i (ω|~ti, ~q∗), into late fusion vector ~li.

3.1.6 Content Pathfinder

We learn 101 semantic concepts based on the four vectors
resulting from analysis in the content analysis step. Thus
~vi,~ti, ~ei, and ~li serve as the input for our supervised learn-
ing module, which learns an optimized SVM model for each
semantic concept ω using 3-fold cross validation with 3 rep-
etitions on training set A. These models are then validated
on set D, yielding a best performing model p∗i (ω|~mi) for all

ω in ΛS , where ~mi ∈ {~vi,~ti, ~ei,~li}.

3.2 Style Analysis Step

In the style analysis step we conceive of a video from the
production perspective. Based on the four roles involved in
the video production process [31], this step analyzes a video
by four related style detectors. Layout detectors analyze
the role of the editor. Content detectors analyze the role
of production design. Capture detectors analyze the role
of the production recording unit. Finally, context detectors
analyze the role of the preproduction team, see Fig. 6.

3.2.1 Style Analysis

We develop detectors for all four production roles as feature
extraction in the style analysis step. We refer to our pre-
vious work for specific implementation details of the detec-
tors [31, Electronic Appendix]. We have chosen to convert
the output of all style detectors to an ordinal scale, as this
allows for elegant fusion.

For the layout L the length of a camera shot is used as
a feature, as this is known to be an informative descrip-
tor for genre [31]. Overlayed text is another informative
descriptor. Its presence is detected by a text localization
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Figure 6: Feature extraction and classification in the style analysis
step, special case of Fig. 2.



algorithm [25]. To segment the auditory layout, periods of
speech and silence are detected based on the provided au-
tomatic speech recognition results. We obtain a voice-over
detector by combining the speech segmentation with the
camera shot segmentation [31]. The set of layout features
is thus given by: L = {shot length, overlayed text, silence,

voice-over}.
As concerns the content C, a frontal face detector [27] is

applied to detect people. We count the number of faces,
and for each face its location is derived [31]. In addition,
we measure the average amount of object motion in a cam-
era shot [29]. Based on provided speaker identification we
identify each of the three most frequent speakers. Each
camera shot is checked for presence of speech from one of
the three [31]. We also exploit the provided named entity
recognition. The set of content features is thus given by:
C ={faces, face location, object motion, frequent speaker,

voice named entity}.
For capture T , we compute the camera distance from the

size of detected faces [27, 31]. It is undefined when no face
is detected. In addition to camera distance, several types
of camera work are detected [2], e.g. pan, tilt, zoom, and
so on. Finally, for capture we also estimate the amount of
camera motion [2]. The set of capture features is thus given
by: T = {camera distance, camera work, camera motion}.

The context S serves to enhance or reduce the correlation
between semantic concepts. Detection of vegetation can aid
in the detection of a forest for example. Likewise, the co-
occurrence of a space shuttle and a bicycle in one shot is
improbable. As the performance of semantic concept de-
tectors is unknown and likely to vary between concepts, we
exploit iteration to add them to the context. The rationale
here is to add concepts that are relatively easy to detect
first. They aid in detection performance by increasing the
number of true positives or reducing the number of false
positives. To prevent bias from domain knowledge, we use
the performance on validation set D of all concepts from ΛS

in the content analysis step as the ordering for the context.
To assign detection results for the first and least difficult
concept, we rank all shot results on p∗i (ω1|~mi). This rank-
ing is then exploited to categorize results for ω1 into one of
five levels. The basic set of context features is thus given
by: S = {content analysis step ω1}.

The concatenation of {L, C, T ,S} for shot i yields style
vector ~si. This vector forms the input for an iterative classi-
fier [31] that trains a style model for each concept in lexicon
ΛS . We classify all ω in ΛS again in the style analysis step.
We use 3-fold cross validation with 3 repetitions on train-
ing set B to optimize parameter settings in this analysis
step. We use the resulting probability as output for concept
detection in the style analysis step.

3.3 Context Analysis Step

The context analysis step adds context to our interpretation
of the video. Our ultimate aim is the reconstruction of the
author’s intent by considering detected concepts in context.

Semantic
Features

Combination

Supervised
Learner

Figure 7: Feature extraction and classification in the context anal-
ysis step, special case of Fig. 2.

Both the content analysis step and the style analysis step
yield a probability for each shot i and all concepts ω in ΛS .
The probability indicates whether a concept is present. We
fuse these semantic features of an analysis step for a shot i

into a context vector, see Fig. 7.
We consider three paths in the context analysis step. The

first path stems directly from the content analysis step. We
fuse the 101 p∗i (ω|~mi) concept scores into context vector ~di.
The second path stems from the style analysis step where we
fuse the 101 p∗i (ω|~si) scores into context vector ~pi. The third
path selects the best performer on validation set D from
either content analysis step or style analysis step. These
best performers are fused in context vector ~bi.

From these three vectors we learn relations between con-
cepts automatically. To that end the vectors serve as the
input for a supervised learning module, which associates a
contextual probability p∗i (ω|~ci) to a shot i for all ω in ΛS ,

where ~ci ∈ {~di, ~pi,~bi}. To optimize parameter settings, we
use 3-fold cross validation with 3 repetitions on the previ-
ously unused data from training set C.

The output of the context analysis step is also the output
of the entire semantic pathfinder on video documents. On
the way we have included in the semantic pathfinder, the re-
sults of the analysis on raw data, facts derived from produc-
tion by the use of style features, and a context perspective
of the author’s intent by using semantic features. For each
concept we obtain several probabilities based on (partial)
content, style, and context. We select from all possibilities
the one that maximizes average precision based on perfor-
mance on validation set D. The semantic pathfinder pro-
vides us with the opportunity to decide whether a one-shot
analysis step is best for the concept only concentrating on
(visual) content, or a two-analysis step classifier increasing
discriminatory power by adding production style to content,
or that a concept profits most from a consecutive analysis
on content, style, and context level.

3.4 Experiments

We traversed the entire semantic pathfinder for all 101 con-
cepts. The average precision performance of the seman-
tic pathfinder and its sub-systems, on validation set D, are
shown in Fig. 8.

We evaluated for each concept four analysis strategies in
the content analysis step: text-only, visual-only, early fu-



Table 1: UvA-MediaMill TRECVID 2005 run comparison for all 10 benchmark concepts. The best path of the semantic pathfinder is
marked in bold. Last column indicates results of our visual-only run.

SP-1 SP-2 SP-3 SP-4 SP-5 SP-6 Visual-only

People walking 0.199 0.172 0.154 0.179 0.101 0.103 0.031

Explosion 0.041 0.027 0.032 0.035 0.036 0.034 0.073

Map 0.142 0.16 0.135 0.123 0.099 0.127 0.138

US flag 0.1 0.063 0.11 0.095 0.072 0.114 0.129

Building 0.235 0.229 0.226 0.225 0.21 0.157 0.269

Waterscape 0.201 0.198 0.137 0.164 0.124 0.136 0.166

Mountain 0.22 0.193 0.182 0.195 0.17 0.128 0.207

Prisoner 0.005 0.001 0 0.001 0.001 0.001 0.003

Sports 0.342 0.225 0.289 0.202 0.137 0.153 0.272

Car 0.213 0.192 0.182 0.201 0.196 0.199 0.233

MAP 0.1698 0.146 0.1447 0.142 0.1146 0.1152 0.1521

sion, and late fusion. Results confirm the importance of
visual analysis for generic concept detection. Text-analysis
yields the best approach for only 8 concepts, whereas visual
analysis yields the best performance for as much as 45 con-
cepts. Fusion is optimal for the remaining 48 concepts, with
a clear advantage for early fusion (33 concepts) in favor of
late fusion (15 concepts).

The style analysis step again confirms the importance for
inclusion of professional television production facets for se-
mantic video indexing. Especially for concepts which share
many similarities in their production process, like anchors,
monologues, and entertainment. For other concepts, con-
tent is more decisive, like tennis and baseball for example.
Thus some concepts are just content, whereas others are
pure production style.

We boost concept detection performance further by the
usage of context. The pathfinder again exploits variation
in performance for the various paths to select an optimal
pathway. The results demonstrate the virtue of the semantic
pathfinder. Concepts are divided by the analysis step after
which they achieve best performance. Based on these results
we conclude that an optimal strategy for generic multimedia
analysis is one that learns from the training set on a per-
concept basis which tactic to follow.

3.4.1 Pathfinder Runs

We submitted six paths for each benchmark concept, prior-
itized according to validation set performance. For concept
explosion for example, the optimal path (SP-1) indicates
that visual-only analysis is the best performer. However,
in most cases the best path is a consecutive path of con-
tent, style, and context. We report the official TRECVID
benchmark results in Table 1.

The results show that the pathfinder mechanism is a good
way to estimate the best performing analysis path. The SP-
1 run containing the optimal path is indeed the best per-
former in 8 out of 10 cases. Overall, this is also our best
performing run. However, what strikes us most is that av-
erage precision results are much lower than can be expected
based on validation set performance reported in Fig. 8. This
may indicate that despite the use of separate training and

validation sets we are still overfitting the data. A point of
concern here is the random assignment of shots to the sep-
arate training and validation sets. This may bias the clas-
sifiers as it is possible that similar news items from several
channels are distributed to separate sets. For two concepts
(map and explosion) performance suffered from misinter-
pretation of correct concepts. Had we included examples
of news anchors with maps in the background of the studio
setting (for the map concept) and smoke (for explosion) in
our training sets, results would be higher. When looking at
the judged results, we also found that three concepts (water-
scape, mountain, and car) are dominated by commercials.
We do not perform well on commercial detection. This can
be explained because we take 1 frame per second out of the
video in the visual analysis. Sampling in this manner will
select different frames for the same commercials that reap-
pear on different time stamps in a video. We anticipate that
improvement in frame sampling yields increased robustness
for the entire pathfinder.

3.4.2 Visual-only Run

Validation set performance in Fig. 8. indicates that our vi-
sual analysis step performs quite good. To determine the
contribution of the visual analysis step, we therefore sub-
mitted a visual-only run. This involved training a Support
Vector Machine on the vector of contextures as introduced
in section 3.1.1. We trained an SVM for each of the 10 con-
cept of the concept detection task. An experiment for recog-
nizing proto-concept was submitted by another group [37].

The visual features in the submitted visual-only run are
slightly different from the visual features in the semantic
pathfinder system. This difference is caused by ongoing de-
velopment on the visual analysis. Specifically, we improved
the Weibull fit to be more robust and we added the proto-
concept car. The newer version of the visual analysis was
not incorporated in the semantic pathfinder. It was not
integrated because visual analysis is the first step in the se-
mantic path. Thus, a change in the visual analysis means
that all further paths would have to be recomputed. How-
ever, for a visual-only run, the improvements were feasible
to compute.



Semantic Concept Text Analysis Visual Analysis Early Fusion Late Fusion Style Content-Context Style-Context Best-Context Optimal Path

1 aircraft 0.049 0.199 0.203 0.157 0.093 0.205 0.110 0.210 0.210

2 allawi 0.188 0.054 0.229 0.026 0.011 0.274 0.007 0.243 0.274

3 anchor 0.175 0.585 0.472 0.562 0.764 0.615 0.780 0.771 0.780

4 animal 0.209 0.189 0.216 0.181 0.316 0.330 0.301 0.417 0.417

5 arrafat 0.084 0.112 0.073 0.078 0.135 0.141 0.247 0.176 0.247

6 baseball 0.051 0.240 0.226 0.040 0.085 0.084 0.073 0.028 0.240

7 basketball 0.033 0.541 0.235 0.451 0.532 0.573 0.589 0.641 0.641

8 beach 0.002 0.005 0.005 0.002 0.036 0.009 0.011 0.010 0.036

9 bicycle 0.096 0.025 0.128 0.098 0.140 0.109 0.406 0.400 0.406

10 bird 0.201 0.716 0.379 0.454 0.487 0.717 0.462 0.678 0.717

11 boat 0.065 0.147 0.039 0.169 0.102 0.172 0.132 0.222 0.222

12 building 0.159 0.281 0.251 0.085 0.292 0.298 0.304 0.327 0.327

13 bus 0.101 0.025 0.095 0.146 0.024 0.015 0.021 0.018 0.146

14 bush_jr 0.072 0.173 0.072 0.144 0.213 0.201 0.224 0.219 0.224

15 bush_sr 0.028 0.019 0.021 0.001 0.217 0.065 0.198 0.205 0.217

16 candle 0.008 0.003 0.020 0.024 0.006 0.002 0.003 0.018 0.024

17 car 0.108 0.253 0.197 0.214 0.215 0.269 0.243 0.282 0.282

18 cartoon 0.511 0.747 0.569 0.640 0.455 0.601 0.528 0.693 0.747

19 chair 0.100 0.534 0.328 0.522 0.207 0.552 0.284 0.577 0.577

20 charts 0.209 0.275 0.440 0.384 0.321 0.456 0.322 0.463 0.463

21 clinton 0.002 0.264 0.075 0.207 0.018 0.002 0.264

22 cloud 0.034 0.237 0.101 0.156 0.126 0.228 0.128 0.172 0.237

23 corporate_leader 0.040 0.097 0.051 0.077 0.078 0.049 0.080 0.065 0.097

24 court 0.077 0.057 0.338 0.003 0.099 0.350 0.116 0.368 0.368

25 crowd 0.233 0.404 0.404 0.402 0.391 0.424 0.414 0.446 0.446

26 cycling 0.103 0.020 0.135 0.001 0.435 0.121 0.428 0.421 0.435

27 desert 0.034 0.114 0.129 0.098 0.070 0.143 0.095 0.144 0.144

28 dog 0.284 0.262 0.446 0.004 0.294 0.483 0.200 0.498 0.498

29 drawing 0.318 0.275 0.269 0.318 0.045 0.208 0.029 0.274 0.318

30 drawing_cartoon 0.403 0.288 0.293 0.405 0.093 0.442 0.219 0.443 0.443

31 duo_anchor 0.008 0.651 0.054 0.060 0.857 0.602 0.881 0.882 0.882

32 entertainment 0.257 0.268 0.325 0.193 0.684 0.496 0.693 0.700 0.700

33 explosion 0.040 0.127 0.087 0.060 0.094 0.118 0.034 0.125 0.127

34 face 0.724 0.898 0.893 0.755 0.913 0.696 0.925 0.929 0.929

35 female 0.065 0.316 0.118 0.021 0.414 0.336 0.419 0.420 0.420

36 fireweapon 0.036 0.039 0.128 0.043 0.037 0.131 0.055 0.059 0.131

37 fish 0.065 0.235 0.116 0.100 0.284 0.231 0.322 0.353 0.353

38 flag 0.096 0.165 0.121 0.157 0.135 0.182 0.145 0.184 0.184

39 flag_usa 0.077 0.185 0.141 0.175 0.137 0.190 0.162 0.215 0.215

40 food 0.016 0.071 0.068 0.030 0.172 0.138 0.187 0.216 0.216

41 football 0.026 0.188 0.088 0.033 0.252 0.196 0.330 0.351 0.351

42 golf 0.069 0.038 0.179 0.092 0.109 0.190 0.059 0.214 0.214

43 government_building 0.026 0.035 0.019 0.157 0.212 0.008 0.212 0.213 0.213

44 government_leader 0.291 0.275 0.261 0.378 0.400 0.401 0.412 0.416 0.416

45 graphics 0.169 0.354 0.358 0.340 0.363 0.445 0.402 0.472 0.472

46 grass 0.016 0.151 0.042 0.063 0.098 0.167 0.094 0.107 0.167

47 hassan_nasrallah 0.446 0.867 0.278 0.667 0.158 0.917 0.251 1.000 1.000

48 horse 0.001 0.129 0.219 0.001 0.308 0.182 0.341 0.338 0.341

49 horse_racing 0.001 0.059 0.253 0.201 0.540 0.204 0.409 0.406 0.540

50 house 0.081 0.005 0.081 0.006 0.012 0.005 0.014 0.008 0.081

51 hu_jintao 0.267 0.094 0.230 0.082 0.060 0.296 0.069 0.323 0.323

52 indoor 0.400 0.616 0.584 0.607 0.677 0.674 0.718 0.722 0.722

53 kerry 0.030 0.079 0.028 0.005 0.028 0.123 0.003 0.065 0.123

54 lahoud 0.135 0.394 0.248 0.297 0.258 0.559 0.330 0.454 0.559

55 male 0.101 0.244 0.131 0.215 0.279 0.259 0.291 0.294 0.294

56 maps 0.146 0.406 0.308 0.323 0.388 0.471 0.407 0.493 0.493

57 meeting 0.202 0.368 0.228 0.352 0.393 0.404 0.422 0.452 0.452

58 military 0.183 0.239 0.305 0.331 0.282 0.357 0.293 0.358 0.358

59 monologue 0.053 0.128 0.089 0.138 0.692 0.149 0.718 0.724 0.724

60 motorbike 0.003 0.399 0.163 0.003 0.014 0.389 0.399

61 mountain 0.041 0.299 0.181 0.203 0.228 0.347 0.250 0.331 0.347

62 natural_disaster 0.126 0.035 0.152 0.106 0.056 0.151 0.028 0.163 0.163

63 newspaper 0.068 0.526 0.433 0.454 0.497 0.525 0.497 0.529 0.529

64 nightfire 0.011 0.009 0.009 0.003 0.005 0.131 0.002 0.003 0.131

65 office 0.029 0.073 0.065 0.091 0.071 0.062 0.078 0.098 0.098

66 outdoor 0.440 0.668 0.706 0.665 0.634 0.744 0.726 0.754 0.754

67 overlayed_text 0.552 0.697 0.678 0.686 0.991 0.706 0.991 0.990 0.991

68 people 0.803 0.833 0.870 0.804 0.937 0.848 0.890 0.926 0.937

69 people_marching 0.121 0.229 0.232 0.169 0.218 0.252 0.227 0.256 0.256

70 police_security 0.017 0.007 0.015 0.009 0.019 0.017 0.018 0.022 0.022

71 powell 0.033 0.019 0.073 0.012 0.019 0.031 0.190 0.077 0.190

72 prisoner 0.011 0.008 0.077 0.003 0.011 0.088 0.013 0.088 0.088

73 racing 0.007 0.009 0.006 0.001 0.008 0.010 0.029 0.051 0.051

74 religious_leader 0.268 0.060 0.251 0.190 0.022 0.252 0.006 0.346 0.346

75 river 0.167 0.500 0.084 0.252 0.017 0.025 0.061 0.120 0.500

76 road 0.120 0.239 0.219 0.219 0.230 0.268 0.252 0.277 0.277

77 screen 0.110 0.066 0.126 0.075 0.073 0.154 0.080 0.149 0.154

78 sharon 0.003 0.008 0.210 0.037 0.008 0.199 0.002 0.151 0.210

79 sky 0.180 0.499 0.498 0.494 0.482 0.537 0.497 0.551 0.551

80 smoke 0.084 0.330 0.272 0.282 0.219 0.374 0.208 0.353 0.374

81 snow 0.066 0.036 0.101 0.028 0.084 0.299 0.142 0.056 0.299

82 soccer 0.037 0.533 0.365 0.455 0.510 0.578 0.512 0.636 0.636

83 splitscreen 0.080 0.616 0.287 0.591 0.819 0.677 0.757 0.795 0.819

84 sports 0.132 0.296 0.257 0.320 0.423 0.459 0.466 0.529 0.529

85 studio 0.412 0.653 0.630 0.674 0.746 0.718 0.780 0.781 0.781

86 swimmingpool 0.002 0.001 0.001 0.178 0.012 0.181 0.175 0.181

87 table 0.083 0.135 0.140 0.083 0.203 0.107 0.176 0.197 0.203

88 tank 0.012 0.024 0.030 0.019 0.001 0.335 0.001 0.001 0.335

89 tennis 0.219 0.644 0.617 0.691 0.382 0.763 0.420 0.764 0.764

90 tony_blair 0.750 0.254 0.688 0.256 0.005 0.059 0.021 0.751 0.751

91 tower 0.015 0.023 0.083 0.020 0.068 0.062 0.073 0.115 0.115

92 tree 0.013 0.178 0.187 0.110 0.097 0.189 0.145 0.151 0.189

93 truck 0.040 0.035 0.049 0.022 0.051 0.062 0.066 0.068 0.068

94 urban 0.205 0.270 0.291 0.297 0.285 0.320 0.331 0.356 0.356

95 vegetation 0.071 0.224 0.198 0.188 0.204 0.236 0.210 0.240 0.240

96 vehicle 0.135 0.281 0.273 0.278 0.286 0.326 0.315 0.343 0.343

97 violence 0.233 0.291 0.338 0.348 0.387 0.451 0.440 0.485 0.485

98 walking_running 0.224 0.327 0.328 0.354 0.414 0.410 0.421 0.464 0.464

99 waterbody 0.077 0.275 0.203 0.237 0.251 0.305 0.289 0.346 0.346

100 waterfall 0.001 0.001 0.008 0.118 0.009 0.042 0.256 0.256

101 weather 0.461 0.240 0.508 0.483 0.555 0.579 0.560 0.548 0.579

MAP 0.143 0.254 0.231 0.224 0.263 0.300 0.282 0.352 0.382

TRECVID MAP 0.101 0.246 0.203 0.197 0.245 0.296 0.259 0.320 0.322

Figure 8: Validation set average precision performance for 101 semantic concepts using sub-systems of the semantic pathfinder. The best
path for each concept is marked with gray cells. Empty cells indicate impossibility to learn models, due to lack of annotated examples in
the training sub-set used.



Table 2: Validation set average precision performance for 3 types
of camera work using several versions of our camera work detector.

Pan Tilt Zoom MAP

Late Fusion 0.862 0.786 0.862 0.837

Late Fusion + Selected Context 0.859 0.752 0.866 0.826

Late Fusion + Context 0.856 0.656 0.856 0.789

Early Fusion 0.703 0.558 0.783 0.681

Global 0.569 0.613 0.813 0.665

Global + Context 0.591 0.562 0.792 0.648

Early Fusion + Context 0.616 0.461 0.765 0.614

The results of our visual-run reflect the importance of vi-
sual analysis. For four concepts (explosion, US flag, build-
ing, car) we outperform the pathfinder system. This im-
provement might be attributed to the use of improved visual
features and to the fact that we use the entire training set
in SVM-training. However, since the visual analysis step
is embedded in the pathfinder system, the visual analysis
should never perform better. Therefore we believe that re-
sults of the pathfinder system will improve when the new
features are included.

4 Camera Work

For the detection of camera work we start with an exist-
ing implementation based on spatiotemporal image analy-
sis [34, 12]. Given a set of global intensity images from shot
i, the algorithm first extract spatiotemporal images. On
these images a direction analysis is applied to estimate di-
rection parameters. These parameters form the input for a
supervised learning module to learn three types of camera
work. We modified the algorithm in various ways. We su-
perimposed a tessellation of 8 regions on each input frame
to decrease the effect of local disturbances. Parameters thus
obtained are exploited using an early fusion and late fusion
approach. In addition we explored whether the 101 concept
scores obtained from the semantic pathfinder aid in detec-
tion of camera work.

4.1 Experiments

Experiments on validation set D indicate that average pre-
cision results increase drastically, especially for pan (+51%)
and tilt (+28%), see Table 2. The best approach is a late fu-
sion scheme without the usage of context. Relative to other
participants we performed quite good in precision, but quite
bad in terms of recall. Results indicate that the base de-
tector is too conservative. However, it also shows that any
global image based camera work detector has the potential
to profit from a tessellation of region-based detectors.

5 Lexicon-driven Retrieval

We propose a lexicon-driven retrieval paradigm to equip
users with semantic access to multimedia archives. The

aim is to retrieve from a multimedia archive S, which is
composed of n unique shots {s1, s2, . . . , sn}, the best possi-
ble answer set in response to a user information need. To
that end, we use the 101 concepts in the lexicon as well as
the 3 types of camera work for our automatic, manual, and
interactive search systems.

5.1 Automatic Search

Our automatic search engine uses only topic text as in-
put [10], as we postulate that it is unreasonable to expect a
user to provide a video search system with example videos
in a real world scenario. We rely purely on text and the lex-
icon of 101 semantic concept detectors that we have devel-
oped using the semantic pathfinder, see Section 3, to search
through the video collection. We developed our search sys-
tem using the video data, topics, and ground truths from
the 2003 and 2004 TRECVID evaluations as a training set.

5.1.1 Indexing Components

Our automatic search system incorporates regular TFIDF-
based indices for standard retrieval using the bfx-bfx [24]
formula, Latent Semantic Indexing [5] for text retrieval
with implicit query expansion, and 101 the different seman-
tic concept indices for query-by-concept. Each index was
matched to one or more concepts, or synsets in the Word-
Net [13] lexical database on an individual basis, according
to whether the concept directly matches the content of the
detectors. For example, the detector for the concept baseball

finds shots of baseball games, and these shots invariably in-
clude baseball players, baseball equipment, and a baseball
diamond, so these concepts are also matched. Additional
synsets are added to WordNet for semantic concepts that
do not have a direct WordNet equivalent.

5.1.2 Automatic Query Interface Selection

We perform the standard stopping and stemming proce-
dures on the topic text (using the SMART stop list [23] with
the addition of the words find and shots; and the Porter
stemming algorithm [20] respectively). In addition, we per-
form part-of-speech tagging and chunking using the Tree-
Tagger [26]. This grammatical information is used to iden-
tify two different query categorizations: complex vs. simple
queries and general vs. specific queries. Any topic contain-
ing more than one noun chunk is classified as complex, as
it refers to more than one object, while requests containing
only a single noun chunk are classified as simple. If a re-
quest contains a name (a proper noun) it refers to a specific
object, rather than a general category, so we categorize all
requests containing proper nouns as specific requests, and
all others as general requests.

Subsequently, we extract the WordNet words in the topic
text through dictionary lookup of noun chunks and nouns.
We identify the correct synset for WordNet words with
multiple meanings through disambiguation. We evaluated



a number of disambiguation strategies using the Word-
Net::Similarity [17] resource, and found that for the pur-
poses of our system, the best approach was to choose the
most commonly occurring meaning of a word. Then we look
for related semantic concept index synsets in the hypernym
and hyponym trees of each of the topic synsets. If an index
synset is found, we calculate the similarity between the two
synsets using the Resnik similarity measure [21].

Finally, queries are formed. We create both a stemmed
and an unstemmed TFIDF query using all of the topic
terms. We create an extra TFIDF query on proper nouns
only for specific topics, and a query on all nouns only for
general topics. For the LSI index we create also a query
using all of the topic terms, and in addition we create an
additional query using proper nouns only for specific top-
ics, and all nouns for general topics. Finally, we select the
concept index with the highest Resnik similarity to a topic
synset as the best match, and query on this concept.

5.1.3 Combining Query Results

We use a tiered approach for result fusion, first fusing the
text results from the TFIDF and LSI searches individually,
then fusing the resultant two sets, and finally combining
them with the results from the semantic concept search.
We use weighted Borda fusion to combine results, and de-
veloped the weights through optimization experiments on
the training set. We use results from unstemmed searches
to boost stemmed results for simple topics, as these benefit
from using the exact spelling to search on text. We also
boost text searches with a search on proper nouns for spe-
cific topics, as proper nouns are a good indicator of result
relevance.

When combining text results with concept results, we
use two measures developed specifically for WordNet by
Resnik [21]: concept information content and similarity
(previously mentioned). The information content measure
is a measure of the specificity of a concept – as a concept
becomes more abstract, the information content decreases.
When the matching index concept has high information con-
tent, and the words in the concept do not, we give priority
to the concept results. Likewise, when the matched concept
index is very similar to the topic, then we give the concept
search a very high weighting.

5.2 Manual Search

Our manual search approach investigates the power of lex-
icon driven retrieval used in a visual-only setting. We put
the principle of lexicon driven retrieval to the test by using
only the 101 concepts in answering the queries. Further-
more, we test the hypothesis that visual information, this
year, is significantly more important than textual informa-
tion. To test the impact of visual information, we use no
other modality whatsoever, and rely only on visual features.
This entails training a Support Vector Machine on the vec-
tor of contextures as introduced in section 3.1.1. This SVM

is trained for every one of the 101 concepts with the whole
development set as a training set. This lexicon of 101 visual
concepts is subsequently used in answering the queries. For
each query, we manually select one or two concepts that fit
the question, and use the outcome of these detectors as our
final answer to the question.

5.3 Interactive Search

Our interactive search systems stores the probabilities of all
detected concepts and types of camera work for each shot
in a database. In addition to learning, the paradigm also
facilitates multimedia analysis at a similarity level. In the
similarity component, 2 similarity functions are applied to
index the data in the visual and textual modality. It re-
sults in 2 similarity distances for all shots, which are stored
in a database. The MediaMill search engine offers users
an access to the stored indexes and the video data in the
form of 106 query interfaces; i.e. 2 query-by-similarity in-
terfaces, 101 query-by-concept interfaces and 3 query-by-
camera work interfaces. The query interfaces emphasize the
lexicon-driven nature of the paradigm. Each query interface
acts as a ranking operator Φi on the multimedia archive S,
where i ∈ {1, 2, . . . , 106}. The search engine stores results
of each ranking operator in a ranked list ρi, which we denote
by:

ρi = Φi(S) . (3)

The search engine handles the query requests, combines the
results, and displays them to an interacting user. Within
the paradigm, we perceive of interaction as a combination
of querying the search engine and selecting relevant re-
sults using one of many display visualizations. A schematic
overview of the retrieval paradigm is given in Fig. 9.

To support browsing with advanced visualizations the
data is further processed. The high-dimensional feature
space is projected to the 2D visualization space to allow
for visual browsing. Clusters, and representatives for each
cluster, are identified to support hierarchical browsing. Fi-
nally, semantic threads are identified, to allow for fast se-
mantic browsing. For interactive search, users map top-
ics to query-by-multimodal-concept or query-by-keyword to
create a set of candidate results to explore. When there is
a one-to-one relation between the query and the concept,
a rank-time browsing method is employed. In other cases,
the set forms the starting point for visual, hierarchical, or
semantic browsing. The browsing methods are supported
by advanced visualization and active learning tools.

5.3.1 Multimedia Similarity Indexing

After all the concepts are detected, the low level features
are usually ignored. We believe, however, that these fea-
tures are still valuable in adding information to the results
of query-by-concept search. Except for specific concepts
such as person X (Allawi, Bush, Blair), USA flag, most of
provided concepts have general meaning like sport, animal,
maps, drawing. These concepts can be classified further into
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Figure 9: The lexicon-driven paradigm for interactive multimedia
retrieval combines learning, similarity, and interaction. It learns to
detect a lexicon of 101 semantic concepts together with 3 types of
camera work. In addition, it computes 2 similarity distances. A
search engine then presents 2 interfaces for query-by-similarity, 3
interfaces for query-by-camera-work, and 101 interfaces for query-
by-concept. Based on interaction a user may refine search results
until an acceptable standard is reached.

sub-concepts. For instance, the map concepts may contain
maps in weather forecast, or a map of a country in a news re-
port. Hence, we allow users to distinguish query-by-concept
results further based on low level features.

There are different options for selecting low-level fea-
tures, either using colors, textures, shapes or combinations
of those. We use the visual concept features from the visual
analysis step of the semantic pathfinder, see Section 3.1.1.
We exploit the same 15 proto-concepts, but now with 6 dif-
ferent parameter sets for each shot. Those values are repre-
sented as a feature vector per shot. All the shots with their
corresponding feature vectors built up a 90 dimensional fea-
ture space.

Obtaining the best performance on retrieving images, not
only depends on the features, but also on the selection of
an appropriate similarity function. The aim is to choose
the best distance function that is able to return the max-
imum number of relevant images in its nearest neighbors.
Based on experimental results we choose the L2 measure as
a distance function.

5.3.2 Combining Query Results

Combination by Linear Weighting To reorder ranked
lists of results, we first determine the rank rij of shot sj

over the various ρi. Denoted by:

rij = ρi(sj) . (4)

We define a weight function w(·) that computes the weight
of sj in ρi based on rij . This linear weight function gives
a higher weight to shots that are retrieved in the top of ρi

and gradually reduces to 0. This function is defined as:

w(rij) =
n − rij + 1

n
. (5)

We aggregate the results for each shot sj by adding the
contribution from each ranked list ρi. We then use the final
ranking operator Φ∗ to rank all shots from S in descending
order based on this new weight. This combination method
yields a final ranked list of results ρ∗, defined as:

ρ∗ = Φ∗





{

m
∑

i

w(rij)

}

j=1,2,...,n



 , (6)

where m indicates the number of selected query interfaces.

Combination by Semantic Threads The generated con-
cept probabilities more or less describe the content of each
shot. However, since there are only a limited number of cat-
egories for detection, a problem arises when a shot doesn’t
fit into any category, i.e. each individual concept detector
returned a near-zero value. All shots with all concept values
below a threshold could simply be removed. However some
detectors produce low-value results but the top-ranked shots
are still correct. This needs to be taken into account when
combining shots. We use a round-robin pruning procedure
to ensure that at least a top-N shots from each concept de-
tector is included, even when that detector has very low
values compared to other detectors.

Each remaining shot now contains at least one detected
concept. With this information a distance measurement
between shots can be created. But how do we measure
distance between concept vectors? If we assume equal dis-
tances between concepts, we can construct a distance matrix
made up from the similarity Spq between shots p and q us-
ing well-known distance metrics such as Euclidean distance
or histogram intersection. Given the computed distance be-
tween shots, it is possible to find groups of related shots us-
ing clustering techniques. Currently we use K-means clus-
tering.

Now that clusters of related shots exist the task of forming
a single coherent line of shots from each cluster must be
examined. We apply a shortest path algorithm so that shots
that are next to each other usually have a very low distance
to each other, which means that shots with similar semantic
content are near each other.

5.4 Display of Results

For effective interaction an interface for communicating be-
tween the user and the system is needed. We consider two
issues that are required for an effective interface:

(1) For query specification, support should be given to
explore the collection in search of good examples as the
user seldom has a good example at his/her disposal.



Figure 10: Interfaces of the MediaMill semantic video search engine. On the left the CrossBrowser showing results for tennis. On top
the SphereBrowser, displaying several semantic threads. Bottom right: active learning using a semantic cluster-based visualization in the
GalaxyBrowser.

Most existing systems browse key frames in sequence
(left-right, top-down) [28]. Hence, relations between frames
are not taken into account. For effective interaction this
may be unappropriate as the user can not benefit from the
inherent structure found in video collections. Therefore,

(2) In the visualization, relations between key frames
should be taken into account to allow selection of several
frames by one user action.

For these reasons, visualization of key frames including
support for browsing and exploring is essential in an inter-
active search system. We explored three advanced visual-
izations.

5.4.1 CrossBrowser

To visualize query-by-concept results we propose a Cross-

Browser. The browser displays two orthogonal dimensions.
The horizontal one is the time-thread, using the original
TRECVID shot sequence. The vertical dimension contains
the ranked list of query results. The GUI gives the user a
cross layout of nearby shots on the screen. It exploits the
observation that semantically similar shots tend to cluster
in the time dimension. The resulting browser is visible in
Fig. 10.

5.4.2 GalaxyBrowser

To speed up the search within the time limitation, we want
to support the user with a system that they are able to se-
lect more than one key frame in one mouse action. It can be
assumed that the key frames relevant to a search topic share
similar features. Hence, they should be close to each other
in the feature space. Therefore, visualization based on the
similarity between them will make the search easier as simi-
lar images are grouped together in a specific location of the
search space. Hence, less navigation and interaction actions
will be needed. We propose the GalaxyBrowser, which in-
tegrates advanced similarity based visualization with active
learning.

The similarity based visualization of [15] is the basis for
our retrieval. In brief, we have pointed out that for an
optimal visualization system, three requirements have to
obeyed: overview, structure preservation and visibility. The
first requirement ensures that the set displayed will be able
to represent the whole collection, the so called represen-
tative set. For user interaction, the collection should be
projected to the display space. Hence, the second require-
ment tries to preserve the relations between key frames
in the original feature space. The final requirement keeps
the content of displayed key frames feasible for interaction.



These are conflicting requirements. For example, to sat-
isfy the overview requirement, the number of representative
key frames should be increased. Because of the fixed size
of the display space, the more key frames the higher the
chance of overlap, the visibility requirement hence will be
violated. Moreover, while preserving the visibility images
are spread out from each other, original relations between
them are changed i.e. structure is not preserved. Therefore,
cost functions for each requirement and balancing functions
between them are proposed.

Active learning algorithms mostly use support vector ma-
chines (SVM) as a feedback learning base [38, 33]. In in-
teractive search, using this approach, the system first shows
some images and asks the user to label those as positive
and/or negative. The learning is either based on both pos-
itive and negative examples (known as two-class SVM) or
on positive/negative ones only (known as one-class SVM).
These examples are used to train the SVM to learn classifiers
separating positive and negative examples. The process is
repeated until the performance satisfies given constraints.
We have done a comparison between the two approaches,
the results turn out that one-class SVM generally performs
better than the two-class, as well as faster in returning the
result. We concentrate on the use of one-class SVM for
learning the relevance feedback.

The combination of the two techniques is drawn into one
scheme (see Fig. 11). The offline stage contains feature
extraction and similarity function selection. The ISOSNE
from [15] is applied to project the collection from the high
dimensional space to the visualization space. The next step
will decide which set of key frames will be used as a repre-
sentative one. To do so, we employ k-means algorithm to
cluster key frames into a fixed number of groups. A set of
key frames selected from different groups is the represen-
tative set of the collection. Information of each key frame
belonging to a certain group, and its position in the visual-
ization space is stored as offline data.

In the interactive stage, query results are input for start-
ing up the search. First, the set of top k key frames from
the query results is displayed. The user then uses the sys-
tem to explore the collection and find relevant key frames.
Particularly, if the currently displayed set contains any pos-
itive one, the user selects that key frame and goes into the
corresponding cluster with the expectation of finding more
similar ones. With the advantage of similarity based vi-
sualization, instead of clicking on an individual key frame
for labeling, the system supports the user with mouse drag-
ging to draw the area of key frames in the same category.
This means that when the user finds a group of relevant key
frames, he/she draws a rectangle around those and marks
them all as positive examples. Therefore, our system can
reduce the number of actions from the user with the same
amount of information for relevance feedback. In case there
is no positive key frame in the current set, the user then asks
the system to display another set, which contains the next
k key frames from the query results. Key frames which are
selected as training examples or displayed before will not be

Figure 11: Scheme of an interactive search in the GalaxyBrowser
with the combination of active learning and similarity based visual-
ization.

shown again.
In the learning step, when a certain number of training

examples are provided, the SVM trains the support vec-
tors. We use the well-known SVM library developed by
Chang and Lin [4], which provides a one-class implemen-
tation. After the learning, a set of images closest to the
border is returned. The process is repeated until a certain
constraint is satisfied such as number of iterations, time lim-
itation, or simply that the user does not want to give any
more feedback. At that point, the system will return the
final result containing key frames with maximum distances
to the border as they are assumed having high probabilities
to be relevant to the search topic.

5.4.3 SphereBrowser

To visualize the thread structure a so called Sphere-
Browser [22] was developed. The browser displays two or-
thogonal dimensions. The horizontal one is the time-thread,
using the original TRECVID shot sequence. The vertical
dimension contains for each shot cluster-threads of seman-
tically similar footage. The GUI gives the user a a spheri-
cal layout of nearby shots on the screen, and the user can
jump to any shown shot with transition animations between
movements so that the browser gives the user the feeling he
is looking at one side of a giant turnable sphere of video
material. Using the mouse and arrow keys the user can
then navigate either through time or through related shots,
selecting relevant shots when found. Also selecting (parts
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Condoleeza Rice (149)

Iyad Allawi (150)

Omar Karami (151)

Hu Jintao (152)

Tony Blair (153)

Mahmoud Abbas (154)

graphic map of Iraq, Bagdhad marked  (155)

two visible tennis players on the court (156)

people shaking hands (157)

helicopter in flight (158)

George W.  Bush entering or leaving a vehicle (159)

something on fire with flames and smoke visible (160)

people with banners or signs (161)

people entering or leaving a building (162)

a meeting with a large table and people (163)

a ship or boat (164)

basketball players on the court (165)

one or more palm trees (166)

an airplane taking off (167)

a road with one or more cars (168)

one or more military vehicles (169)

a tall building (170)

a goal being made in a soccer match (171)

office setting (172)

Others

MediaMill CrossBrowser

MediaMill GalaxyBrowser

MediaMill SphereBrowser

MediaMill MixedBrowser

MediaMill Manual Search

MediaMill Automatic Search

MediaMill Text-only

Figure 12: Comparison of automatic, manual, and interactive search results for 24 topics. Results for the users of the lexicon-driven
retrieval paradigm are indicated with special markers.

of) entire threads is possible. Smooth transition animations
exist to enable the user to have a better intuitive feeling of
where he is browsing in the data set. The resulting browser
is shown in Fig. 10.

5.5 Experiments

5.5.1 Automatic Search

We submitted two runs for automatic search, one baseline
run using the final text search strategy only, and one full
run incorporating text and semantic concepts. As can be
seen in Fig. 12 the combined semantic and text run out-
performed the text run on nearly all counts. We did best
for those topics that had a clear mapping to the semantic
concept indices, i.e. tennis for topic 156, meeting for topic
163 (achieving the best result for this topic) and basketball

for topic 165. In some cases the concept weighting strategy
was not optimal, for example for topic 158. In this case
we detected the aircraft index, but the concept results were
given a weighting of 0 in the result fusion because the infor-
mation content of the concept helicopter was calculated to
be much higher than the information content of the concept
aircraft. If we had utilized the aircraft detector in this case,
we would have achieved an average precision of 0.17, which
is higher than the best evaluated average precision of 0.14.

We have demonstrated that automatic search using only
text as input is a realistic task. We perform better than
the median for a number of topics, and even achieve the
best score for one topic. Postulating that all other sys-
tems incorporate multimodal examples in their search, this
is a significant result. The performance of our search en-
gine is best when one or more related indices are present;

we expect that the results of our system will improve as
we add more semantic concept indices, using our semantic
pathfinder strategy.

5.5.2 Manual Search

We submitted one run for manual search where we only use
the 101 concepts in the lexicon to answer the queries. More-
over, we restrict ourselves to using only visual information.
For thirteen topics we score above the median. Specifically,
for two queries, i.e. vehicle with flames (160) and tennis

players (156) we perform the best of all manual runs, and
for two other queries, i.e. people with banners (161) and
basketball players (165) we are second best. For ten queries
we score below the median, three of those are not covered
by our lexicon, and seven are person-x type queries. We
perform badly for person-x queries because the features de-
scribe visual scene layout, consequently, names and faces
are not modeled. For the remaining fourteen topics there
is only one i.e. boat (164) where we score below the me-
dian. Compared to our automatic search text baseline, we
perform worse on eight queries. Of those eight queries, the
text baseline performs better for all person-x queries, and
for one other query (164). Consequently, a visual-only ap-
proach outperforms the text baseline in 16 queries, including
the out-of-lexicon queries.

We believe our results support the lexicon-driven retrieval
approach and show the importance of visual analysis. De-
spite the obvious disadvantages of using only visual infor-
mation, we outperform the text baseline, and even score the
best of all manual runs in two queries.
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Figure 13: Overview of all search runs submitted to TRECVID 2005, ranked according to mean average precision. Users who exploited
the proposed paradigm are indicated with special markers.

5.5.3 Interactive Search

We submitted four runs for interactive search. Three users
focussed on using only one browser. The fourth users mixed
all browsers. Results in Fig. 12 indicate that for most search
topics, users of the proposed paradigm for interactive multi-
media retrieval score above average. Furthermore, users of
our approach obtain a top-3 average precision result for 19
out of 24 topics. Best performance is obtained for 7 topics.
Best results are obtained with the CrossBrowser.

Depending on the search topic, the proposed Galaxy-
Browser aids users in searching for the relevant subset of
the collection. As the features used are visual based, the
system works well in case relevant images of a certain topic
share visual similarity, e.g. queries related to tennis or car.
However, when topics have large variety in visual settings,
for instance person x topics, visual features hardly yield ad-
ditional information to aid the user in the interactive search
process. To our knowledge, no existing features work well
in these cases.

Two search strategies were discovered during the inter-
active retrieval task using the SphereBrowser. There were
topics for which multiple cluster threads yielded good results
for that topic, such as Tennis (156), People with banners or

signs (161), Meeting (163) and Tall building (170). For these
topics only the relevant parts of the threads needed to be se-
lected. Another selection method was found in queries such
as Airplane takeoff (167) and Office setting (172). Here there
were only a limited number of consecutive valid shots visible
in each thread, but because of the combination of both time
and cluster threads there was always another valid but not
yet selected shot visible. For these queries, selection was
done by hopping from one valid result to another. Also a
number of topics were not answerable by the SphereBrowser
because of lack of nearby shots. These include person x top-
ics 149, 151, and 153.

To gain insight in the overall quality of our lexicon-driven
retrieval paradigm. We compare the results of our users
with all other users that participated in the retrieval tasks of
the 2005 TRECVID benchmark. We visualized the results
for all submitted search runs in Fig. 13. The results are
state-of-the-art.

6 Exploration of BBC Rushes

The BBC Rushes consist of raw material used to produce
a video. Since there is little to no speech, this material is
very suitable for visual-only indexing. We first segmented
the video’s using our shot segmentation algorithm [2]. Then
we applied our best performing camera motion detector (see
Section 4) on the BBC rushes using the models trained for
the news data. To further investigate the robustness of
our visual features, we performed visual-only concept de-
tection on the BBC rushes data, without re-training the
visual models. The visual models are the same as used in
the visual only feature task (Section 3.4) and in the manual
search task (Section 5.2). The detectors thus learned on
news data are subsequently evaluated on the BBC rushes
videos. Obviously, not all 101 concepts are useful, since
they are trained on broadcast news. However, 25 concepts
transcend the news domain and some perform surprisingly
well on the BBC rushes: aircraft, bird, boat, building, car,
charts, cloud, crowd, face, female, food, government build-
ing, grass, meeting, mountain, outdoor, overlayed text, sky,
smoke, tower, tree, urban, vegetation, vehicle, water body.
We developed a version of the MediaMill semantic video
search engine tailored to the BBC rushers based on the com-
puted indexes. While still primitive in terms of utility, the
search engine allows users to explore the collection in a sur-
prising manner. The results again confirm the importance
of robust visual features. Hence, for this task much is to



be expected from improved visual analysis yielding a large
lexicon of semantic concepts.
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