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Abstract. In this paper, we summarize our results in the shot boundary task and 
the low-level feature task at TRECVID 2005. The low-level feature task was to 
retrieve the shots in which one of the following camera motion events was 
present: pan, tilt and zoom. An unsupervised approach to detect shot 
boundaries, aimed at minimizing the impact of parameter settings, is presented 
[4]. Frame dissimilarities are measured by motion compensated pixel 
differences of subsequent DC-frames and histogram intersection of DC-frames 
for several frame distances. A feature vector consists of the dissimilarity value 
and its ratio to the maximum neighbor value within a sliding window. K-means 
clustering is used for both cut detection and gradual transition detection. For cut 
detection, the best sliding window size is estimated by evaluating the clustering 
quality of the “cuts” cluster for several window sizes. Furthermore, we  
investigate whether an ensemble of classifiers improves the cut detection 
performance. For this purpose, the unsupervised learning approach is extended 
by two classifiers: an Adaboost-based classifier and a Support Vector Machine 
(SVM). These classifiers were trained on the TRECVID 2004 shot boundary 
test set. To retrieve shots with camera motion events, we have modified a 
previously presented approach to camera motion [5]. MPEG motion vectors are 
utilized to estimate the rotation and zoom parameters in a 3D-camera model. 
However, since motion vectors are optimal with respect to compression, many 
of them often do not model “real” motion adequately and can thus be 
considered as “outliers”. Furthermore, we exclude motion vectors at the frame 
border and motion vectors in the middle of a frame since often (moving) objects 
of interest are captured in this frame area. Finally, the motion parameters must 
exceed a threshold for several frames to be considered as camera motion. 



 2

1 Structured Abstract 

The paper is structured as follows. In this section, the results of our participation in 
both tasks are presented in form of the requested structured abstract. Algorithmic 
details are presented in section 2. A more detailed description of the experimental 
results is given in section 3. Section 4 concludes the paper. 
 
The following definitions are used in this paper: 
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Shot Boundary Detection: “What approach or combination of approaches did 
you test in each of your submitted runs?” 

An unsupervised approach which is aimed at minimizing the impact of parameter 
settings has been investigated [4]. K-means clustering is used for both cut detection 
and gradual transition detection.  
Two different frame dissimilarity measures are applied to detect cuts: Motion-
compensated pixel differences of subsequent DC-frames [9, 13] and the histogram 
dissimilarity of two frames within a pre-defined temporal distance of e.g. 2. A sliding 
window technique similar to [13] is applied to measure the relative local height of a 
peak value. For cut detection, the best sliding window size is estimated by evaluating 
the clustering quality of “cut clusters” for several window sizes. Thus, the maximum 
sliding window size serves as a parameter for both dissimilarity metrics. For cut 
detection, the unsupervised approach is optionally extended by two classifiers in order 
to build an ensemble of classifiers. An Adaboost and an SVM classifier is 
incorporated in that ensemble of classifiers.  
Several frame dissimilarity measures are applied to detect gradual transitions for 
different frame distances. Feature vectors are created similar to the cut detection 
approach using a sliding window technique. K-means is applied to these feature 
vectors. This approach is extended by a fade detector following the proposal in [11]. 
Finally, false alarms are removed if the start and end frame of a transition are too 
similar. 
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Shot Boundary Detection: “What, if any significant differences (in terms of what 
measures) did you find among the runs?” 

The different settings of the maximum possible sliding window size had very little 
impact on the detection results, which indicates that the unsupervised approach has 
reached a high degree of parameter independence. Increasing the maximum sliding 
window size leads to a slightly higher precision rate while recall is slightly lower, as it 
can be expected. The application of an ensemble of classifiers improved the cut 
detection performance. 
The parameter defining the sliding window size had also little impact on the detection 
of gradual transitions which was quite stable over all runs. The f1-measure ranged 
between 0.681 and 0.706. The frame-based recall and precision measures were clearly 
more balanced when the option “resize” was enabled.  

Shot Boundary Detection: “Based on the results, can you estimate the relative 
contribution of each component of your system/approach to its effectiveness?” 

The ensemble approach increased the cut detection performance in all cases. 
Comparing the f1-measure for cut detection, the ensemble’s f1-results are between 
0.903 and 0.912 while the results of the basic unsupervised approach are between 
0.893 and 0.899. In all cases, the ensemble approach led to a better result in terms of 
both recall and precision.  
Resizing the gradual transition intervals after clustering improved the f1-measure for 
the frame-based measures from about 0.52 up to 0.625 respectively 0.672.  

Low-level Feature Task: “What approach or combination of approaches did you 
test in each of your submitted runs?” 

Instead of computing the optical flow, our approach utilizes motion vector 
information embedded in compressed MPEG videos. Two steps are involved to 
generate a reliable motion vector field. The motion vectors at the frame border as well 
as the area in the middle of a frame are ignored. An adequate outlier removal 
algorithm is applied to the remaining field to remove vectors which are probably not 
related to motion. An optimization approach estimates the rotation and zoom 
parameters of a 3D-camera model for each P-frame in a video. A certain type of 
camera motion is assumed to be present within a shot if its related camera model 
parameter exceeds a pre-defined threshold in this shot for several frames. We have 
submitted one low-level feature run.  
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Shot Boundary Detection and Low-level Feature Task: “Overall, what did you 
learn about runs/approaches and the research question(s) that motivated them?” 

The unsupervised approach to shot boundary detection has reached a mature level of 
robustness and detection quality, in particular for the task of cut detection. The cut 
detection performance could be improved via an ensemble of classifiers. One third of 
the cut detection false alarms has been caused by cuts which were edited in a small 
local frame area (picture-in-picture), mainly in one of the test videos. It seems that the 
subjective task of ground truth data creation affects detection measures by about 2-3% 
for our approach in terms of precision, mainly for cut detection. 
The camera motion estimation approach which makes use of motion vector 
information embedded in compressed videos worked very well. The detection of 
zoom achieved a precision of 0.931 and a recall of 0.894. In terms of the f1-measure, 
this was the best submission for this task this year. Detecting tilt and pan worked also 
well with a precision of 0.962 and a recall and 0.724, and 0.924 (precision) and 0.761 
(recall), respectively. For tilts, only the runs of one other institute achieved a better f1-
value.  
Thus, it seems to be possible to approximate the optical flow based on motion vector 
information. Clearly, the filtering of the motion vector field is essential to achieve 
good results. We suppose that the very good zoom estimation benefited from the 
consideration of motion vectors in an outer frame area (but not at the border) in 
combination with the use of a 3D-camera model. Future experiments should 
investigate this subject. 

2 Algorithmic Details  

2.1 Shot Boundary Detection: Algorithmic Details 

The shot boundary detection approach is split up in two parts in order to detect cuts 
and gradual transitions appropriately. 

2.1.1 Cut Detection 
 
Unsupervised learning is utilized in the cut detection approach which is optionally 
extended to an ensemble of three classifiers. For this purpose, two additional 
classifiers are trained on an appropriate training set. The unsupervised approach 
works as follows. 
Two frame dissimilarities are used for the unsupervised cut detection task. Motion 
compensated pixel differences of subsequent frames (i.e. their frame distance is 1) 
and frame histogram differences are computed. The histograms have 512 bins where 
each bin represents a combination of the Y, Cb and Cr color channel each with 8 
quantization levels. A frame distance larger than 1 (e.g. 2 or 3) is used for the 
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histogram differencing in order to detect very short gradual transitions. Time series 
that are based on a frame distance n>1 are subsampled by a factor of n. 
For the dissimilarity values with a frame distance of 1, frame difference normalization 
is applied [2, 3] in order to remove noise and compression artifacts in the dissimilarity 
time series. Two features are then extracted for both metrics for those frame positions 
where the dissimilarity is the maximum within a sliding window of size 2*m+1:  

1.) the ratio of the dissimilarity value divided by the maximum dissimilarity 
value in this video, and,  
2.) the ratio of the second largest value divided by the maximum of the 
sliding window.  

Then, k-means (k is known a-priori in case of cut detection: 2) is applied to all feature 
vectors belonging to the same sliding window size and the same metric. The cluster 
whose average feature vector is nearer to the feature space point (1, 1) is considered 
as the “cuts” cluster. Now, for each “cuts”-cluster and for each sliding window size 
and metric the silhouette coefficient is computed which describes the compactness of 
a cluster (more details are described in [5]). The cluster with the highest coefficient 
represents the best sliding window size for a given metric and is considered as the cut 
detection result. If a cut is detected using both metrics, only the shorter transition is 
included in the final result.  

2.1.2 Video Cut Detection Using an Ensemble of Classifiers 

Furthermore, the possibility to improve the cut detection performance by combining 
multiple cut detection “experts” was investigated. It has been shown that such an 
ensemble of classifiers can improve accuracy in recognition tasks [6]. Since most 
transitions in a video are abrupt (without any transitional frames between the different 
shots), the ensemble was added to the unsupervised approach for cut detection. 
We have chosen Adaboost (e.g. described in [12]) as the first classifier to select the 
best features for a given training set (in our case the TRECVID 2004 shot boundary 
test set). The key idea of the Adaboost approach is to combine a number of n “weak 
classifiers” to build a strong classifier within n rounds of training. For each feature, a 
threshold is estimated which minimizes the classification error. The classification 
error is computed based on the weights of the training samples. Misclassified training 
samples are re-weighted such that they have more impact in the next training round 
for the next “weak classifier”. Each “weak” classifier’s weight depends on its error 
rate. The final strong classifier rule checks if the weighted sum of the weak 
classifiers’ positive votes exceeds a threshold. For the task of cut detection, we have 
defined 42 features for a certain frame distance describing dissimilarity of DC-frames 
with respect to: 

• motion compensated pixel differences, 
• histogram differences, 
• luminance mean and variance,  
• edge histograms of Sobel-filtered (vertically and horizontally) DC-frames,  
• local histogram differences, and  
• ratio of the second largest dissimilarity value divided by the local maximum 

for several sliding window sizes. 
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In this study, we have further used Adaboost for feature selection where the best 
m<=n features are used to train a SVM on the same test set of 2004. Two frame 
distances (1 and 2) were investigated resulting in a total feature number of 84. Thus, 
we finally got three classifiers evaluating each frame (considering the unsupervised 
approach as a kind of classifier as well). A majority vote is implemented in our 
approach, i.e. a cut is detected if at least two “experts” vote that a frame belongs to a 
new shot. 

2.1.3 Gradual Transition Detection 

The main idea of the gradual transition detection approach is to view a gradual shot 
change as an abrupt shot change at a lower temporal resolution. It is also an 
unsupervised approach. This basic approach is extended by a fade detector following 
the approach in [11]. The approach works as follows: 
First, frame dissimilarities are computed based on histograms of approximated DC-
frames. Those dissimilarities are computed for a certain temporal resolution ∆tj 

(where #J is the number of temporal resolutions and j ∈ {0, 1, ..., J-1}). Thus, a set of 
frame dissimilarity values {d0, ∆t0, d1, ∆t0, ..., di, ∆tj, ..., dz, ∆t(J-1)} is obtained for all 
temporal resolutions ∆tj, where di, ∆tj is the dissimilarity value for the frames i*∆tj and 
(i+1)* ∆tj, and dz, ∆tj is the last dissimilarity value of temporal resolution ∆tj with index 
z. The feature vectors are now created similar to the task of cut detection and consist 
of two components, too. The basic sliding window size of 2*m+1 is computed 
separately for each temporal resolution ∆tj by: max(m/∆tj, c), where c is a constant, 
e.g. c=1. Then, these feature vectors are clustered using k-means (again with 2 
clusters) in one clustering process. If two or more feature vectors are finally in the 
“gradual transition cluster” and have a frame overlap or a cut has been detected in this 
frame interval before, then, the longer transition(s) are removed. The transition start 
and end positions are optionally refined by comparing the dissimilarity between pairs 
of frames in the transition interval. Finally, false alarms are removed if the frame 
dissimilarity between start and end frame is below a threshold.  

2.2 Camera Motion Estimation (Low-Level Feature Task) 

In the experiments we have tested an approach to camera motion which is mainly 
based on our proposal in [5]. This approach allows the estimation of camera motion in 
MPEG videos and works directly on motion data available from the compressed video 
stream. The algorithm consists of three main steps: 

 
1) Extraction of motion vectors.  
2) Computing a reliable motion vector field. 
3) Estimation of camera motion parameters. 
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Compared to our previous proposal [5], some modifications have been made in step 2 
and step 3. A large area in the middle of the motion vector field was not considered in 
the subsequent processing since moving objects are often present in this frame area. 
Motion vectors at the border of the frame were not considered as well. Originally, we 
have also used this approach to deal with the distinction of translational and rotational 
camera movement. Since this was not required in the TRECVID low-level feature 
task, we resigned to estimate the translational motion component and used only the 
rotation and zoom parameters from the 3D-camera model. The three main steps are 
now described in more detail. 
 
1 Extraction of motion vectors. The motion vectors are extracted directly from the 
compressed MPEG stream. In MPEG, the encoding of a P-frame is based on a 
previous reference frame, while the encoding of a B-frame can be based on two 
reference frames, a previous as well as a subsequent reference frame. Only the motion 
vectors from P-frames are processed in our approach, for two reasons. First, usually 
each third to fifth frame in a MPEG video is a P-frame, and thus, the temporal 
resolution is sufficient for most applications. Second, both the prediction direction 
and the temporal distance of motion vectors are not unique in B-frames, resulting in 
additional computational complexity. For each macroblock, a motion vector is 
estimated which points to a similar block in a reference frame. Motion estimation 
algorithms try to find the best block match in terms of compression efficiency. This 
can lead to motion vectors that do not represent the camera motion or object motion at 
all, which e.g. is possibly the case for homogenous areas in images due to noise and 
low image quality. 
 
2 Computing a reliable motion vector field. To achieve a motion vector field which 
approximates the “real” optical flow well, the motion vector field has to be processed 
adequately. First, the motion vectors at the frame border and in the middle of the 
frame are removed. The latter ones are removed to reduce the impact of moving 
objects which are usually captured in the middle of a frame. Additionally, we apply 
an outlier removal algorithm which was proposed in [1]. There are two main steps in 
the algorithm. A motion vector MV is declared as an outlier if both of the following 
criteria are not met (see the examples shown in Figure 1): 

2.1. Smooth change. MV is compared to each average of four pairs of opposite 
neighbors – if the number of averages that are close to the central MV is below a 
threshold, then the criterion of smoothness is not met. 

Figure 1: Two examples for outlier criteria 
showing a motion vector and its neighbors. 
Left: “smoothness”; Right: “neighborhood”. 
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Figure 2: The 3D camera model that has been used in the proposed approach. 
 

2.2. Neighborhood. A neighborhood motion vector supports the central MV if it 
lies within a tolerance circle. If the number of supporting vectors is below a threshold, 
then the criterion of neighborhood is not met. 
 
3 Estimation of camera motion parameters. A 3D model (see Figure 2) as described 
in [10] has been chosen to describe camera motion events. Formulas 4 and 5 describe 
the translational components ux and uy in the image plane depending on the focal 
length f, the translational movement tx and ty along the x-axis and y-axis, the 
rotational components rx, ry and rz around all three axes, and the zoom factor rzoom. 
Consider an external point at (X, Y, Z) which is projected onto the image plane at 
point (x, y), where x = f*(X/Z) and y = f*(Y/Z). Motion estimation is done as follows.  
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Let νi be the difference vector between a motion vector at macroblock position (x, y) 
in the original and the estimated motion vector field, let V be the sum of all νi, and let 
θi be the absolute angle between a vector νi and V. As suggested in [10], the 
parameter values rx, ry, rz and rzoom are estimated by minimizing the term P = Σ νi

2*θi 
using the Nelder-Meade algorithm. This results in an estimated motion vector field 
VF where the difference vectors νi are mostly parallel. In contrast to [10], rz is not 
used and VF is not further considered to estimate translational camera motion 
parameters tx and ty since such a fine distinction was not requested in the low-level 
feature task. Finally, the motion parameters must exceed a threshold for several 
frames in a shot to be considered as camera motion. 
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3 Experimental Results 

3.1 Experimental Settings 

The shot detection approach has been tested with the following parameter settings for 
all runs. The frame distance for the second cut detection metric was set to 2. The 
frame distances for the gradual transition detection were set to: 6, 10, 20, 30, 40, 50. 
The MDC decoder has been used for MPEG decoding [7]. Feature selection using 
Adaboost was performed on the TRECVID 2004 shot boundary test set. Eleven 
features were selected from the whole feature set to build an Adaboost classifier. The 
best 7 features were used to train a SVM (using the library “LibSVM” [14]) on eight 
of the twelve videos from the last year’s test set. Only a subset of features and videos 
was chosen, since training of the SVM is a very time-consuming task. For the camera 
motion estimation task, the thresholds were set to: rx = 0.001, ry = 0.0015, and rzoom = 
0.00075. They were estimated using the TRECVID 2005 training set. 

3.2 Experimental Results 

The experimental settings and the results for the different runs are shown in Table 1 
and 2. The parameters for the sliding window sizes had very little impact for both cut 
detection and gradual transition detection. Increasing the maximum sliding window 
size led to slightly better precision values whereas recall decreased very slightly. 
Using a classifier ensemble improved cut detection performance slightly: Comparing 
the f1-measure for cut detection (see f1-measures for all submitted runs and all shot 
boundary tasks in Table 3), the f1-measures for the ensemble runs are between 0.903 
and 0.912 while the results of the basic unsupervised approach are between 0.893 and 
0.899. In all cases, the ensemble approach led to better results in terms of both recall 
and precision. The contribution of the classifiers to the ensemble’s performance was 
analyzed as well. Table 4 shows the cut detection results (for a cut “length” of 0 and  
<= 5) for only the Adaboost classifier respectively the SVM classifier on the 
TRECVID 2005 test set. The SVM achieves a very high precision for the cut 
“transition” with a length <= 5, whereas the Adaboost classifier is superior in recall. 
The low precision of 57.7% for the Adaboost classifier is mainly caused by one video 
(“NASA-Connect-AO.mpg”) whereas the precision for the other videos is about 83%. 
The sliding window size parameter had also very little impact on the detection of 
gradual transitions which was quite stable over all runs. The f1-measure ranged 
between 0.681 and 0.706. The frame-based recall and precision measures were clearly 
more balanced when the option “resize” was enabled.  
The camera motion results are displayed in Table 5 and Table 6. The detection of 
zoom worked very well with a precision of 0.931 and a recall of 0.894 (f1-measure: 
0.912). In terms of the f1-measure, it was the best submission for this task this year. 
Detecting tilt and pan worked also well with a precision of 0.962 and a recall and 
0.724 (f1: 0.826) respectively 0.924 and 0.761 (f1: 0.835). For tilts, only the runs of 
one institute achieved better f1-measures. 
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Run Cuts: 

MaxWin 
Size 
Metric1 

Cuts: 
MaxWin 
Size 
Metric2 

Ensemble False  
Alarm 
Removal

Gradual: 
Max 
Win 
Size 

Gradual: 
Resize 
Transition 

marburg0 15 5 1 0 20 1 
marburg1 15 5 1 1 20 0 
marburg2 15 5 0 0 24 0 
marburg3 15 10 1 1 24 1 
marburg4 15 10 0 0 24 1 
marburg5 15 15 1 0 20 0 
marburg6 18 9 1 1 12 0 
marburg7 18 9 0 0 12 0 
marburg8 15 15 1 1 20 0 

Table 1: The parameter settings for the different runs. 

 
Cuts Gradual  

Transitions 
Gradual T. 
Frame-based 

All Transitions Run 

Recall Prec. Recall Prec. Recall Prec. Recall Prec. 
marburg0 0.928 0.880 0.694 0.672 0.588 0.784 0.868 0.828 
marburg1 0.932 0.888 0.704 0.692 0.799 0.393 0.874 0.839 
marburg2 0.936 0.864 0.715 0.684 0.798 0.396 0.880 0.820 
marburg3 0.922 0.891 0.717 0.667 0.652 0.600 0.870 0.833 
marburg4 0.920 0.867 0.731 0.656 0.649 0.602 0.871 0.811 
marburg5 0.925 0.895 0.718 0.685 0.793 0.390 0.872 0.841 
marburg6 0.926 0.892 0.719 0.646 0.819 0.358 0.874 0.826 
marburg7 0.924 0.868 0.735 0.628 0.818 0.359 0.876 0.803 
marburg8 0.924 0.900 0.722 0.691 0.849 0.387 0.873 0.846 

Table 2: Recall and precision for the different runs, separated for cuts, gradual 
transitions, for gradual transitions on a frame basis, and for all transitions. 

 
Run 

Cuts 
 

Gradual  
Transitions 

Gradual Transitions 
Frame-based 

All  
Transitions 

marburg0 0.903 0.683 0.672 0.848 
marburg1 0.909 0.698 0.527 0.856 
marburg2 0.899 0.699 0.529 0.849 
marburg3 0.906 0.691 0.625 0.851 
marburg4 0.893 0.691 0.625 0.840 
marburg5 0.910 0.701 0.523 0.856 
marburg6 0.909 0.681 0.498 0.849 
marburg7 0.895 0.677 0.499 0.838 
marburg8 0.912 0.706 0.532 0.859 

Table 3: F1-measures for all runs, separated for cuts, gradual transitions, frame-
based detection performance of gradual transitions, and all transitions.  
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Cut Detection Performance Recall Prec. 

SVM (cut transitions with length <=5) 0.838 0.947 

SVM (cut transitions with length <=0) 0.939 0.871 

Adaboost (cut transitions with length <=5) 0.957 0.577 

Adaboost (cut transitions with length <=0) 0.978 0.484 

Table 4: Experimental results for the classifiers used in the ensemble approach. 

 
Pan Tilt Zoom Total Average 

Run 
Recall Prec. Recall Prec. Recall Prec. Recall Prec. 

marburg0 0.761 0.924 0.724 0.962 0.894 0.931 0.793 0.939  

Table 5: Recall and precision for the different camera motion types: pan, tilt, 
zoom, and the average for all types. 

 
Run Pan Tilt Zoom Total Average 

marburg0 0.835 0.826 0.912 0.860 

Table 6: F1-measures for the different camera motion types: pan, tilt, zoom, and 
the average for all types. 

4 Conclusions 

Our unsupervised approach to shot boundary detection has reached a mature level of 
robustness and detection quality, in particular for the task of cut detection. The cut 
detection performance was improved using an ensemble of classifiers achieving a 
recall of 0.925 and a precision of 0.90 in the best case. One third of the cut detection 
false alarms was caused by cuts which were edited in a small local frame area 
(picture-in-picture) and have not been annotated as cuts, mainly in the test video 
“20041102_160001_cctv4_daily_news_chn.mpg”. This affected the detection 
measures for our approach by about 2-3% in terms of precision, mainly for cut 
detection. The detection of gradual transitions was satisfactory with an f1-measure of 
about 0.7, and its improvement will be subject to future work, in particular with 
respect to frame accuracy. 
The camera motion estimation approach which makes use of motion vector 
information embedded in compressed videos worked very well. The detection of 
zoom achieved a precision of 0.931 and a recall of 0.894. In terms of the f1-measure, 
this was the best submission for this task this year. Detecting tilt and pan worked also 
well with a precision of 0.962 and a recall and 0.724 respectively 0.924 and 0.761. 
For tilts, only the runs of one other institute achieved better f1-values. Thus, it seems 
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to be possible to approximate the optical flow based on motion vector information. 
Clearly, the filtering of the motion vector field is essential to achieve good results. We 
suppose that the very good zoom estimation benefited from the consideration of 
motion vectors in the outer frame area (but not at the frame border) in combination 
with a 3D-camera model. Future experiments will investigate this subject.  
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