Motion-based Approach for BBC Rushes Structuring and Characterization

Chong-Wah Ngo, Zailiang Pan

Department of Computer Science City University of Hong Kong

# **BBC** Rushes

#### n Rushes

- unedited videos
- Similar to home videos, but with better capturing skills and visual quality
- n Always....
  - $\square$  *Pan* to have another view of scene
  - Zoom-and-hold to freeze the impression
  - Search for something
  - Long take without camera motion
  - Pan to have panoramic view

# **BBC** Rushes

- n Intentional
  - Another view of scene
  - Impression
  - Something
  - Long take, panoramic view
- n Intermediate
  - $\square$  *Pan* to have....
  - □ Zoom-and-hold to freeze ...
  - $\simeq$  *Search* for .....
  - □ A series of search, pan, zoom

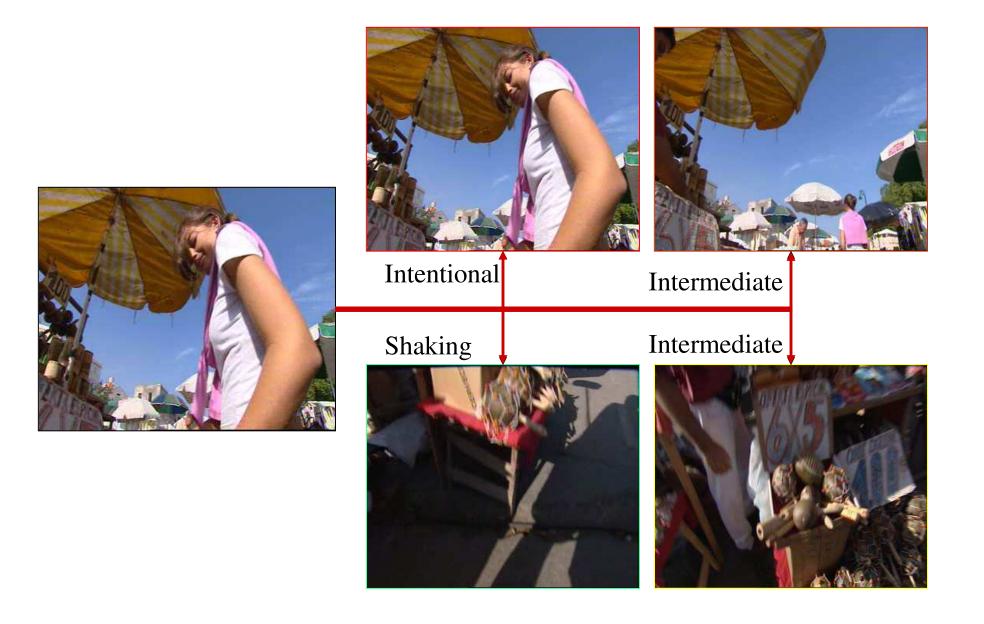
n Shaking





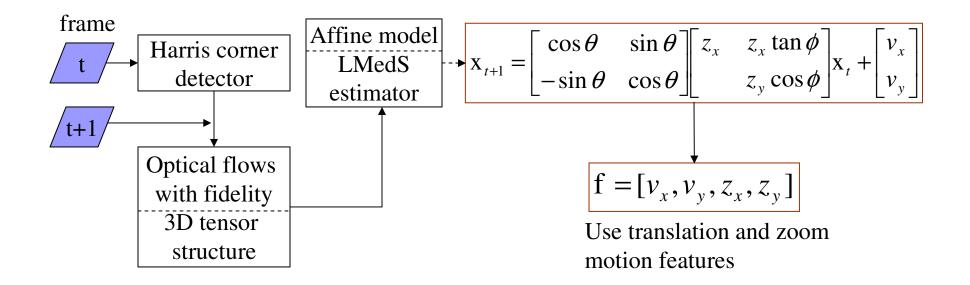





## Our Intuition...

- n Detecting <u>intentions</u> are useful for search, browsing and summarization
- n <u>Intermediate</u> motions are not really meaningful for most tasks
- n <u>Shaking</u> clips can be either useful or not useful

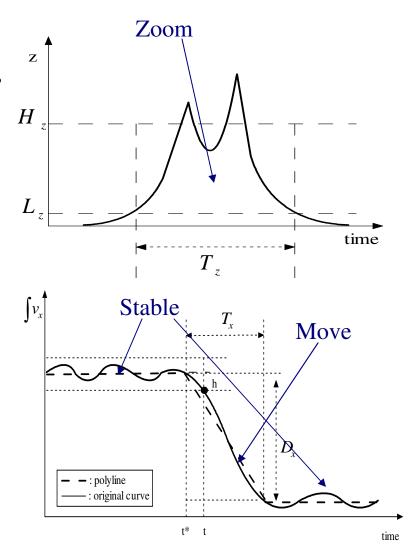
# Objective


- n To structure-and-characterize (or characterized-andstructure) video content, we propose
  - Finite State Machine (FSM)
  - Support Vector Machine (SVM)
  - Hidden Markov Model (HMM)

|     |              | FSM          | SVM          | НММ          |
|-----|--------------|--------------|--------------|--------------|
| Ι   | Intentional  | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| II  | Intermediate | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| III | Shaking      | $\checkmark$ | $\checkmark$ | $\checkmark$ |

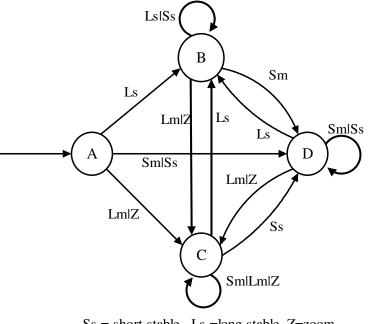


## **Global Motion Estimation**


n The motion-driven FSM, SVM and HMM are all based on the inter-frame global motion estimation. Considering the generalization and complexity, we choose to use the *affine motion model*.



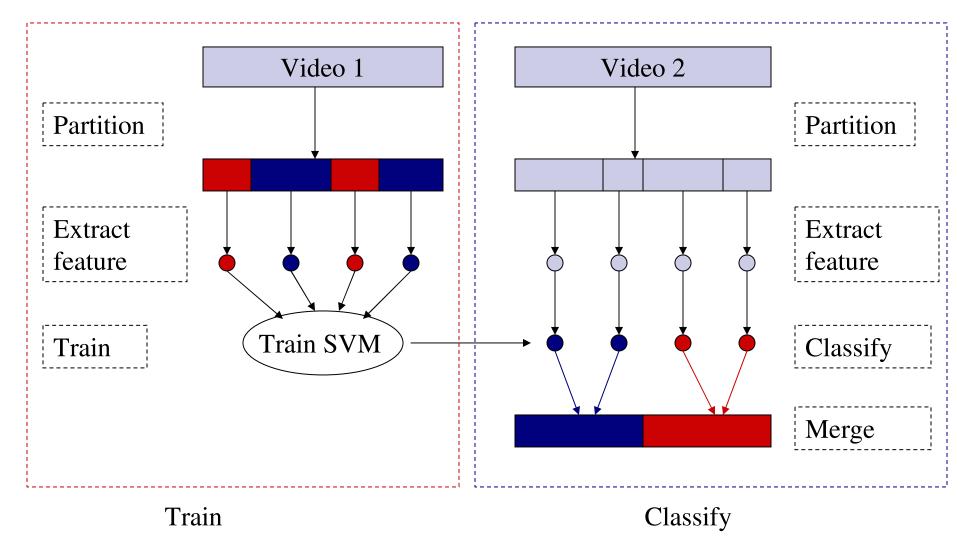
#### FSM—Partition


**Zoom partition**: The techniques of hysteresis thresholding are used for the zoom motion feature. Two thresholds are used: higher one for locating the position; lower one for the zoom partition Z.

**Static and move partition**: A polyline is fitted to the camera trajectory using Kalman filter. Based on the properties of the lines, camera trajectory are partitioned into long stable *Ls*, short stable *Ss*, long move *Lm* and short move *Sm*.



# FSM—Classification


- n A 4-state FSM is employed to refine the partition and characterize video.
  - $\propto$  A: initial state.
  - **B**: intentional motion.
  - C: intermediate and shaky motions.
    They are further separated by the rate of camera direction changes.
  - D: temporarily undetermined short segments.



Ss = short stable Ls =long stable Z=zoom Sm= short move Lm=long move

Z. Pan and C.-W. Ngo, "Structuring home video by snippet detection and pattern parsing," in ACM SIGMM Int'l Workshop on MIR, 2004.

#### Flowchart of SVM



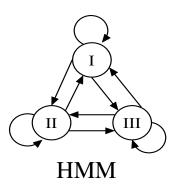
# **SVM** Implementation

- Partition: video is divided into segments of equal fixed duration.
- Feature extraction: 9 features from motion are extracted for each video segment. They are:

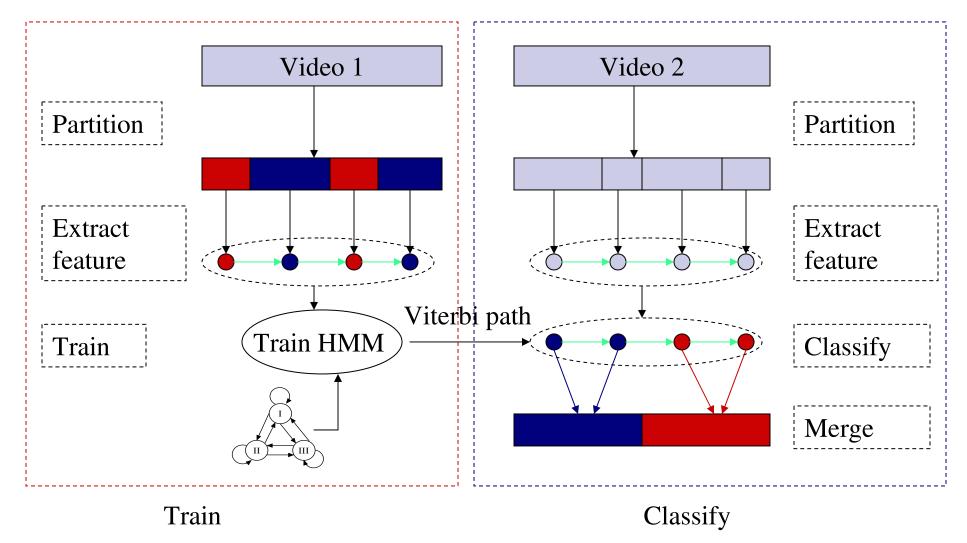
Speed:
 
$$M_x = \max_{i=1}^{N} (|v_i^x|), \quad M_y = \max_{i=1}^{N} (|v_i^y|)$$

 Zoom:
  $Z_x = \max_{i=1}^{N} (|z_i^x|), \quad Z_y = \max_{i=1}^{N} (|z_i^y|)$ 

 Acceleration:
  $D_x = \max_{i=1}^{N-1} (|v_{i+1}^x - v_i^x|), \quad D_y = \max_{i=1}^{N-1} (|v_{i+1}^y - v_i^y|)$ 


 Acceleration variance:
  $V_x = \max_{i=1}^{N-1} (|v_{i+1}^x - v_i^x|), \quad V_y = \max_{i=1}^{N-1} (|v_{i+1}^y - v_i^y|)$ 

 Motion change:
  $S = \max_{i=1}^{N-1} (|\mathbf{v}_{i+1}| |\mathbf{v}_i| - \mathbf{v}_{i+1} \cdot \mathbf{v}_i)$ 


*Motion change* feature actually is  $|\mathbf{v}_{i+1}| |\mathbf{v}_i| (1 - \cos \theta)$ , which considers both the angle change and motion magnitude.

# HMM-based Approach

- Motivation: *First order decision* (look at one sample and make decision at a time) may not be sufficient, *Second order decision* (look at multiple samples to make decision) should be better in principle.
- n Hidden Markov Model (HMM) is then used as second order decision for video structuring and characterization.
  - □ HMM State transition à video structuring
  - MMM State prediction à video characterizing
- **3-state** hidden Markov model is
  used to represent respectively
  the intentional, intermediate and
  shaky motions.



#### Flowchart of HMM



# MHMM & SHMM

- n We investigate two kinds of HMM, called *MHMM* and *SHMM*. The difference is,
  - □ MHMM (*m*otion-based):

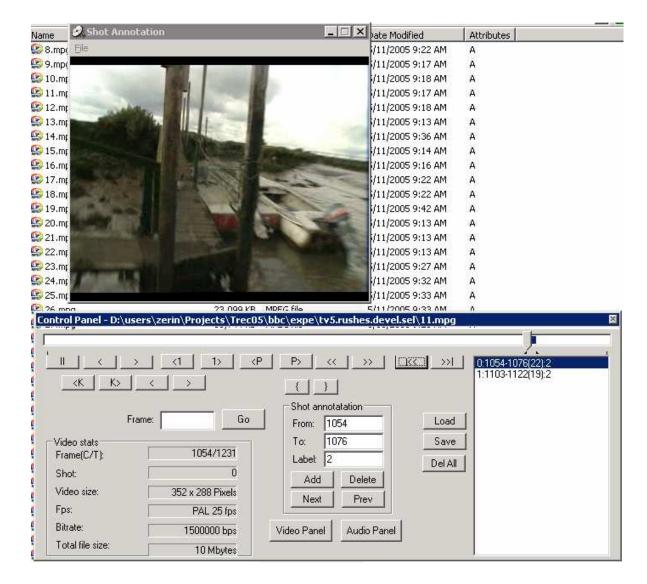
Partition: Video is divided into segments of equal fixed duration.

Feature: Extract <u>9 features</u> from motion.

□ SHMM (*s*hot-based):

Partition: Video is divided into shots by cut detector.

Feature: Extract shot duration


#### □ *Note*: We use SHMM as baseline

<sup>n</sup> Intuition: Short shots correspond to shaking/intermediate motion

#### Experiments – Data Set and Training

- n 60 videos (337K frames) from the development set
- n Manually annotate sub-shots and their characteristics
- n 768 shots and 1135 sub-shots
- n 30 videos for training and 30 videos for testing.

#### Annotation Tool



# Approaches

|      | Segment<br>Unit | Feature<br>Number | Feature<br>Types | Training | Decision |
|------|-----------------|-------------------|------------------|----------|----------|
| FSM  | Sub-shot        | 4                 | Motion           | No       | 1st      |
| SVM  | Equal duration  | 9                 | Motion           | Yes      | 1st      |
| MHMM | Equal duration  | 9                 | Motion           | Yes      | 2nd      |
| SHMM | Cut             | 1                 | Time             | Yes      | 2nd      |

1st : look at one sample and make decision at a time

2nd: look at multiple samples to make decision

# Experiment – Structuring

- n Sub-shot boundary detection
- n A sub-shot boundary is counted as correct as long as we can find a matched ground-truth boundary within 1 second.

|      | Training |       | Tes    | ting  |
|------|----------|-------|--------|-------|
|      | Recall   | Prec. | Recall | Prec. |
| FSM  | 0.614    | 0.282 | 0.593  | 0.279 |
| SVM  | 0.769    | 0.281 | 0.763  | 0.289 |
| MHMM | 0.461    | 0.419 | 0.395  | 0.379 |
| SHMM | 0.060    | 0.355 | 0.056  | 0.322 |

Results of structuring BBC rushes

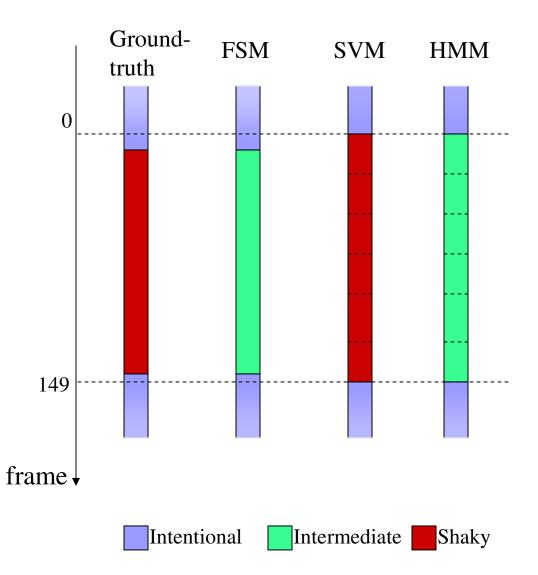
## Experiment – Characterization

- n Sub-shot classification
- n Use frame as basic unit for evaluation

|      | Intentional |       | Intermediate |       | Shaky  |       |
|------|-------------|-------|--------------|-------|--------|-------|
|      | Recall      | Prec. | Recall       | Prec. | Recall | Prec. |
| FSM  | 0.815       | 0.981 | 0.802        | 0.118 | 0.011  | 0.050 |
| SVM  | 0.827       | 0.990 | 0.701        | 0.162 | 0.715  | 0.239 |
| MHMM | 0.927       | 0.970 | 0.329        | 0.137 | 0.311  | 0.339 |

Results of characterizing BBC rushes (training videos)

#### Experiment – Characterization Cont'


#### n 30 testing videos

|      | Intentional |       | Intermediate |       | Shaky  |       |
|------|-------------|-------|--------------|-------|--------|-------|
|      | Recall      | Prec. | Recall       | Prec. | Recall | Prec. |
| FSM  | 0.756       | 0.968 | 0.844        | 0.128 | 0.000  | 0.000 |
| SVM  | 0.778       | 0.975 | 0.456        | 0.120 | 0.362  | 0.182 |
| MHMM | 0.909       | 0.929 | 0.375        | 0.196 | 0.043  | 0.067 |

Results of characterizing BBC rushes (testing videos)

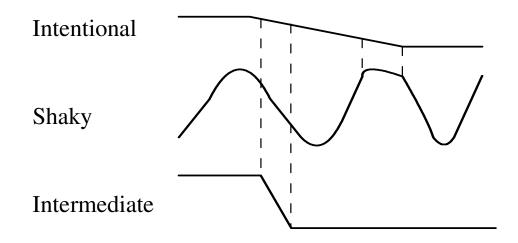
# Example





# Summary

- n For structuring, SVM gives the best recall (above 75%), followed by FSM (about 60%); the performances of MHMM and SHMM are poor.
- n For <u>characterization</u>:
  - HMM performs best for extracting intentional motion
  - □ FSM performs best for intermediate motion detection
  - □ On average, SVM is best for three characteristics.
- n Several problems remain difficult and challenging


## FSM—Limitation

n For FSM, the following issues should be considered.

- The threshold is difficult to set empirically to distinguish between intentional and intermediate. For example, "panorama view" or "pan to search"?
- The use of rate of directional changes as features for separating shaky and intermediate motions is poor.

# SVM—Limitation

- n For SVM, the following sorts of segments are ambiguous by just looking at small time frame:
  - □ A panoramic or "pan to search"?
  - "Pan to search" or one part of a shaky?
  - □ A relative stable part of a shaky or intentional?



# MHMM—Limitation

#### n More works can be done in HMM:

- Only one state is not enough to represent the intentional, intermediate or shaky characteristic, e.g.
  - "Intermediate" may have two sub-state: "pan to search" and "zoom-and-hold"
  - "Shaky" may have sub-states such as "shake left", "shake right",
    "shake up", "shake down".
- State "intentional: is over trained since sequences has more intentional than intermediate/shaky segments. Over-trained "intentional" state compresses the detection of other two types, especially shaky.

# More on Characteristic of BBC Rushes...

I. IntentionalII. Intermediate MotionIII.Shaky Motion



#### IV.Blur

- n motion blur, defocusing blur
- v. Illumination Change



# Challenge in Motion Estimation

n Camera motion estimation is difficult for cases like blur, illumination and large foreground objects



Blur



Illumination



Foreground object

## Future Work

- Detecting segments with blur and sharp/inconsistent illumination changes –
  - facilitate browse/search/summarization
  - Motion estimation can be an easier task
- n Consider variants of SVM and HMM models for more accurate structuring and characterization.