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Abstract

This paper presents our camera motion detection method (pan, tilt and zoom) for TRECVID 2005. As input
data, we only extract P-Frame motion compensation vectors directly from the MPEG compressed stream and
we so achieve a performance of 3-4 times faster than real time. Our method is based on global camera motion
estimation and a likelihood based significance test of the camera parameters. The best run (RI-3) on the
TRECVID 2005 test set provides 0.912 for mean precision and 0.737 for mean recall.

1 Introduction

Digital videos are more and more available and pervasive due to recent progresses in storage, communication, and
compression technologies. This consequently implies the increasing need for efficient indexing, browsing, search
and retrieval of video archives. Requests for video material in archives often specify desired or required camera
motion. Therefore, camera motion detection is a new task in TRECVID 2005. Given the feature test collection
and the shot boundary reference, all shots need to be identified in which a certain camera motion (pan, tilt or
zoom) is present. The videos in the test collection contain several scenes captured by a hand-carried camera. Jitter
motions of the camera result. The main challenge in this task was then to overcome these jitter camera motions
in order to avoid overdetections. Working on archived or broadcasted content, it is interesting to reuse motion
low-level descriptors conformal in compressed streams whatever is their quality. The present work is based on our
research on global (camera) motion estimation in MPEG compressed video [1].

1.1 Related Work

Hence, the fundamental problem for camera motion detection consist in estimating the camera model. Current
methods for camera motion detection in MPEG compressed video generally work on motion compensation vectors
or DC images extracted from the compressed stream.

The approach of Cao and Suganthan [2] is based on a neural-network scheme to characterize the camera
motion in shots. They extract and reconstruct frame-by-frame motion vectors for all frames from the MPEG
stream. Sàez et al. [3] estimate global motion parameters based on the Hough Transform. Their method works
on DC images extracted from the compressed stream. Ewerth et al. [4] compute a 3D camera motion model only
processing motion vectors from P-Frames. Due to the 3D motion model, the method allows to distinguish between
translation along the x-axis (y-axis) i.e. track (boom), and rotation around the y-axis (x-axis) i.e. pan (tilt). Since
in this task any distinction is supposed between track and pan or boom and tilt, these types of motion belong
to the same feature groups. Ngo et al. [5] characterize camera and object motions by analysing spatio-temporal
image volumes. Then, motion is depicted as oriented patterns in spatio-temporal image slices coming from DC
images. They propose a tensor histogram computation in order to represent these patterns. The approach of
Doulaverakis et al. [6] proposes the computation of direction histograms of MPEG motion vectors. Depending on
the distribution of the histogram and the number of intracoded vectors, camera motion is detected by applying
threshold values on the normalized variance of the histogram. In [7], Kim et al. present a simple thresholding
scheme for the motion parameters of the affine six parameter model. The affine six parameter model is computed
from MPEG motion vectors for each frame, whereas motion vectors for I-Frames are interpolated from P-Frames.

Bouthemy et al. [8] compute the 2D affine global motion model in order to characterize camera motion. Since
thresholding on motion parameters is difficult mainly if jitter motions are present in the scene, thresholding is
performed on likelihoods of motion parameters. This method does not work in the compressed domain. In order
to evaluate their method on compressed video, they decode MPEG compressed frames. Due to its robustness, we
refer to this method as a basis of our algorithm in the compressed domain.

1



Global motion
estimation

Classification

Significance value
computation

Thresholding Motion segmentation

P−FramesPSfrag replacements

θ̂j sj

s̄mζ̄m

Figure 1: The steps of our algorithm for the camera motion detection in a shot. (The index j is related to frames
and m to homogeneous motion segments in a shot.)

1.2 Overview of the Algorithm

We are working in the rough indexing paradigm i.e. using degraded data with a lower spatial and temporal
resolution than the original stream. Thus, we use only noisy P-Frame motion compensation vectors to detect
camera motion in MPEG compressed videos. Figure 1 shows an overview of our method. Our approach is based
on a robust global motion estimation on noisy P-Frame motion vector fields which is the first step in this figure.
We use a first order affine motion model with six parameters θ̂ to describe global camera motion. The global
motion estimation [1] includes a motion outlier rejection scheme which handles moving objects and inaccurate
encoder motion vectors for example on image borders. However, the resulting motion model parameters are still
noisy due to complex motions e.g. due to a hand-carried camera. In addition, they have different meanings so
that simple thresholding in order to find the dominant motion is not possible. Therefore, we chose a significance
test of the motion model parameters based on [8] which is the second step in figure 1. This test is formulated
as a maximisation of likelihoods sj associated to two statistical hypotheses. One stands for the significance of
the motion parameters expressing the pure physical camera motion. The second stands for the absence of the
corresponding motion. Thus, the problem is turned into a better controllable problem of thresholding likelihood-
ratios. We suppose that a specific motion is present in the shot if it is present in all P-Frames in a video segment
of a sufficient duration. Thus, we segment a shot into video segments with homogeneous motion (step three in
figure 1). To do this we consider the likelihood motion values as a stochastic signal normally distributed. Based on
[8], we apply the Hinkley test on this signal allowing to detect changes on a temporal mean value s̄m. Due to this
segmentation, the duration of a detected motion can be determined. If the duration is too short, it is considered
as a jitter motion and is rejected. Then, we threshold the mean likelihood values s̄m in a fourth step. Finally, a
classification scheme (step five in figure 1) is applied to the thresholded mean likelihood values ζ̄m of each segment
in order to define the physical character of the motion i.e. ”pure” or not. We consider only segments with pure
motions (pan, tilt, zoom) as a detection result. The classification using mean values eliminates subliminal jitter
motions and provides the dominant motion.

Then, in the following each of these steps will be addressed. We briefly introduce the robust global motion
estimation algorithm for P-Frames in section 2. The camera motion characterization is discussed in section
3. Subsection 3.1 presents the significance computation of the motion parameters, subsection 3.2 the motion
segmentation method, and subsection 3.3 the classification scheme. Some results are analysed in section 4. Finally,
section 5 concludes our work and outlines our points of interest for future research.

2 Global Motion Estimation from P-Frame Motion Compensation

Vectors

Global motion defines the motion of the main scene content. We assume in this paper that it is principally
due to the movement of the camera or the change of focus. In order to characterize global camera motion, the
six-parameter affine model is used. The motion compensation vector (dxi, dyi)

T
is expressed as

(

dxi

dyi

)

=

(

a1

a4

)

+

(

a2 a3

a5 a6

)(

xi

yi

)

(1)

where a1, . . . , a6 are the global motion parameters of the camera. In the case of P-Frames in the MPEG compressed
stream, the motion compensation vector (dxi, dyi)

T
points from the center (xi, yi)

T
of the i-th macroblock in the

current image to its position in the previous image. This motion model is proved to be sufficiently rich [1][9] to
characterize motion observed in an image plane of video. In addition, this TRECVID task only refers to three
features groups that are pan or track, tilt or boom, and zoom or dolly. Therefore, no higher order motion model
is needed to distinguish between pan and track or tilt and boom as in [4].
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The method to compute global camera motion from MPEG motion fields was proposed in the previous work
[1] and was tested providing good results in the shot boundary detection task of TRECVID 2004 [10]. This motion
estimator follows a kind of multiresolution scheme using the weighted least square method to estimate a robust
functional of motion residuals (Tukey estimator [11]).

Based on a common least square optimization problem formulation, the linear model (1) can be written in the
general matrix form

Z = Hθ + V (2)

where Z are the motion vectors of macroblocks, H is the observation matrix containing the macroblock centers, θ
is the vector of the motion parameters and the vector V is the measurement noise.

The parameter vector can be estimated using the weighted least squares method as

θ̂ = (HTWH)−1HTWZ . (3)

We denote N as the number of motion vectors. So, the matrices and vectors from (2) and (3) are constructed
in the following way:
θ̂ is the 6 × 1 column vector of the estimated parameters from (1)

θ̂ = (a1, a2, a3, a4, a5, a6)
T . (4)

Z is the 2N × 1 column vector of the measures, in this case the MPEG compensation vectors

Z = (dx1, · · · dxN , dy1, · · · dyN )T . (5)

H is the 2N × 6 observation matrix

H =





















1 x1 y1 0 0 0
...

...
...

...
...

...
1 xN yN 0 0 0
0 0 0 1 x1 y1
...

...
...

...
...

...
0 0 0 1 xN yN





















. (6)

W is the 2N × 2N diagonal matrix of the weights

W =















w1 0 · · · 0 0
0 w2 · · · 0 0
...

...
...

...
...

0 0 · · · w2N−1 0
0 0 · · · 0 w2N















(7)

where wi are the weights calculated by the Tukey function derivation. The weight computation is based on the
residuals ri

ri = zi − ẑi (8)

where zi is the i-th measurement i.e. the MPEG motion compensation vector and ẑi its estimation calculated
with (1) using the estimated model θ̂.

The Tukey function ρ and its derivative ψ are defined as [1]

ρ(r, λr) =

{

r6

6 −
λ2

rr4

2 +
λ4

rr2

2 if |r| < λr

λ6

r

6 otherwise
(9)

ψ(r, λr) =

{

r(r2 − λ2
r)

2 if |r| < λr

0 otherwise
(10)

with λr as a threshold.
Then, the weight for the i-th measurement is

wi =
ψ(ri)

ri
. (11)

The weights express the adequacy of the measures to the model and thus allow for the classification of the
measures as “conformant” to the model or “outliers”. Then, according to the weights all macroblocks in the

3



current P-Frame are classified as “conformant” and “outlier” macroblocks. The latter contain object macroblocks
and occluding areas. This allows to separate camera motion from object motion since macroblocks belonging to
moving objects are not considered for the global motion estimation. The pure camera motion results. The subset
of the conformant macroblocks will be denoted in the following as the dominant estimation support D. For details
on the robust motion estimator, we refer the readers to [1].

3 Camera Motion Characterization

The global motion model parameters from the last section are still noisy due to complex motions e.g. due to a
hand-carried camera. This is often the case in the TRECVID 2005 video data. In addition, the parameters in the
affine model have different meanings so that simple thresholding in order to find the dominant motion is difficult.
Therefore, we present a significance test of the motion model parameters based on [8].

3.1 Significance Value Computation of the Motion Parameters

Since we are interested in dominant camera motion, we express the vector of motion parameters θ = (a1, ..., a6)
T

in another basis of elementary motion-subfields as in [8]

φ = (pan, tilt, zoom, rot, hyp1, hyp2) with

zoom = 1
2 (a2 + a6) rot = 1

2 (a5 − a3)
hyp1 = 1

2 (a2 − a6) hyp2 = 1
2 (a3 + a5)

. (12)

This basis is more convenient for the interpretation of the dominant motion in the scene since its is more
related to the physical meaning. In [7] the affine model is transformed into a similar basis, but they consider only
one hyperbolic term defined as a combination of hyp1 and hyp2.

If the dominant motion is for example a pure panning, the parameter pan is supposed to be the only non zero.
This is the same for tilt, zoom and rot. If the camera is static all parameters are supposed to be zero. In practice,
this is never the case due to noise, estimation errors or moving objects. In addition, the physical meaning of the
parameters is different. The values of pan and tilt denote the number of pixels, while the others represent ratios.
Taking into account the rich variety of camera motion in video content, it is difficult to propose an appropriate
thresholding scheme to decide if a motion feature is present or not.

The significance test from [8] is a statistical approach based on a likelihood ratio test which turns the problem of
direct thresholding into a better controllable problem of thresholding likelihood ratios. Two competing hypotheses
are considered. The first hypothesis H0 assumes that the considered component of φ is significant. The second
one H1 assumes that the component is not significant i.e. it equals zero and lets the other five parameters free.
Let φ̂0 and φ̂1 be respectively the motion models corresponding to the hypotheses H0 and H1. The advantage of
such a test is that it is independent from the values of the other parameters which remain free.

The likelihood function f for each hypothesis is defined with respect to the residuals ri = (rx,i, ry,i)
T of equation

(8). They are supposed to be independent, and to follow a zero-mean Gaussian law. The covariance matrices Σl

corresponding to the two hypotheses are a posteriori estimated as

Σl =

(

σ2
x,l 0

0 σ2
y,l

)

(13)

with

σ2
m,l =

1

||D||

∑

i∈D

rm,i(φ̂l)
2, m = x, y (14)

where ||D|| is the size of the dominant estimation support D.

The two likelihood functions f for the optimized values of the motion parameters φ̂l are given by

f(φ̂l) =
∏

i∈D

(

1

2π
√

det(Σl)
exp

(

−
1

2
(rT

i Σ−1
l ri)

)

)

=
1

(2πσx,lσy,l)||D||
exp

(

−
1

2

∑

i∈D

(rT
i Σ−1

l ri)

)

=
1

(2πσx,lσy,l)||D||
exp (−||D||), l = 0, 1 . (15)

In order to estimate the five free parameters for hypothesis H1, we can profit from the previous estimation of
θ̂ i.e. φ̂0 which already furnishes D. Then, a least square estimation similarly to (3) can be used. The observation
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matrix Hd corresponding to the parameter vector φ is the 2N × 6 matrix

Hd =





















1 0 x1 −y1 x1 y1
...

...
...

...
...

...
1 0 xN −yN xN yN

0 1 y1 x1 −y1 x1

...
...

...
...

...
...

0 1 yN xN −yN xN





















. (16)

In order to set the i-th component to zero in the parameter vector φ, we suppress in practice the i-th column
in the observation matrix Hd. Thus, the least square equation is

φ̃ = (HT
dWHd)

−1HT
d WZ (17)

where Hd is the reduced observation matrix Hd and φ̃ is the reduced parameter vector which contains the free five
parameters. The matrices W and Z remain the same than in (5) and (7).

The ratio s is called the significance value

s = ln

(

f(φ̂1)

f(φ̂0)

)

= ln

( 1
(2πσx,1σy,1)||D|| exp (−||D||)

1
(2πσx,0σy,0)||D|| exp (−||D||)

)

= ||D|| (ln(σx,0σy,0) − ln(σx,1σy,1)) . (18)

We assume that σx = σy. Then, s becomes

s = ||D||
(

ln(σ2
0) − ln(σ2

1)
)

(19)

where σ2
l is computed on the amplitude of the residuals ri.

We now aim to use this value for testing the significance of the parameters. Therefore our idea is if a motion
feature is present in a shot, its corresponding motion parameter is significant during a sufficient number of frames.
We can not directly use the significance values for the following reasons. First of all, they can be noisy due to jitter
motions. Therefore, we try to smooth them along the time and take the decision on the temporal mean of the
significance values. Based on this mean, we will segment a shot into subshots of homogeneous motion. In order to
get a temporal regularity, we extrapolate the significance values I-Frames. Assuming linear and constant motion,
for each I-Frame the significance values of the preceding P-Frame are repeated. This seems very simplified and
will be a point of future research.

The second source of noise in the significance values are the failures of the MPEG encoder and it so furnishes
inaccurate motion vectors. These vectors are considered as outliers by the robust motion estimator and camera
motion will be estimated only on a small part of a frame. Thus, we decide to exclude the frames where the
estimation support is too small. To do this we introduce the confidence measure cD

cD =
||D||

Dmax

(20)

with Dmax as the maximum number of the estimation support i.e. the number of macroblocks in a frame. If cD

is lower than the threshold λD , then the motion estimated on a given P-Frame will not be further considered.
It might also be that the global motion estimation algorithm fails. In order to control the accuracy of the

motion model with respect to the MPEG motion vectors, the variance of the residuals (8) computed on D are
used as a second confidence measure cσ. If cσ exceeds the threshold λσ , the motion estimated on this frame is not
further considered.

Then, to decide which hypothesis is selected, the mean significance value s̄ is computed on a homogeneous
motion segment M (excluding the frames rejected by the confidence measures cD and cσ) and the following
likelihood log-test is performed

s̄ =
1

||M ||

∑

s∈M

s

H0

<

>

H1

λs (21)

with ||M || as the size of M . If the mean significance value s̄ is lower than the absolute threshold λs, the component
at hand is declared to be significant, otherwise it is considered to be null.
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It is obvious that not only one component exceeds the threshold λs because motion in the scene is mostly a
combination of basic motions. It is still possible that one dominant motion exists and though the omission of its
parameter causes a much more higher increase of the error than in the case of the other remaining significant pa-
rameters. Therefore, we retain only the components who exceed λs and α·min{span, stilt, szoom, srot, shyp1, shyp2}

1.

3.2 Motion Segmentation

In this section we describe the method for segmenting shots into sequences of homogeneous motion. We assume
that the likelihood motion values s form a stochastic signal that is normally distributed. Based on [8], we apply
the Hinkley test to the signal allowing to detect changes on a temporal mean value. These changes delimit the
borders of homogeneous motion segments.

Two tests are performed in parallel to look for downwards or upwards jumps. They are respectively defined by

Uk =

k
∑

t=0

(

st − s̄+
δmin

2

)

(k ≥ 0) (22)

Mk = max
0≤i≤k

Ui; detection if Mk − Uk > λH (23)

Vk =

k
∑

t=0

(

st − s̄−
δmin

2

)

(k ≥ 0) (24)

Nk = min
0≤i≤k

Vi; detection if Vk −Nk > λH (25)

where s̄ is the online mean significance value before the jump defined in equation (21), δmin is the minimal jump
magnitude that we want to detect, and λH is a predefined threshold. We perform this test simultaneously on all
mean significance values (s̄pan, s̄tilt, s̄zoom, s̄rot, s̄hyp1, s̄hyp2). If a jump has been detected on one of the signals,
the means s̄ are re-initialized for each signal.

This segmentation allows to know the duration of a certain camera motion. If the duration is too short, the
segment is considered to represent jitter motion and is rejected.

3.3 Camera Motion Classification

If the segments of homogeneous motion are known, finally a classification scheme can be applied to the thresholded
mean significance values ζ̄ of each segment in order to define the physical character of the motion. We consider
only segments with pure motions (pan, tilt, zoom) as a detection result. The classification using mean values
eliminates subliminal jitter motions and provides the dominant motion.

ζ̄ camera motion
1 (0, 0, 0, 0, 0, 0) static camera/ no significant motion
2 (ζ̄pan, 0, 0, 0, 0, 0) pan
3 (0, ζ̄tilt, 0, 0, 0, 0) tilt
4 (ζ̄pan, ζ̄tilt, ζ̄zoom, 0, 0, 0) zoom
5 others complex camera motion

Table 1: Classification scheme

Table 1 shows the classification scheme we used for TRECVID to detect the physical meaning of the set of
thresholded mean significance values ζ̄ = (ζ̄pan, ζ̄tilt, ζ̄zoom, ζ̄rot, ζ̄hyp1, ζ̄hyp2). If a motion segment of a shot with
a sufficient long duration is classified in one of the classes 2, 3 or 4, then the shot is identified to contain the
corresponding motion. Since a zoom is often combined with a small pan or tilt, it is possible that the pan or tilt
parameters are significant as well. This is also due to inaccurate MPEG motion vectors.

Finally, if successive segments are labelled with the same motion, the segments are joined. Two segments
labelled with the same motion are joined as well if they are separated by a rejected segment.

1If a parameter is significant, it causes a high negative value of s.
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Figure 2: Precision and recall results for the submissions of all participants in the TRECVID 2005 camera motion
detection task.

4 Results

For TRECVID 2005, we have several parameters to manipulate. Since no annotation is available for the devel-
opment set, we annotated only a few videos for the training. In addition, if manually annotating it is difficult to
decide if the feature is clearly true or not and if the annotator of the ground truth of the test set will decide in
the same manner.

The parameters we use for camera motion characterization are:

• δmin denotes the minimum jump magnitude that we want to detect in the Hinkley test.

• λH is the peak validation threshold for the Hinkley test.

• λs is the absolute threshold for the significance values.

• α is the constant for the relative thresholding of the significance values.

• tmin denotes the minimal motion duration i.e. the minimal number of frames in a valid homogeneous motion
segment.

• λD is the absolute threshold for the confidence measure cD i.e. the minimum size of the estimation support
D.

• λσ is the absolute threshold for the confidence measure cσ i.e. the accepted maximum variance of the
residuals ri(φ̂0).

The most equilibrated result (RI-3: 0.912 mean precision and 0.737 mean recall) and the best result for recall
as well was obtained for the following parametrization: δmin = 100, α = 0.3, λs = −30, λH = 0.1, tmin = 15,
λσ = 1000000, and λD = 0.01. The thresholds λσ is chosen quite high and λD quite low in order to not reject too
much frames. The best result for precision (RI-2: 0.967 mean precision and 0.541 mean recall) are obtained for
δmin = 100, α = 0.25, λs = −70, λH = 0.1, tmin = 25, λσ = 1000000, and λD = 0.01.

Figure 2 shows the precision and recall results for the submissions of all participants in this TRECVID task.
The submission results of the group LaBRI are the black points denoted as “RI” in the key.

Figure 3 shows some results obtained in the run RI-3. It visualizes the graphs of the motion model param-
eters θ̂, the corresponding significance values s and the online mean significance values s̄ of the shot labelled as
“shot106 136”. This shot is captured by a hand-carried camera and so contains a lot of jitter motions. The black
lines (dotted and solid) in the graphs indicate the borders of the homogeneous motion segments. The motion seg-
ments we obtain after the joining of neighboured similar motions and the rejection of too short motion segments
are marked with solid lines. Note that in this shot only the motion segments at the beginning and the end of
the shot have been rejected as too short i.e. jitter motion. The camera features we detect in this shot are pan,
static camera/ no significant motion, tilt and zoom. The real camera motion is a pan left followed by a zoom
in. Both are correctly detected and are visualized in figure 4. A lot of jitter motion is present between these two
camera motions. One part is correctly labelled as static camera or non significant motion. The other part is falsely
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detected as a tilt. The graphs in figure 3(a) show the motion parameters which are very noisy. Here no zoom is
visible, since the parameters indicating zoom (a2 and a6) have a different meaning than the parameters a1 and
a4 respectively responsible for pan and tilt. If the significance values of the motion parameters are computed, the
motions and mainly the zoom become more clear. However the graphs of the significances values in figure 3(b)
are still quite noisy. This improves after the mean value computation which is shown in figure 3(c).

5 Conclusion and Perspectives

In this paper we proposed a method for camera motion detection (pan, tilt and zoom). It is based on global
motion estimation and the significance test of the motion parameters without decoding the compressed stream.
Only P-Frame motion compensation vectors are extracted, which allows for a fast performance i.e. 3-4 times faster
than real time. The proposed method can handle moving objects in the scene and camera jitter motions.

Since no ground truth was available for the development set, it was difficult to determine the best parameter set
which will work well on the test set. Then, the first point of future work will be to determine the best parameter
set on the TRECVID 2005 test set. On the other hand future work will concern the improvement of our method.
We will mainly focus on the correction of motion models coming from completely inaccurate P-Frame motion
compensation vectors in the case if the encoder block-matching algorithm fails.
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Figure 3: 3(a), 3(b), and 3(c) show respectively the graphs of the estimated affine global motion parameters θ̂, the
corresponding significance values s and the online mean significance values s̄ for the shot labelled as “shot106 136”.
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(a)

(b)

Figure 4: 4(a) and 4(b) show respectively the first, an intermediary and the last image for the pan and zoom
correctly detected in figure 3.
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