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Abstract

In this paper, we describe the IBM Research system for in-
dexing, analysis, and retrieval of video as applied to the
TREC-2005 video retrieval benchmark. We participated in
the shot boundary detection, high-level feature extraction
and search tasks and performed several new experiments
in all the tasks. The paper describes the details of the ap-
proaches as well as the performance analysis. In general
we observed good performance across all three tasks. In
the detection task, we were able to achieve top mean aver-
age precision performance for all over 7 systems. In au-
tomatic search, we were able to achieve top mean average
precision performance for 4 of our 6 automatic runs.

Keywords – Multimedia indexing, content-based re-
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1 Introduction

We participated in the TREC Video Retrieval Track and
submitted results for the following tasks:

1. Shot boundary detection.Our system is based on last
year’s system and uses a different MPEG decoder than
the one which produced us color errors last year. Re-
sults improved very significantly, yielding high detec-
tion rates and highest gradual accuracy across all runs.

2. Concept detection. We focused on approaches that
have been proven in the past to be successful while
experimenting with fusion across features and ap-
proaches in a flat as well as hierarchical fashion. For
all our 7 submissions we fused across multiple low-
level features. For 6 of the 7 submitted runs we also
fused across multiple approaches. We created internal
partitions of the development data set and used various
partitions, for training low-level feature-based mod-
els using individual approaches and for fusing across
features and approaches. Unlike our past TRECVID
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submissions, we were unable to enforce cross-concept
context [NS03a] due to time limitation. We choose
our runs for submission objectively based on their per-
formance on an internally held out set for selection
purposes. Based on our previous experience across
multiple TRECVID cycles [NSS04], we used support
vector machines extensively for learning the mapping
between low level features extracted from the visual
modality as well as from transcripts and production re-
lated meta-features such as channel, language, time of
the broadcast etc. We also built models for some if not
all features extracted using three other approaches: a
modified nearest neighbor learner, a maximum entropy
learner and a Gaussian mixture model. For some high-
level features from the benchmark which had enough
training samples, and were predominantly regional, we
also applied an extension of a new generalized multiple
instance learning algorithm [NS05]. For fusing across
approaches and features, we resorted to simple fusion
techniques. In one approach we fused across features
and approaches at the same time. In the other we first
fused across features and then across approaches. We
tried fusing with simple normalization and ensemble
averaging, with weights learning for a limited number
of approaches and with validity weighting [SNN03].
Based on all the experiments we submitted the follow-
ing 7 runs:

• A JW ABOF1: Best of Fusion across features
and approaches selected individually for each
concept

• A JW A1SA2: Flat fusion across all features and
approaches using statistical normalization and
ensemble averaging

• A JW A1SV3: Flat fusion across all features and
approaches using statistical normalization and
validity weighting

• A JW ABOA4: Hierarchical fusion across fea-
tures for each approach and validity weighted fu-
sion across all approaches

• A JW SVM5: Fusion across all features for each
approach and selection of the best single ap-
proach for each concept,
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• A JW M2SW6: Fusion across all features and
2 approaches SVM and MECBR with weights
learning

• A JW SVMFD7: SVM models with fusion
across all approaches trained on the entire de-
velopment set with optimal parameters from one
partition

Results indicate that two approaches AJW SVMFD7
and A JW ABOA4 topped performance with a mean
average precision of 0.3356 whereas the fusion across
a subset of approaches AJW M2SW6 returned the
lowest MAP of 0.3126 across the 7 runs. All the 7 runs
resulted in the top 7 MAPs across all the TRECVID
runs evaluated.

3. Search. We focused heavily on automatic search
this year, building fully automatic retrieval systems
for both speech and visual modalities and producing
the top runs among automatic type A search systems.
We used a new text search engine for our speech-
based retrieval system and explored three automatic
query refinement methods for it. They were fused
to generate a text-only baseline (run FA 1 JW T 7)
of 0.057 MAP. For our visual retrieval system, we
applied a combination hypothesis of two comple-
mentary light-weight learning approaches—SVM and
MECBR—which for the first time significantly out-
performed speech-based retrieval (run FA 2 JW V 3
with MAP of 0.110), likely due to the inconsistent
quality of ASR+MT transcripts on foreign broadcast
videos. Finally, we developed methods for model-
based re-ranking of both retrieval hypotheses based
on SVM models we built for the 39 concepts anno-
tated by TREC participants. Model-based re-ranking
improved our text-only baseline to a MAP of 0.070
(run F A 2 JW TM 6) and our visual-only baseline to
a MAP of 0.119 (run FA 2 JW VM 4). This year we
used simple query-independent non-weighted fusion
methods for combining our speech-based and visual
runs, and while we did not observe gains from fus-
ing the two modalities, our parameter-free fusion ap-
proach was able to generalize fairly well, considering
the wide performance gap we observed between the
two modalities. Our text+visual multimodal run (with
ID F A 2 JW TV 5) essentially matched the perfor-
mance of the better modality producing a MAP of
0.106. Similarly, our model re-ranked text+visual mul-
timodal run (with ID FA 2 JW TVM 2) matched the
performance of the re-ranked visual-only run, gener-
ating a MAP of 0.119. Overall, our new visual re-
trieval approach and the model-based re-ranking ap-
proach were the most significant performance contrib-
utors for our system.

In the paper, we describe the IBM Research system and
examine the approaches and results for each run. The video
content is analyzed in an off-line process that involves auto-
matic shot boundary detection, audio-visual feature extrac-
tion, clustering, statistical modeling and concept detection,
as well as speech indexing. The basic unit of indexing and
retrieval is a video shot.

2 Shot detection

IBM has submitted ten runs to the Shot Boundary Detection
task. All runs use the same algorithm with minor modifica-
tions. The main change from our last year system is not in
the algorithm but in replacing the MPEG-1 decoder.

In TRECVID 2004 the video encoding of most
of the TRECVID videos was encoded using an
IPPPPPPPPPPPPPP GOP (Group of Pictures) struc-
ture, instead of the more common IPBBPBBPBBPBBPB
sequence. Interestingly, decoding this GOP with the
commercial decoder we used introduced cumulative color
errors while decoding the video frames through each GOP,
growing up to 3 percents RMS at the last P-frame of the
GOP and dropping to zero at the next I-frame. Those errors
are hardly noticeable in regular video playback. however,
when processed by the SBD algorithm, those color errors
cause increased distances between color histograms of
pairs of frames. This in turn causes an increase in all the
adaptive thresholds, computed using statistics of frame
differences over a symmetric window of 61 frames cen-
tered around the processed frame and used throughout the
system [AHI+03]. The higher thresholds, combined with
the perceived frame noise, caused a significant decrease
in detection recall and an overall degraded performance.
It was the first and only time we observed this type of
decoder color error, and only with this type of GOP
encoding. Replacing the decoder with a different one after
TRECVID2004 resolved this problem.

We used the test of 2004 as our training set for 2005. Ta-
ble 1 shows processing results of test set of TRECVID04.
Runs are sorted by decreasing F# of the Detection of
All Changes criteria. The ten runs with system ID-s
of TRECVID05 are clearly much better than the other
five runs, four of which representing our best submitted
SBD system in a different year, from TRECVID01 to
TRECVID04, and the fifth one, marked N171QT was ob-
tained by converting all the MPEG-1 videos of the test set
to MPEG-4 using a QuickTime player, and processing the
MPEG-4 files. This last run was a test that shows a very sig-
nificant improvement in gradual recall over the N171 run,
using the same executable and transcoded video sequences.
Moreover, it showed no ”noise” in the processing, which
led us to look more carefully at the differences between de-
coders. As said, the single main cause for improvement
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Table 1: Shot boundary detection results, run and evaluated with TRECVID 2004 test set. Labels in the leftmost column
correspond to the TRECVID year in which the system was submitted.

TRECVID SysID AllF# AllRcl AllPrc CutsF# CutsRcl CutsPrc GradF# GradRcl GradPrc GrAcF# GrAcRcl GrAcPrc
TVID05 N209 0.892 0.872 0.912 0.933 0.935 0.931 0.798 0.741 0.865 0.881 0.846 0.918
TVID05 N208 0.890 0.875 0.906 0.929 0.931 0.928 0.803 0.758 0.854 0.876 0.842 0.913
TVID05 N207 0.890 0.873 0.907 0.928 0.932 0.925 0.802 0.750 0.862 0.878 0.841 0.919
TVID05 N212 0.890 0.874 0.906 0.928 0.933 0.924 0.802 0.750 0.862 0.877 0.840 0.918
TVID05 N210 0.889 0.873 0.906 0.929 0.932 0.927 0.799 0.750 0.856 0.880 0.846 0.917
TVID05 N204 0.889 0.871 0.909 0.928 0.929 0.928 0.801 0.749 0.861 0.867 0.843 0.892
TVID05 N202 0.883 0.883 0.882 0.915 0.939 0.892 0.809 0.766 0.857 0.874 0.827 0.927
TVID05 N198 0.882 0.878 0.885 0.918 0.940 0.898 0.797 0.748 0.854 0.878 0.833 0.929
TVID05 N197 0.881 0.878 0.885 0.918 0.939 0.898 0.797 0.749 0.853 0.878 0.832 0.929
TVID05 N194 0.881 0.886 0.876 0.916 0.940 0.894 0.802 0.774 0.833 0.877 0.841 0.915
POST04 N171QT 0.855 0.825 0.888 0.892 0.885 0.900 0.769 0.698 0.857 0.864 0.836 0.894
TVID02 N047 0.844 0.822 0.867 0.891 0.915 0.867 0.726 0.625 0.866 0.744 0.646 0.879
TVID04 N171 0.832 0.774 0.898 0.897 0.899 0.896 0.655 0.512 0.909 0.845 0.804 0.890
TVID01 Nalm1 0.774 0.724 0.831 0.863 0.903 0.827 0.494 0.347 0.855 0.640 0.480 0.961
TVID03 N127 0.765 0.685 0.866 0.861 0.862 0.861 0.463 0.311 0.902 0.687 0.534 0.965

Table 2: Shot boundary detection results, run and evaluated with TRECVID 2005 test set. The official submission runs of
this year are marked with TVID05. run are sorted in decreasing F# value of detection of All Boundaries.

TRECVID SysID AllF# AllRcl AllPrc CutsF# CutsRcl CutsPrc GradF# GradRcl GradPrc GrAcF# GrAcRcl GrAcPrc
MAX 0.897 0.894 0.901 0.942 0.936 0.949 0.789 0.788 0.791 0.852 0.833 0.871
TVID05 N204 0.876 0.909 0.845 0.912 0.933 0.891 0.776 0.838 0.722 0.836 0.836 0.837
TVID05 N212 0.875 0.914 0.839 0.911 0.936 0.887 0.775 0.848 0.714 0.850 0.827 0.875
TVID05 N207 0.875 0.912 0.840 0.912 0.936 0.890 0.772 0.842 0.712 0.851 0.827 0.877
TVID05 N208 0.871 0.913 0.832 0.910 0.936 0.886 0.764 0.848 0.695 0.852 0.833 0.871
TVID05 N209 0.869 0.916 0.826 0.906 0.940 0.875 0.765 0.843 0.700 0.847 0.824 0.872
TVID02 N47 0.867 0.891 0.845 0.899 0.935 0.867 0.770 0.764 0.776 0.820 0.748 0.908
TVID05 N210 0.863 0.915 0.817 0.902 0.937 0.870 0.759 0.853 0.683 0.843 0.818 0.869
TVID01 Nalm1 0.854 0.903 0.811 0.885 0.937 0.839 0.762 0.803 0.726 0.814 0.729 0.923
TVID05 N202 0.854 0.912 0.803 0.888 0.935 0.846 0.760 0.848 0.688 0.850 0.824 0.878
TVID05 N198 0.849 0.917 0.791 0.882 0.940 0.831 0.758 0.850 0.684 0.844 0.812 0.879
TVID05 N197 0.849 0.918 0.790 0.882 0.940 0.830 0.757 0.851 0.682 0.844 0.812 0.879
TVID03 N127 0.843 0.865 0.822 0.877 0.895 0.860 0.746 0.778 0.718 0.836 0.765 0.922
TVID05 N194 0.841 0.919 0.776 0.883 0.938 0.834 0.733 0.864 0.637 0.846 0.823 0.870
TVID04 N171 0.839 0.869 0.812 0.876 0.905 0.849 0.732 0.764 0.703 0.793 0.806 0.780

with the 2005 systems on this data set was the change of
decoder.

Table 2 shows the processing results of the same sys-
tems on the test set of TRECVID05. Compared to Table
1, most of the ten 2005 systems maintain relatively similar
performance between the two test sets, TRECVID04 and
TRECVID05. System N204 top our 2005 submissions and
is different in that in computing the color histograms it ig-
nores the bottom 20 percents of the frame, which often con-
tains overlay text. When excluded from the histogram, it
slightly improves the discrimination between frames across
different shots. The row marked as MAX contains in each
of the four evaluation criteria the values obtained by the best
of all 163 runs in TRECVID05, when ranked by the F# of
that criteria. These maximum results correspond to three
different runs, marked as hu26, bs-8 and N208. Our best
detection rates are delivered by system N204, only slightly
below the best performing run this year. System N208, a
hair away in detection rates from N204, produced the best
F# for Gradual Accuracy (0.876) across all 163 submitted
runs. Our past systems performed better on the 2005 data
set than on the 2004 data set, despite of using the old de-
coder. Evidently the encoding of the test set this year is of
the more common GOP sequence, as oppose to last year.

3 Video Descriptors

3.1 Visual Features

The system extracts eight different visual descriptors at var-
ious granularities for each representative keyframe of the
video shots. Relative importance of one feature modality
vs. another may change from one concept/topic to the next,
the relative performance of the specific features within a
given feature modality (e.g., color histogram vs color cor-
relogram) should be the same across all concepts/topics,
and can therefore be optimized globally for all concepts and
topics.

The goal of feature selection was to optimize globally
the feature type and granularity for each feature modality
so that the fusion across modalities gives optimal results
both for concept detection and search task. We performed
extensive experiments using the TRECVID 2005 develop-
ment set and TRECVID 2003 query topic to select the best
feature type and granularity for color and texture modalities
for concept detection and search tasks, respectively.

The following descriptors had the top performance for
both search and concept modeling experiments:

• Color Histogram (CH)—global color represented as a
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166-dimensional histogram in HSV color space.

• Color Correlogram (CC)—global color and struc-
ture represented as a 166-dimensional single-banded
auto-correlogram in HSV space using 8 radii depths
[HKM +99].

• Color Moments (CMG)—localized color extracted
from a 5x5 grid and represented by the first 3 moments
for each grid region in Lab color space as a normalized
225-dimensional vector.

• Co-occurrence Texture (CT)—global texture repre-
sented as a normalized 96-dimensional vector of en-
tropy, energy, contrast, and homogeneity extracted
from the image gray-scale co-occurrence matrix at 24
orientations.

• Wavelet Texture Grid (WTG)—localized texture ex-
tracted from a 3x3 grid and represented by the normal-
ized 108-dimensional vector of the normalized vari-
ances in 12 Haar wavelet sub-bands for each grid re-
gion.

• Edge Histogram Layout (EHL)—localized edge his-
tograms with 8 edge direction bins and 8 edge mag-
nitude bins, based on a Sobel filter, extracted from a
5-region layout consisting of four corner regions and a
center overlapping region (320-dimensional).

Although, the described visual descriptors are very similar
to the MPEG-7 visual descriptors [MSS02], they differ in a
sense that they have been primarily optimized for retrieval
and concept modeling purposes, with much less considera-
tion given to compactness or computational efficiency.

3.2 Motion Features

We introduce a novel low-level visual feature that summa-
rizes motion in a shot. This feature leverages motion vectors
from MPEG-encoded video, and aggregates local motion
vectors over time in a matrix, which we refer to as a mo-
tion image. The resulting motion image is representative of
the overall motion in a video shot, having compressed the
temporal dimension while preserving spatial ordering.

Motion vectors are present for all macroblocks in P and
B frames of MPEG video. For I-frames, which start a GOP
sequence of P and B frames, motion vectors have zero-
magnitude. We generate a new image for each shot with
dimensions equal to the matrix of macroblocks. For TREC
news videos, motion images are dimensioned 20 columns
by 13 rows. We preserve the spatial location of macroblock
motion vectors by placing the vector’s origin in the cor-
responding position in the motion image. We scale each
vector by some constant factor F, which represents the pre-
dicted future direction of that vector over F-many frames.

The scaled vector is added to the motion image, which ag-
gregates all such vectors for the entire shot. The result-
ing two-dimensional motion image is cropped, linearized,
and normalized, and used as a feature vector. In the case
of TREC videos, this vector contains 260 features, corre-
sponding to a scanline-version of the motion image.

3.3 Text Features

We extracted several text features for each shot based on the
speech transcript corresponding to the shot after expansion
of the shot boundaries to include up to 5 immediate neigh-
bors on either side without crossing full video clip bound-
aries. This shot expansion results in overlapping speech
segments and attempts to compensate for speech and visual
mis-alignment. The resulting shot documents were then
processed for stop-word removal and Porter stemming, and
for each term, the following text features were computed:

• Term Frequency (TF) in given shot document

• Inverse Document Frequency (IDF) across all shot
documents

• TF*IDF

• Binary term flag, 0 or 1, indicating presence or absence
of given term in given shot document

Each shot was then represented in a sparse vector format,
where theith dimension reflected one of the above mea-
sures for theith term in the speech vocabulary. These fea-
tures were used for SVM-based modeling in the High-Level
Feature Extraction task.

3.4 Semantic Features

The third feature modality we used was that of 39-
dimensional semantic model vectors built from the detec-
tion confidence scores with respect to 39 LSCOM-lite con-
cepts. Extraction of the model vector features based on the
semantic modeling is described in detail in section 4.

4 Concept Modeling

Our basic principle for modeling semantic concepts or high-
level features based on low-level media features has consis-
tently been to apply a learning algorithm to the low-level
features [NBS+02, NJ03, NLN+03, NSS04, NNT05a]. Our
criterion has always been to leverage generic learning al-
gorithms for all concepts rather than focus on an overly
specific and narrow approach that can only work for a sin-
gle concept. In our view generic learning provides the
only scalable solution for learning the large scale semantics
needed for efficient and rich semantic search and indexing.
Figure 1 illustrates our concept detection pipeline.
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Figure 1: The IBM TRECVID 2005 Concept Detection
pipeline.

4.1 Data Partitioning and Parameter Opti-
mization

We partitioned the development data set provided by NIST
into the following 4 internal partitions for facilitating hier-
archical processing experiments and selection by randomly
assigning videos from the development set to each partition.
The list below gives approximate number of keyframes in
each partition.

• Training Set: 41K keyframes

• Validation Set: 7K keyframes

• Fusion Set: 7K keyframes

• Selection Set: 7K keyframes

4.2 Learning Approaches

This year we focused on approaches that have been proven
in the past to be successful while experimenting with new
techniques for cross granularity propagation. We then pro-
ceeded to fuse across features and approaches in a flat as
well as hierarchical fashion. For all our 7 submissions we
fused across multiple low-level features. For 6 of the 7
submitted runs we also fused across multiple approaches.
We created internal partitions of the development data set
and used various partitions, for training low-level feature-
based models using individual approaches and for fusing
across features and approaches. We used support vector
machines extensively for learning the mapping between low
level features extracted from the visual modality as well as
from transcripts and production related meta-features such
as channel, language, time of the broadcast etc. We also
built models for some if not all features extracted using

three other approaches: a modified nearest neighbor learner,
a maximum entropy learner and a Gaussian mixture model.
For some high-level features from the benchmark which had
enough training samples, and were predominantly regional,
we also applied an extension of a new generalized multiple
instance learning algorithm [NS05].

4.2.1 Support Vector Machines

We represent keyframes with a set of low-level visual fea-
tures, such as colors, textures, and shapes, and motion. We
also extract a bunch of production meta-features. For the
visual features and production meta-features we use sup-
port vector machines with non-linear kernels. We also rep-
resent shots by text features extracted from the transcripts
and then convert them to sparse representation formats. We
use support vector machines with linear kernels for the text
features.

In the training phase, we learn feature representations
corresponding to the binary hypotheses for each concept
(presence/absence) using support vector machines [Vap95].

Support Vector Machines are popularly used for classi-
fication and regression in various domains including the
multimedia domains. For the past few years support vec-
tor machine classifiers have resulted in top performance in
concept detection for NIST TRECVID evaluations [NJ03,
NLN+03, NSS04, NNT05a]. Support vector machines used
with nonlinear kernels allow us to learn nonlinear decision
boundaries even when the data is high dimensional and are
not affected by the curse of dimensionality due to the way
the optimization is formulated to minimize empirical risk.
They also offer good generalization capability. For the con-
cept detection experiments there has been extensive report-
ing of the use of support vector machine classifiers and the
procedures for tuning the model parameters including ker-
nel parameters.

We use the held out validation set in selecting model
parameters as well selecting optimally performing features
from across all low-level features. We use the Radial Basis
Kernel for the SVM experiments.

Performance of SVM classifiers can vary significantly
with variation in parameters of the models. Choice of the
kernels and their parameters is therefore crucial. To min-
imize sensitivity to these design choices, we experiment
with different kernel parameters. Radial basis function ker-
nels usually perform better than other kernels. In our ex-
periments we build models for different values of the RBF
parameterγ (variance), relative significance of positive vs.
negative examplesj (necessitated also by the imbalance in
the number of positive vs. negative training samples) and
trade-off between training error and marginc. While a
coarse to fine search is ideal, we try several values ofγ,
j and c thus evaluating dozens of configurations. Using
the validation set we then performed a grid search for the
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combination that resulted in highest performance measure
value, where this measure is the non-interpolated average
precision over 1000 retrieved shots as a measure of retrieval
effectiveness. LetR be the number of true relevant doc-
uments in a set of sizeS; L the ranked list of documents
returned. At any given indexj let Rj be the number of
relevant documents in the topj documents. LetIj = 1 if
the jth document is relevant and0 otherwise. Assuming
R < S, the non-interpolated average precision(AP) is then
defined as

1
R

S∑

j=1

Rj

j
∗ Ij (1)

In the detection phase we use the optimal models to eval-
uate the target images for the presence/absence of the con-
cept and generate a confidence measure correspondingly
that can then be used to rank images for each concept.

4.2.2 Gaussian Mixture Models

We built gaussian mixture models for all the benchmark
concepts using mixtures of diagonal Gaussians. This ap-
proach is known to work for concepts with a large number
of training samples but results in lower performance than
SVM models for concepts with small number of training
samples [vtr02, NJ03]. We build conditional density mod-
els for positive samples and negative samples and then used
the likelihood ratio test to generate the ranking at detection
time.

4.2.3 Maximum Entropy Methods

In MaxEnt modeling, we assume that a random process pro-
duces an output (label)y given a contextx. In multimedia
annotation,y, which is a member of a finite set (vocabu-
lary) Y , can be seen as a label for a specific shot. Andx,
a member of a finite setX, as extracted information (fea-
tures) from the current frame. Training data is presented
in pairs(x1, y1), (x2, y2), ..., (xn, yn). The task is to learn
possible correlations betweenx andy, and to build statisti-
cal models that can be used to annotate previously unseen
shots automatically. The empirical probability distribution
function (pdf) based on training data is as follows

p̃(x, y) =
1
n

freq(x, y) (2)

Wherefreq is the count of a specific pair(x, y) in the train-
ing data. In real world applications, the training set size
is finite. Therefore, the empirical distribution is a poor
estimate of the joint pdf. Based on this partial informa-
tion, MaxEnt modeling can be used to estimate the pdf that
generated the empirical distributioñp(x, y) in an unbiased
way[Jay57]. At the core of the modeling process arepred-
icates. These predicates are used to specify constraints on

the model. In MaxEnt, the process of defining predicates
is central to modeling: The goodness of the models is de-
pendent on the ability of these predicates to capture relevant
information and we differentiate from previous work in this
[JM04].

In our experiments, we extract 3 types of low-level image
features from each video shot: Lab space color moments,
edge histograms and summary statistics of grey-level co-
occurrence matrices. Together, these form our 3 different
low-level descriptors which we will termColor, Edgeand
Texturein further discussions. Furthermore, we partition
each shot key-frame (comprising350× 240 pixels) into 35
regions (50×48 pixels each) and extract the feature descrip-
tors for each of these 35 regions.

We try several predicates including unigram predicates,
location dependent unigram predicates, and 2 types of bi-
gram predicates. Both types of bigrams are constructed by
combining the tokenized features in the product space of
the unigram predicates. This choice imposes the possibil-
ity of obtaining bigram values that are not supported in the
training data, resulting primarily from the sparseness of the
product space. To counter this, we employ an approach
inspired from class-based language models in speech pro-
cessing. When two unigrams are composed into a bigram,
we treat them differently. We start with few clusters for
the composed unigrams and slowly increase the number of
clusters such that the number of unique bigram predicates
observed (in the training data) at each step matches the total
possible bigram product space values. We stop at the largest
cluster size for which this condition is met in the training
data. The above predicates model individual low-level fea-
ture descriptors (i.e. Color, Edge, Texture). We then de-
velop predicates predicates that model the interactions be-
tween the various low-level feature descriptors where the
joint observation predicate is active only if all low-level de-
scriptors are present in a given region. For more precise
description please see [mst] and [J. 05].

4.2.4 Modified Nearest Neighbors—MECBR

Multi-example content-based retrieval (MECBR) is a mod-
ified nearest neighbor classifier used typically in content-
based retrieval (CBR) settings [NS03b, NNT05b]. Pre-
viously, we used MECBR to generate fully automatic
visual runs for the TRECVID 2003 and 2004 search
tasks [AHI+03, ACF+04]. This year, in addition to the
search task, we explored MECBR for the concept detec-
tion task as well. MECBR models a query topic or a con-
cept from a set of positive examples by dividing the ex-
amples into visually distinct categories, selecting represen-
tatives from each category, and treating each representa-
tive example as an independent CBR query. The results
from the multiple queries are then aggregated within and
across categories into a single ranked list. Parameters of
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the method determine how exactly the individual result lists
are fused together, with alternatives ranging from simple
non-weighted fusion (e.g., OR fusion logic across exam-
ples) to complex weighted Boolean fusion (i.e., a mixture
of AND/OR fusion with weights) [NS03b]. The end result
can therefore be thought of as the fusion of several distance-
weighted nearest neighbor classifiers, each working with a
different subset of the positive examples. This allows for
different score normalization and aggregation methods in
different portions of the feature space, which is an advan-
tage over the traditionalk-nearest neighbor formulation.
The disadvantage of this method is in the computational
overhead of executing a separate CBR query potentially for
each positive example. For search scenarios where the num-
ber of positive examples is very limited (e.g., less than 10),
this is not a significant overhead. However, in the case of
concept modeling, where the training set may contain thou-
sands of positive examples, this approach is clearly not scal-
able. To reduce the computational requirements of the ap-
proach for modeling of frequent concepts, we sample the
positive examples using a biased sampling method which
iteratively selects the most visually distinct examples from
a given set. This is based on the idea of anchoring, where
each successive anchor is selected so that it is as far away as
possible from the previously selected anchors [NS03c]. For
concept detection, we sampled up to 800 distinct positive
examples for each concept and treated them as independent
category representatives.

The above sampling approach naturally tends to pick out-
liers, however, so it is very sensitive to noise in the training
set, where some examples may be mislabeled. To mitigate
this, we used annotation redundancy, where available, to as-
sociate a relevance score to each shot. In particular, when
deciding how to label a shot with redundant but conflict-
ing annotations, we considered three different policies for
aggregating the overlapping annotations. The first policy
was a liberal one where a shot was labeled positive if any
of its annotations were positive. This was most applicable
to very rare concepts, where a false negative can be more
detrimental than a false positive in the annotation. The sec-
ond policy was a strict one, requiring a perfect agreement
across all annotators in order to mark a shot positive. This
policy was most conservative, resulting in the smallest set of
positive examples, and was therefore applicable only to the
most frequent concepts where false positives can be much
more damaging than false negatives. The third policy was a
2/3 majority vote-based annotation and was most appropri-
ate for concepts that were neither too rare nor too frequent.
The optimal annotation resolution policy as well as the op-
timal score normalization and fusion parameters for each
concept-feature combination were then determined based
on a held-out validation set performance.

4.2.5 Multiple Instance Learning

Statistical learning techniques provide a robust framework
for learning representations of semantic concepts from mul-
timedia features. The bottleneck is the number of training
samples needed to construct robust models. This is partic-
ularly expensive when the annotation needs to happen at
finer granularity. It is precisely due to the cost of regional
annotation, that the TRECVID 2005 Common Annotation
exercise only involved frame-level annotation. We experi-
ment with a novel approach where the annotations may be
entered at coarser spatial granularity while the concept may
still be learnt at finer granularity. Using the multiple in-
stance learning paradigm, we learn representations of con-
cepts occurring at the regional level by using annotations for
several images. We use an extension of the generalized mul-
tiple instance learning algorithm [NS05] that can scale to a
large number of training samples as well as a large num-
ber of instances per bag. The algorithm also provides the
ability to plug in different density modeling or regression
techniques.

The essence of applying multiple instance learning to dis-
ambiguate across granularity is shown in Figure 2. Here we
use the same notation ofBagsandInstancesas in [MLP98].
A Bag is a collection of instances. Annotation is provided
at the bag level but actually reflects the label of one or more
instances in that bag. If at least one instance (region) that
is positive the corresponding bag is labeled positive. Con-
versely a bag is labeled negative when all instances (re-
gions) are negative for the semantic concept. The problem
is to then learn in some feature space a concept point or a set
of concept points that are closest to maximum possible pos-
itive bags (i.e. instances in these bags) and simultaneously
away from as many negative bags (i.e. negative instances)
as possible. Figure 2 uses a 2 dimensional feature space to
illustrate this idea.

For TRECVID we applied multiple instance learning
only to a limited number of concepts for which annotation
was sufficient and the criteria to leverage multiple instance
learning applied.

Figure 3 compares the 4 approaches, applied to all bench-
mark concepts using an internal partition (Fusion set)

4.3 Fusion

We applied ensemble fusion methods to combine all con-
cept detection hypotheses generated by different modeling
techniques or different features. In particular, we performed
a grid search in the fusion parameter space to select optimal
fusion configuration based on a held-out validation set per-
formance. Fusion parameters include a score normalization
method and a score aggregation method. Score normaliza-
tion methods include range normalization, statistical nor-
malization shifting the score distribution to zero mean and
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Figure 3: This figure compares the performance of the 4
approaches across the 10 benchmark concepts on the Fu-
sion Set. SVMs outperform all other approaches by a wide
margin.

uni-variance, Gaussian normalization, and rank normaliza-
tion which discards the absolute scores and uses only the
rank of each item in the result list. The fusion methods we
considered include MIN, MAX, AVG, and weighted AVG
fusion. As a special case of weighted averaging, we consid-
ered validity-based weighting, where the weights are pro-
portional to the Average Precision performance of each con-

cept detection hypothesis on a held-out validation set. We
also explored two main fusion variations depending on the
order in which we fused hypotheses.

Flat Fusion across Features and Approaches.The first
approach was based on a single-level global fusion across
all individual hypotheses, regardless of whether they came
from different features or modeling techniques. We call this
flat fusion. With this approach we performed a full grid
search in the fusion parameter space but due to the large
number of hypotheses being fused, we explored only binary
weights (presence or absence of each hypothesis) with the
weighted average score aggregation method. This has the
effect of doing hypotheses selection but only non-weighted
fusion.

Hierarchical Fusion across Approaches. The other ap-
proach was based on hierarchical, two-level fusion, where
all features were fused first for each modeling approach,
followed by fusion across the independent modeling ap-
proaches. Thishierarchical fusionlimits the number of hy-
potheses being fused at the second level and significantly re-
duces the fusion parameter search space. We were therefore
able to explore more weighted combinations at this level by
considering 10 uniformly distributed weight values for each
dimension.

4.4 Building Model Vector

We built SVM models for all 39 concepts of the LSCOM-
lite lexicon [NKK+] shown in Figure 4.

For each concept we applied the same training and vali-
dation procedure as applied to the ten benchmark concepts.
The only exception was that in the interest of time we were
able to fuse across only 4 features i.e. color correlgram,
color moments on a3× 3 grid, global cooccurrence texure
and wavelet texture on a3 × 3 grid. We fused across these
features using statistical normalization and ensemble aver-
aging. The performance of the 39 concepts on an internal
partition, is shown below in Figure 5.

Once these 39 concepts are detected, we then stack them
together to create model vectors. These vectors are used
along with low-level features in our visual search experi-
ments. The models are also used for reranking in our search
experiments describes in Section 5

4.5 Experiments and Results

Based on all the experiments we submitted the following 7
runs:

• A JW ABOF1: Best of Fusion across features and ap-
proaches selected individually for each concept
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Figure 5: The performance of the modeled LSCOM-lite lexicon on an internal test set [NKK+].

• A JW A1SA2: Flat fusion across all features and ap-
proaches using statistical normalization and ensemble
averaging

• A JW A1SV3: Flat fusion across all features and ap-
proaches using statistical normalization and validity
weighting

• A JW ABOA4: Hierarchical fusion across features for
each approach and validity weighted fusion across all
approaches

• A JW SVM5: Fusion across all features for each ap-
proach and selection of the best single approach for
each concept,

• A JW M2SW6: Fusion across all features and 2 ap-
proaches SVM and MECBR with weights learning

• A JW SVMFD7: SVM models with fusion across all
approaches trained on the entire development set with
optimal parameters from one partition

Results indicate that two approaches AJW SVMFD7
and A JW ABOA4 topped performance with a mean aver-
age precision of 0.3356 whereas the fusion across a subset

of approaches AJW M2SW6 returned the lowest MAP of
0.3126 across the 7 runs. All the 7 runs resulted in the top
7 MAPs across all the TRECVID runs evaluated.

Figure 6 shows the IBM runs in comparison to the rest of
the submitted runs for TRECVID. The blue colored bars de-
note the 7 IBM runs and all result in top MAP performance.

A concept-wise comparison with the mean, median and
best non-IBM run is shown in Figure 7

5 Search

5.1 Automatic Search

The IBM team focused heavily on automatic search for
this year’s TRECVID, submitting 6 automatic runs out
of 7 allowed submissions. Our automatic search system
was a combination of speech-based retrieval with automatic
query refinement, visual retrieval using a combination of
two light-weight learning approaches, and model-based re-
ranking using automatic concept detectors for the 39 con-
cepts from the TRECVID 2005 common annotation effort.
All processing was done at the sub-shot level based on the
master shot boundary reference provided by the Fraunhofer
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Figure 7: IBM runs result in top performance for 7 of the 10 benchmark concepts with performance above the median in
the rest.

Institute [Pet], where each sub-shot was represented by a
single keyframe and a corresponding speech transcript seg-
ment. Results were then aggregated at the shot level by tak-
ing the maximum confidence score across all sub-shots for
each shot. The overall system is illustrated at a high level in
Figure 8.

5.1.1 Speech-based retrieval

Our speech-based retrieval system this year was built using
the IBM Unstructured Information Management Architec-
ture (UIMA) [FL04] and the JuruXML semantic search en-
gine [MMA+02] developed by IBM Research. The UIMA
SDK is scheduled to be open-sourced by the end of the year
and is currently available for download at the IBM Alpha-
works site [uim]. The SDK also includes the JuruXML se-
mantic search engine. In addition to the base UIMA SDK,
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Figure 4: The modeled LSCOM-lite lexicon [NKK+]

we used several UIMA components developed by IBM Re-
search for advanced text analytics. These include the TAL-
ENT system for Text Analysis and Language Engineering
Technology, the Resporator (RESPOnse geneRATOR) sys-
tem [PBCR00] built on top of TALENT, and the PIQUANT
Question Answering system [CCCP+04] built on top of
RESPORATOR. We used the TALENT component to per-
form token and sentence detection, lemmatization, and part-
of-speech annotation. The RESPORATOR component was
used to annotate text with over 100 semantic categories, in-
cluding both named and unnamed entities, such as people,
roles, objects, places, events, etc. It is a rule-based an-
notator developed originally for Question Answering pur-
poses [PBCR00] and used extensively by the PIQUANT
system. Finally, we leveraged the query analysis and re-
finement capabilities of PIQUANT in order to do automatic
query expansion to the categories detected by RESPORA-
TOR. For example, a query containing the term “basketball”
would automatically be expanded to include the “SPORTS”
tag detected by the RESPORATOR component. This essen-
tially performs automatic query sense disambiguation and
expansion.

In addition to the RESPORATOR-based query expan-
sion, we explored two other methods for automatic query
refinement based on pseudo-relevance feedback [XC96],
which are based on the assumption that the top-ranked doc-
uments for a given query are indeed relevant. Traditional
relevance feedback methods such as Rocchio refinement

IBM T. J. Watson Research Center
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Figure 8: Overview of IBM automatic search system.

process [Roc71] can then be used to effectively refine the
query. In particular, a set of top-ranked documents is first
retrieved using the original user query. The weight of the
query terms is modified according to their frequency in this
set. In addition, expansion terms are selected from this
set, based on various selection criteria, and added to the
query. The refined query is then submitted to the system,
resulting in the final set of documents considered relevant
to the original user query. An alternative way to select addi-
tional terms for query expansion is to considerlexical affini-
ties (LA), which are pairs of terms that frequently co-occur
within a close proximity of each other (e.g., phrases). The
idea is that if one of the terms in a lexical affinity appears
in the query text, it is likely that the other part of the LA is
also relevant. An LA-based query expansion method was
proposed in [CFPS02]. We used both automatic query ex-
pansion approaches since both are available as native func-
tionality in the JuruXML search engine. Our final speech-
based retrieval system was therefore the combination of
three separate automatic query refinement methods—QA-
based query expansion to text categories, Rocchio-based
pseudo-relevance feedback query expansion, and lexical
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affinity-based pseudo-relevance feedback query expansion.
The parameters for each of the methods were tuned glob-
ally on the TRECVID 2003 corpus and search topics, and
the three methods performed comparably on our internal
experiments. The ranked lists generated by the three ap-
proaches were therefore fused using a non-weighted query-
independent Round Robin fusion—e.g., min rank aggrega-
tion of individual rank lists.

5.1.2 Visual retrieval

For our visual retrieval subsystem, we used the approach
from [NNT05b]. For brevity, we give only a brief sum-
mary of the approach here along with main deviations
from [NNT05b].

Visual retrieval using SVM. Discriminative modeling,
such as Support Vector Machines (SVM), works well for
the Concept Detection task. The use of the SVM for the
Search Task faces two challenges:

• Very small number of distinct positive examples

• No negative examples

We overcome these challenges by creating pseudo-
negative samples from unlabeled data and using a “bag-
ging” approach to mitigate the problem of imbalanced
learning. This allows us to apply SVM discriminative
modeling to query topics with very limited training data
(e.g., on the order of 10 positive examples only). Dis-
criminative modeling is very complementary to other popu-
lar approaches for content-based retrieval, such as nearest-
neighbor modeling. While nearest-neighbor approaches
have good recall, they usually suffer from poor precision,
which is where discriminative models, such as SVMs, can
excel. We therefore explored the combination of SVM
with the MECBR modified nearest-neighbor approach. In
our experiments we confirmed that the two approaches are
very complementary, each outperforming the other in some
cases, with the combination outperforming both in almost
all cases. The overall SVM topic modeling approach—and
its combination with the MECBR approach—is illustrated
in Figure 9. More details on the general approach can be
found in [NNT05b] so we list only specific implementation
decisions here.

Performance of SVM classifiers can vary significantly
with variation in parameters of the models. To minimize
sensitivity to these design choices, we use the variance and
the trade-off parameters determined for each feature for the
TRECVID 2005 Concept Detection task. Radial basis func-
tion (RBF) kernels usually perform better than other ker-
nels, so our reported results use SVM with RBF kernel.
The other two parameters, ratio between positive and neg-
ative examples and number of learned SVM hyperplanes (

Figure 9: Combination Hypothesis Illustration. Each line
represents a primitive SVM hyperplane between the same
set of positive examples and a randomly sampled bag of
pseudo-negative examples. Each circle represents a single
CBR query executed by the MECBR method.

i.e. bags, as in [NNT05b]) are very specific to the nature
of the search task, and therefore, optimized jointly. The
SVM scores corresponding to each hyperplane are fused us-
ing AND logic, so that the final SVM model corresponds
to the intersection of several positive hyper-spaces derived
from each of the primitive SVM models. Thus, the objective
of the ratio and bag number selection was to minimize the
under-sampling rate of negative examples while avoiding
the imbalance problem in the learning process [Jap00], and
conserving the underlying distribution of the data points.
These parameters were jointly determined based on the lim-
iting factor of having avery small number of distinct (i.e.
not near-duplicate) positive examples. LetN be the num-
ber ofbags, K the imbalance ratio, andP number of posi-
tive examples for a specific query. We tested three different
approaches for the parameter selection with initialK set to
10:

• Randomly sample the dataset forN ∗ K ∗ P points
that are not in theε-neighborhood of positive exam-
ples. PickK ∗ P points for each primitive SVM run.

• Randomly sample the dataset forN ∗ K ∗ P points
that are not in theε-neighborhood of positive exam-
ples. Cluster the selected points using k-means algo-
rithm into N clusters (with min number of items in
each cluster set to2 ∗ P ), and run the primitive SVM
run using each cluster as a pseudo-negative bag.K
will vary for each cluster. VaryN .

• Cluster the dataset points using k-means algorithm into
N clusters (with min number of items in each cluster
set toP ). Remove the clusters where there are more
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than10% of positive examples. PickK ∗ P examples
from one cluster at the time (initialN varies for the
query topic), and use them as a pseudo-negatives in a
primitive SVM run.

These approaches were tested forK=10, andN between
10 and 50 for the TRECVID 2005 Search Task testing
on the development set. The first and the third method
gave comparable results, while the second method under-
performed. This is not surprising, since using pseudo-
negatives from only one cluster can actually enable low se-
lectivity in a high-dimensional feature space. We used the
first approach for the final SVM-based visual runs due to its
simplicity and consistent performance.

Visual retrieval using MECBR. We used the multi-
example content-based retrieval (MECBR) approach
from [NS03b, NNT05b] (see also Section 4.2.4) as a com-
plementary approach to SVM for query topic modeling.
While SVM works great when there is a sufficient number
of training examples, including negative examples, it can
learn only simple decision boundaries when given very
few positive and some pseudo-negative examples. The
decision hyperspace learned by SVM can therefore be
refined through a combination with a nearest-neighbor
type of classifier modeling the immediate neighborhood
of the positive examples. The idea is that we would like
to combine the recall of nearest-neighbor classifiers, such
as MECBR, with the precision of discriminant classifiers,
such as SVM. The approach is illustrated in Figure 9.

For more details of the two methods and the way the
combination hypothesis works, please see [NNT05b]. The
MECBR method used in the search task was identical to
the one described in the above paper and also to some ex-
tent in Section 4.2.4. Specifically, unlike the concept de-
tection task, in the search task we did not use any cluster-
ing or sampling of the positive examples since their number
was limited to begin with. The complete set of positive vi-
sual examples for each topic included all image examples,
if given, as well as up to 3 frames extracted from each of the
given video segments. These frames were uniformly spaced
within the segment after stripping the 5 boundary frames
on both sides of the clip. Each example was then used
independently as a CBR query and results were fused us-
ing OR logic (i.e., MAX aggregation of confidence scores).
Other parameters (e.g., score normalization) were fixed
globally on a feature-dependent but query-independent ba-
sis. The MECBR approach was used with four features—
global color correlogram, color moments grid, global co-
occurrence texture, and semantic model vectors.

Fusion. The final visual-only run was a combination
of SVM-based and MECBR-based runs for 4 differ-
ent features—color correlogram, color moments, co-

occurrence texture, and semantic model vectors. These 8
runs were fused using simple non-weighted averaging of
statistically normalized scores (e.g., see [NNT05b]). The
only twist was that all low-level features were fused first,
and the resulting ranked list based on visual features was
then fused to the one based on semantic features. This was
done so as to avoid bias towards the visual feature runs,
which outnumbered the two semantic feature runs.

5.1.3 Model-based retrieval

Model-based retrieval applies the results from off-line con-
cept detection and text analysis to on-line queries by trig-
gering concept models with different weights. We have
devised a supervised and an unsupervised method for off-
line index creation, both producing text-to-model correla-
tion indices that are used in the on-line query execution to
produce model-based rankings of shots. Both methods are
data-driven and use corpus co-occurrence statistics to com-
pute a mapping from terms in the speech transcript to names
of available models. The two approaches are illustrated in
Figure 10.

The supervised index creation step leverages a standard
text search engine to produce the text-to-models correlation
index. We generate pseudo-documents for all ASR terms,
after pre-processing the text with a stemmer and a phraser.
Given a shot and its corresponding ASR text, we extend the
pseudo-documents with each term’s co-occurring text. We
also add concept models from ground-truth concept anno-
tations for the given shot to all of the pseudo-documents.
A text search engine indexes the documents and computes
TF-IDF statistics for each term. We refer to the resulting
index as a text-to-model correlation index.

Our unsupervised approach involves the creation of a
text-to-model correlation matrix. After pre-processing ASR
text with a stemmer and a phraser, we weight ASR terms
with models from automatic concept detection across all
shots. The resulting correlations between ASR terms and
corresponding concept models are aggregated in a matrix
of terms to concepts. We refer to this resulting matrix also
as a text-to-model correlation index.

Queries are evaluated in an on-line step, which leverages
one of the off-line correlation indices to produce a model-
based ranking of shots. Queries are analyzed in the same
manner as ASR text in the previous steps; a stemmer and
a phraser are used to resolve terms for matching query text
to text-to-model correlation indices. In case of the super-
vised approach, the query text is evaluated using the search
engine, resulting in a confidence list of best-matched mod-
els and corresponding weights proportional to the returned
search engine scores. In the unsupervised approach, model
confidences are selected from the text-to-models correlation
index for each query term and are then fused across query
terms to produce overall query-model correlation weights.
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Figure 10: Overview of the model-based retrieval method, which applies the results from off-line concept detection and
text analysis to on-line queries by triggering concept models with different weights. The approach consists of an off-line
index creation phase and an on-line query expansion phase.

We then adjust and re-rank the resulting list of models and
confidences for both approaches by evaluating the query
against a list of synonyms for models and boosting the
weights of models that were hit by the query. Given the fi-
nal list of query-relevant models and weights, we select the
most relevantk models with their corresponding weights,
and fuse them using weighted average score aggregation to
generate a final ranked list of shots. The resulting model-
based ranked list is then used to re-rank lists from other
retrieval methods through an appropriate fusion method.

5.1.4 Multimodal Fusion and Reranking

Our fusion approach for the search task was similar to that
of the concept detection task (see Section 4.3). However,
due to the lack of a training set for fusion parameter tun-
ing, we had to resort to globally tuned query-independent
fusion, as opposed query-class-dependent fusion methods
as in [KNC05]. In particular, we used the following rules

when fusing multiple runs from the same modality or from
different modalities:

• Fusion of visual runs only—we used non-weighted
score averaging of statistically normalized scores.

• Fusion of text runs only—we used non-weighted score
averaging of rank normalized scores.

• Fusion of text and visual runs—we used round robin
fusion by doing rank normalization followed by MAX
score aggregation.

• Model-based re-ranking of text runs—we used non-
weighted score averaging of rank normalized scores.

• Model-based re-ranking of visual runs—we used non-
weighted averaging of statistically normalized scores.

• Fusion of text + visual + models—same as text+visual
fusion but using the model-based re-ranked text and
visual runs as inputs.
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TRECVID05 Automatic Search Runs (Type A)
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Figure 11: Mean Average Precision performance of IBM
automatic search type A runs relative to other automatic
type A submissions.

5.1.5 Experiments and Results

We submitted 6 automatic type A runs for this year’s Search
Task, which are listed with their corresponding MAP scores
in Table 3 and in Figure 11.

Run ID Run Description MAP
F A 1 JW T 7 Text 0.057
F A 2 JW TM 6 Text + Models 0.070
F A 2 JW TV 5 Text + Visual 0.106
F A 2 JW V 3 Visual 0.110
F A 2 JW VM 4 Visual + Models 0.119
F A 2 JW TVM 2 Text + Visual + Models 0.119

Table 3: Mean Average Precision scores for all IBM auto-
matic search submissions.

For speech-based retrieval, we used only the required
ASR/MT transcripts and experimented with several differ-
ent approaches for automatic query refinement. These in-
cluded query expansion based on pseudo-relevance feed-
back, lexical affinities, as well as automatic detection and
expansion to over 100 semantic categories developed orig-
inally for question answering purposes. While our text-
based run performed competitively relative to other text-
only submissions (it was 4th out of 11 comparable submis-
sions and well above the mean and the median)—we gen-
erally found the text modality to be much less reliable this
year due to the effects of machine translation for foreign
sources. This run had our lowest Mean Average Precision
of 0.057 and its performance relative to all automatic and
manual text-only baselines is shown in Figure 12.

The highlight of our system this year was our visual-only
run, which performed nearly twice as well as our text-only
baseline (MAP of 0.110), and outperformed all automatic
type A submissions by other participants as well as 26 of
the 28 manual submissions. For this run, we explored a
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Figure 12: Mean Average Precision performance of auto-
matic and manual text-only required baselines.

novel approach leveraging two complementary light-weight
learners—modified nearest-neighbor and SVMs—to solve
the problem of visual query modeling with few examples.
The details of this approach can be found in [NNT05b].

Another approach that worked very well for us was
model-based re-ranking and expansion of result lists gen-
erated by speech-based and/or visual-based retrieval. We
build SVM models for all 39 concepts that were annotated,
and used these models to generate a rank list for each query
based on how relevant each model was to the query text. We
measured query-to-model relevance using two approaches,
combing corpus-based co-occurrence of ASR terms and
models, along with model synonym-based query expansion.
The final model-based ranked result list was then fused with
ranked lists generated by other retrieval methods so that the
other lists are effectively re-ranked based on the weights of
the most relevant models for each query. Model-based re-
ranking improved upon the text-only baseline by over 20%
to a MAP of 0.070. It also lead to our top 2 runs (both
with equal MAP of 0.119) by re-ranking our visual-only
and text+visual runs, improving them by 8% and 12%, re-
spectively.

5.2 Interactive Search

The IBM Marvel Multimedia Analysis and Retrieval Sys-
tem was used for our interactive search run. Marvel pro-
vides search facilities for content-based (features), model-
based (semantic concepts) and text-based (speech terms)
querying.

Marvel allows users to fuse together multiple searches
within each query, which was typically done for answering
the TRECVID query topics. For example, given the state-
ment of information need and query content, the user would
typically issue multiple searches based on the example con-
tent, models and speech terms. In many cases, the results
from an automatic run were used to kickoff the interactive
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Figure 13: Marvel multimedia analysis and retrieval system
used for interactive search (results for qry158).

search. Figure 13 illustrates the Marvel multimedia analy-
sis and retrieval system. An on-line demo of the system can
be accessed from http://www.research.ibm.com/marvel/.

6 Observations and Future Direc-
tions

We experimented with a number of new techniques in the
context of TRECVID 2005. For the detection task, we ob-
served robust performance with the baseline support vector
learner and were able to improve upon its performance us-
ing an ensemble of other generic learning techniques result-
ing in top performance. For the search task, we were able to
automatically leverage for the first time, models as well as
model vectors along with our existing bank of features. We
were also able to leverage for the first time through the IBM
UIMA Text Analytics components, various text analytics
and processing functionalities that when combined with our
low-level and high-level visual features and models resulted
in the top performing automatic Type A search runs. We are
working to improve upon the new directions including bet-
ter leveraging of models as well as learning models across
granularities. We also plan to work on improving our inter-
active search capabilities so that it can fully and efficiently
expose our analytical capabilities at search run time with
minimal onus on the human in the loop.
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