
University of Marburg at TRECVID 2005: Shot
Boundary Detection and Camera Motion Estimation

Results

Ralph Ewerth1,2, Christian Beringer1,2, Tobias Kopp2, Michael Niebergall1,2, Thilo
Stadelmann1,2, and Bernd Freisleben 1,2

1 SFB/FK615, University of Siegen
D-57068 Siegen, Germany

2 Department of Mathematics and Computer Science, University of Marburg,

Hans-Meerwein-Str., D-35032 Marburg, Germany

{ewerth, beringec, kopp, nieberga, stadelmann,
freisleb}@informatik.uni-marburg.de

Abstract. In this paper, we summarize our results in the shot boundary task and
the low-level feature task at TRECVID 2005. The low-level feature task was to
retrieve the shots in which one of the following camera motion events was
present: pan, tilt and zoom. An unsupervised approach to detect shot
boundaries, aimed at minimizing the impact of parameter settings, is presented
[4]. Frame dissimilarities are measured by motion compensated pixel
differences of subsequent DC-frames and histogram intersection of DC-frames
for several frame distances. A feature vector consists of the dissimilarity value
and its ratio to the maximum neighbor value within a sliding window. K-means
clustering is used for both cut detection and gradual transition detection. For cut
detection, the best sliding window size is estimated by evaluating the clustering
quality of the “cuts” cluster for several window sizes. Furthermore, we
investigate whether an ensemble of classifiers improves the cut detection
performance. For this purpose, the unsupervised learning approach is extended
by two classifiers: an Adaboost-based classifier and a Support Vector Machine
(SVM). These classifiers were trained on the TRECVID 2004 shot boundary
test set. To retrieve shots with camera motion events, we have modified a
previously presented approach to camera motion [5]. MPEG motion vectors are
utilized to estimate the rotation and zoom parameters in a 3D-camera model.
However, since motion vectors are optimal with respect to compression, many
of them often do not model “real” motion adequately and can thus be
considered as “outliers”. Furthermore, we exclude motion vectors at the frame
border and motion vectors in the middle of a frame since often (moving) objects
of interest are captured in this frame area. Finally, the motion parameters must
exceed a threshold for several frames to be considered as camera motion.

 2

1 Structured Abstract

The paper is structured as follows. In this section, the results of our participation in
both tasks are presented in form of the requested structured abstract. Algorithmic
details are presented in section 2. A more detailed description of the experimental
results is given in section 3. Section 4 concludes the paper.

The following definitions are used in this paper:

precisionrecall

ecision*recall*pr
f

ms#falseAlarstectedItem#correctDe

stectedItem#correctDe
precision

#Items

stectedItem#correctDe
recall

+
=

+
=

=

2
1

 (1-3)

Shot Boundary Detection: “What approach or combination of approaches did
you test in each of your submitted runs?”

An unsupervised approach which is aimed at minimizing the impact of parameter
settings has been investigated [4]. K-means clustering is used for both cut detection
and gradual transition detection.
Two different frame dissimilarity measures are applied to detect cuts: Motion-
compensated pixel differences of subsequent DC-frames [9, 13] and the histogram
dissimilarity of two frames within a pre-defined temporal distance of e.g. 2. A sliding
window technique similar to [13] is applied to measure the relative local height of a
peak value. For cut detection, the best sliding window size is estimated by evaluating
the clustering quality of “cut clusters” for several window sizes. Thus, the maximum
sliding window size serves as a parameter for both dissimilarity metrics. For cut
detection, the unsupervised approach is optionally extended by two classifiers in order
to build an ensemble of classifiers. An Adaboost and an SVM classifier is
incorporated in that ensemble of classifiers.
Several frame dissimilarity measures are applied to detect gradual transitions for
different frame distances. Feature vectors are created similar to the cut detection
approach using a sliding window technique. K-means is applied to these feature
vectors. This approach is extended by a fade detector following the proposal in [11].
Finally, false alarms are removed if the start and end frame of a transition are too
similar.

 3

Shot Boundary Detection: “What, if any significant differences (in terms of what
measures) did you find among the runs?”

The different settings of the maximum possible sliding window size had very little
impact on the detection results, which indicates that the unsupervised approach has
reached a high degree of parameter independence. Increasing the maximum sliding
window size leads to a slightly higher precision rate while recall is slightly lower, as it
can be expected. The application of an ensemble of classifiers improved the cut
detection performance.
The parameter defining the sliding window size had also little impact on the detection
of gradual transitions which was quite stable over all runs. The f1-measure ranged
between 0.681 and 0.706. The frame-based recall and precision measures were clearly
more balanced when the option “resize” was enabled.

Shot Boundary Detection: “Based on the results, can you estimate the relative
contribution of each component of your system/approach to its effectiveness?”

The ensemble approach increased the cut detection performance in all cases.
Comparing the f1-measure for cut detection, the ensemble’s f1-results are between
0.903 and 0.912 while the results of the basic unsupervised approach are between
0.893 and 0.899. In all cases, the ensemble approach led to a better result in terms of
both recall and precision.
Resizing the gradual transition intervals after clustering improved the f1-measure for
the frame-based measures from about 0.52 up to 0.625 respectively 0.672.

Low-level Feature Task: “What approach or combination of approaches did you
test in each of your submitted runs?”

Instead of computing the optical flow, our approach utilizes motion vector
information embedded in compressed MPEG videos. Two steps are involved to
generate a reliable motion vector field. The motion vectors at the frame border as well
as the area in the middle of a frame are ignored. An adequate outlier removal
algorithm is applied to the remaining field to remove vectors which are probably not
related to motion. An optimization approach estimates the rotation and zoom
parameters of a 3D-camera model for each P-frame in a video. A certain type of
camera motion is assumed to be present within a shot if its related camera model
parameter exceeds a pre-defined threshold in this shot for several frames. We have
submitted one low-level feature run.

 4

Shot Boundary Detection and Low-level Feature Task: “Overall, what did you
learn about runs/approaches and the research question(s) that motivated them?”

The unsupervised approach to shot boundary detection has reached a mature level of
robustness and detection quality, in particular for the task of cut detection. The cut
detection performance could be improved via an ensemble of classifiers. One third of
the cut detection false alarms has been caused by cuts which were edited in a small
local frame area (picture-in-picture), mainly in one of the test videos. It seems that the
subjective task of ground truth data creation affects detection measures by about 2-3%
for our approach in terms of precision, mainly for cut detection.
The camera motion estimation approach which makes use of motion vector
information embedded in compressed videos worked very well. The detection of
zoom achieved a precision of 0.931 and a recall of 0.894. In terms of the f1-measure,
this was the best submission for this task this year. Detecting tilt and pan worked also
well with a precision of 0.962 and a recall and 0.724, and 0.924 (precision) and 0.761
(recall), respectively. For tilts, only the runs of one other institute achieved a better f1-
value.
Thus, it seems to be possible to approximate the optical flow based on motion vector
information. Clearly, the filtering of the motion vector field is essential to achieve
good results. We suppose that the very good zoom estimation benefited from the
consideration of motion vectors in an outer frame area (but not at the border) in
combination with the use of a 3D-camera model. Future experiments should
investigate this subject.

2 Algorithmic Details

2.1 Shot Boundary Detection: Algorithmic Details

The shot boundary detection approach is split up in two parts in order to detect cuts
and gradual transitions appropriately.

2.1.1 Cut Detection

Unsupervised learning is utilized in the cut detection approach which is optionally
extended to an ensemble of three classifiers. For this purpose, two additional
classifiers are trained on an appropriate training set. The unsupervised approach
works as follows.
Two frame dissimilarities are used for the unsupervised cut detection task. Motion
compensated pixel differences of subsequent frames (i.e. their frame distance is 1)
and frame histogram differences are computed. The histograms have 512 bins where
each bin represents a combination of the Y, Cb and Cr color channel each with 8
quantization levels. A frame distance larger than 1 (e.g. 2 or 3) is used for the

 5

histogram differencing in order to detect very short gradual transitions. Time series
that are based on a frame distance n>1 are subsampled by a factor of n.
For the dissimilarity values with a frame distance of 1, frame difference normalization
is applied [2, 3] in order to remove noise and compression artifacts in the dissimilarity
time series. Two features are then extracted for both metrics for those frame positions
where the dissimilarity is the maximum within a sliding window of size 2*m+1:

1.) the ratio of the dissimilarity value divided by the maximum dissimilarity
value in this video, and,
2.) the ratio of the second largest value divided by the maximum of the
sliding window.

Then, k-means (k is known a-priori in case of cut detection: 2) is applied to all feature
vectors belonging to the same sliding window size and the same metric. The cluster
whose average feature vector is nearer to the feature space point (1, 1) is considered
as the “cuts” cluster. Now, for each “cuts”-cluster and for each sliding window size
and metric the silhouette coefficient is computed which describes the compactness of
a cluster (more details are described in [5]). The cluster with the highest coefficient
represents the best sliding window size for a given metric and is considered as the cut
detection result. If a cut is detected using both metrics, only the shorter transition is
included in the final result.

2.1.2 Video Cut Detection Using an Ensemble of Classifiers

Furthermore, the possibility to improve the cut detection performance by combining
multiple cut detection “experts” was investigated. It has been shown that such an
ensemble of classifiers can improve accuracy in recognition tasks [6]. Since most
transitions in a video are abrupt (without any transitional frames between the different
shots), the ensemble was added to the unsupervised approach for cut detection.
We have chosen Adaboost (e.g. described in [12]) as the first classifier to select the
best features for a given training set (in our case the TRECVID 2004 shot boundary
test set). The key idea of the Adaboost approach is to combine a number of n “weak
classifiers” to build a strong classifier within n rounds of training. For each feature, a
threshold is estimated which minimizes the classification error. The classification
error is computed based on the weights of the training samples. Misclassified training
samples are re-weighted such that they have more impact in the next training round
for the next “weak classifier”. Each “weak” classifier’s weight depends on its error
rate. The final strong classifier rule checks if the weighted sum of the weak
classifiers’ positive votes exceeds a threshold. For the task of cut detection, we have
defined 42 features for a certain frame distance describing dissimilarity of DC-frames
with respect to:

• motion compensated pixel differences,
• histogram differences,
• luminance mean and variance,
• edge histograms of Sobel-filtered (vertically and horizontally) DC-frames,
• local histogram differences, and
• ratio of the second largest dissimilarity value divided by the local maximum

for several sliding window sizes.

 6

In this study, we have further used Adaboost for feature selection where the best
m<=n features are used to train a SVM on the same test set of 2004. Two frame
distances (1 and 2) were investigated resulting in a total feature number of 84. Thus,
we finally got three classifiers evaluating each frame (considering the unsupervised
approach as a kind of classifier as well). A majority vote is implemented in our
approach, i.e. a cut is detected if at least two “experts” vote that a frame belongs to a
new shot.

2.1.3 Gradual Transition Detection

The main idea of the gradual transition detection approach is to view a gradual shot
change as an abrupt shot change at a lower temporal resolution. It is also an
unsupervised approach. This basic approach is extended by a fade detector following
the approach in [11]. The approach works as follows:
First, frame dissimilarities are computed based on histograms of approximated DC-
frames. Those dissimilarities are computed for a certain temporal resolution ∆tj

(where #J is the number of temporal resolutions and j ∈ {0, 1, ..., J-1}). Thus, a set of
frame dissimilarity values {d0, ∆t0, d1, ∆t0, ..., di, ∆tj, ..., dz, ∆t(J-1)} is obtained for all
temporal resolutions ∆tj, where di, ∆tj is the dissimilarity value for the frames i*∆tj and
(i+1)* ∆tj, and dz, ∆tj is the last dissimilarity value of temporal resolution ∆tj with index
z. The feature vectors are now created similar to the task of cut detection and consist
of two components, too. The basic sliding window size of 2*m+1 is computed
separately for each temporal resolution ∆tj by: max(m/∆tj, c), where c is a constant,
e.g. c=1. Then, these feature vectors are clustered using k-means (again with 2
clusters) in one clustering process. If two or more feature vectors are finally in the
“gradual transition cluster” and have a frame overlap or a cut has been detected in this
frame interval before, then, the longer transition(s) are removed. The transition start
and end positions are optionally refined by comparing the dissimilarity between pairs
of frames in the transition interval. Finally, false alarms are removed if the frame
dissimilarity between start and end frame is below a threshold.

2.2 Camera Motion Estimation (Low-Level Feature Task)

In the experiments we have tested an approach to camera motion which is mainly
based on our proposal in [5]. This approach allows the estimation of camera motion in
MPEG videos and works directly on motion data available from the compressed video
stream. The algorithm consists of three main steps:

1) Extraction of motion vectors.
2) Computing a reliable motion vector field.
3) Estimation of camera motion parameters.

 7

Compared to our previous proposal [5], some modifications have been made in step 2
and step 3. A large area in the middle of the motion vector field was not considered in
the subsequent processing since moving objects are often present in this frame area.
Motion vectors at the border of the frame were not considered as well. Originally, we
have also used this approach to deal with the distinction of translational and rotational
camera movement. Since this was not required in the TRECVID low-level feature
task, we resigned to estimate the translational motion component and used only the
rotation and zoom parameters from the 3D-camera model. The three main steps are
now described in more detail.

1 Extraction of motion vectors. The motion vectors are extracted directly from the
compressed MPEG stream. In MPEG, the encoding of a P-frame is based on a
previous reference frame, while the encoding of a B-frame can be based on two
reference frames, a previous as well as a subsequent reference frame. Only the motion
vectors from P-frames are processed in our approach, for two reasons. First, usually
each third to fifth frame in a MPEG video is a P-frame, and thus, the temporal
resolution is sufficient for most applications. Second, both the prediction direction
and the temporal distance of motion vectors are not unique in B-frames, resulting in
additional computational complexity. For each macroblock, a motion vector is
estimated which points to a similar block in a reference frame. Motion estimation
algorithms try to find the best block match in terms of compression efficiency. This
can lead to motion vectors that do not represent the camera motion or object motion at
all, which e.g. is possibly the case for homogenous areas in images due to noise and
low image quality.

2 Computing a reliable motion vector field. To achieve a motion vector field which
approximates the “real” optical flow well, the motion vector field has to be processed
adequately. First, the motion vectors at the frame border and in the middle of the
frame are removed. The latter ones are removed to reduce the impact of moving
objects which are usually captured in the middle of a frame. Additionally, we apply
an outlier removal algorithm which was proposed in [1]. There are two main steps in
the algorithm. A motion vector MV is declared as an outlier if both of the following
criteria are not met (see the examples shown in Figure 1):

2.1. Smooth change. MV is compared to each average of four pairs of opposite
neighbors – if the number of averages that are close to the central MV is below a
threshold, then the criterion of smoothness is not met.

Figure 1: Two examples for outlier criteria
showing a motion vector and its neighbors.
Left: “smoothness”; Right: “neighborhood”.

 8

Figure 2: The 3D camera model that has been used in the proposed approach.

2.2. Neighborhood. A neighborhood motion vector supports the central MV if it
lies within a tolerance circle. If the number of supporting vectors is below a threshold,
then the criterion of neighborhood is not met.

3 Estimation of camera motion parameters. A 3D model (see Figure 2) as described
in [10] has been chosen to describe camera motion events. Formulas 4 and 5 describe
the translational components ux and uy in the image plane depending on the focal
length f, the translational movement tx and ty along the x-axis and y-axis, the
rotational components rx, ry and rz around all three axes, and the zoom factor rzoom.
Consider an external point at (X, Y, Z) which is projected onto the image plane at
point (x, y), where x = f*(X/Z) and y = f*(Y/Z). Motion estimation is done as follows.

zoom2

2
1

zy2

2

xxx

r*
f
x1

f
xtanf

r*yr*
f
x1fr*

f
y*xt*

z
fy)(x,u

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

+−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−−=

−

 (4)

zoom2

2
1

zx2

2

yyy

r*
f
y1

f
ytanf

r*xr*
f
y1fr*

f
y*xt*

z
fy)(x,u

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

+−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−−=

−

 (5)

Let νi be the difference vector between a motion vector at macroblock position (x, y)
in the original and the estimated motion vector field, let V be the sum of all νi, and let
θi be the absolute angle between a vector νi and V. As suggested in [10], the
parameter values rx, ry, rz and rzoom are estimated by minimizing the term P = Σ νi

2*θi
using the Nelder-Meade algorithm. This results in an estimated motion vector field
VF where the difference vectors νi are mostly parallel. In contrast to [10], rz is not
used and VF is not further considered to estimate translational camera motion
parameters tx and ty since such a fine distinction was not requested in the low-level
feature task. Finally, the motion parameters must exceed a threshold for several
frames in a shot to be considered as camera motion.

p(x, y)
xy

image plane

P(X, Y, Z)

Z

X

Y

0

Booming (T)y

Tracking (T)x

Panning (R)y

Tilting (R)x

focal length (f)

Rolling (R)z
Dolling (T)z

p(x, y)
xy

image plane

P(X, Y, Z)

Z

X

Y

0

Booming (T)yBooming (T)y

Tracking (T)xTracking (T)x

Panning (R)yPanning (R)y

Tilting (R)xTilting (R)x

focal length (f)

Rolling (R)zRolling (R)z
Dolling (T)zDolling (T)z

 9

3 Experimental Results

3.1 Experimental Settings

The shot detection approach has been tested with the following parameter settings for
all runs. The frame distance for the second cut detection metric was set to 2. The
frame distances for the gradual transition detection were set to: 6, 10, 20, 30, 40, 50.
The MDC decoder has been used for MPEG decoding [7]. Feature selection using
Adaboost was performed on the TRECVID 2004 shot boundary test set. Eleven
features were selected from the whole feature set to build an Adaboost classifier. The
best 7 features were used to train a SVM (using the library “LibSVM” [14]) on eight
of the twelve videos from the last year’s test set. Only a subset of features and videos
was chosen, since training of the SVM is a very time-consuming task. For the camera
motion estimation task, the thresholds were set to: rx = 0.001, ry = 0.0015, and rzoom =
0.00075. They were estimated using the TRECVID 2005 training set.

3.2 Experimental Results

The experimental settings and the results for the different runs are shown in Table 1
and 2. The parameters for the sliding window sizes had very little impact for both cut
detection and gradual transition detection. Increasing the maximum sliding window
size led to slightly better precision values whereas recall decreased very slightly.
Using a classifier ensemble improved cut detection performance slightly: Comparing
the f1-measure for cut detection (see f1-measures for all submitted runs and all shot
boundary tasks in Table 3), the f1-measures for the ensemble runs are between 0.903
and 0.912 while the results of the basic unsupervised approach are between 0.893 and
0.899. In all cases, the ensemble approach led to better results in terms of both recall
and precision. The contribution of the classifiers to the ensemble’s performance was
analyzed as well. Table 4 shows the cut detection results (for a cut “length” of 0 and
<= 5) for only the Adaboost classifier respectively the SVM classifier on the
TRECVID 2005 test set. The SVM achieves a very high precision for the cut
“transition” with a length <= 5, whereas the Adaboost classifier is superior in recall.
The low precision of 57.7% for the Adaboost classifier is mainly caused by one video
(“NASA-Connect-AO.mpg”) whereas the precision for the other videos is about 83%.
The sliding window size parameter had also very little impact on the detection of
gradual transitions which was quite stable over all runs. The f1-measure ranged
between 0.681 and 0.706. The frame-based recall and precision measures were clearly
more balanced when the option “resize” was enabled.
The camera motion results are displayed in Table 5 and Table 6. The detection of
zoom worked very well with a precision of 0.931 and a recall of 0.894 (f1-measure:
0.912). In terms of the f1-measure, it was the best submission for this task this year.
Detecting tilt and pan worked also well with a precision of 0.962 and a recall and
0.724 (f1: 0.826) respectively 0.924 and 0.761 (f1: 0.835). For tilts, only the runs of
one institute achieved better f1-measures.

 10

Run Cuts:

MaxWin
Size
Metric1

Cuts:
MaxWin
Size
Metric2

Ensemble False
Alarm
Removal

Gradual:
Max
Win
Size

Gradual:
Resize
Transition

marburg0 15 5 1 0 20 1
marburg1 15 5 1 1 20 0
marburg2 15 5 0 0 24 0
marburg3 15 10 1 1 24 1
marburg4 15 10 0 0 24 1
marburg5 15 15 1 0 20 0
marburg6 18 9 1 1 12 0
marburg7 18 9 0 0 12 0
marburg8 15 15 1 1 20 0

Table 1: The parameter settings for the different runs.

Cuts Gradual

Transitions
Gradual T.
Frame-based

All Transitions Run

Recall Prec. Recall Prec. Recall Prec. Recall Prec.
marburg0 0.928 0.880 0.694 0.672 0.588 0.784 0.868 0.828
marburg1 0.932 0.888 0.704 0.692 0.799 0.393 0.874 0.839
marburg2 0.936 0.864 0.715 0.684 0.798 0.396 0.880 0.820
marburg3 0.922 0.891 0.717 0.667 0.652 0.600 0.870 0.833
marburg4 0.920 0.867 0.731 0.656 0.649 0.602 0.871 0.811
marburg5 0.925 0.895 0.718 0.685 0.793 0.390 0.872 0.841
marburg6 0.926 0.892 0.719 0.646 0.819 0.358 0.874 0.826
marburg7 0.924 0.868 0.735 0.628 0.818 0.359 0.876 0.803
marburg8 0.924 0.900 0.722 0.691 0.849 0.387 0.873 0.846

Table 2: Recall and precision for the different runs, separated for cuts, gradual
transitions, for gradual transitions on a frame basis, and for all transitions.

Run

Cuts

Gradual
Transitions

Gradual Transitions
Frame-based

All
Transitions

marburg0 0.903 0.683 0.672 0.848
marburg1 0.909 0.698 0.527 0.856
marburg2 0.899 0.699 0.529 0.849
marburg3 0.906 0.691 0.625 0.851
marburg4 0.893 0.691 0.625 0.840
marburg5 0.910 0.701 0.523 0.856
marburg6 0.909 0.681 0.498 0.849
marburg7 0.895 0.677 0.499 0.838
marburg8 0.912 0.706 0.532 0.859

Table 3: F1-measures for all runs, separated for cuts, gradual transitions, frame-
based detection performance of gradual transitions, and all transitions.

 11

Cut Detection Performance Recall Prec.

SVM (cut transitions with length <=5) 0.838 0.947

SVM (cut transitions with length <=0) 0.939 0.871

Adaboost (cut transitions with length <=5) 0.957 0.577

Adaboost (cut transitions with length <=0) 0.978 0.484

Table 4: Experimental results for the classifiers used in the ensemble approach.

Pan Tilt Zoom Total Average

Run
Recall Prec. Recall Prec. Recall Prec. Recall Prec.

marburg0 0.761 0.924 0.724 0.962 0.894 0.931 0.793 0.939

Table 5: Recall and precision for the different camera motion types: pan, tilt,
zoom, and the average for all types.

Run Pan Tilt Zoom Total Average

marburg0 0.835 0.826 0.912 0.860

Table 6: F1-measures for the different camera motion types: pan, tilt, zoom, and
the average for all types.

4 Conclusions

Our unsupervised approach to shot boundary detection has reached a mature level of
robustness and detection quality, in particular for the task of cut detection. The cut
detection performance was improved using an ensemble of classifiers achieving a
recall of 0.925 and a precision of 0.90 in the best case. One third of the cut detection
false alarms was caused by cuts which were edited in a small local frame area
(picture-in-picture) and have not been annotated as cuts, mainly in the test video
“20041102_160001_cctv4_daily_news_chn.mpg”. This affected the detection
measures for our approach by about 2-3% in terms of precision, mainly for cut
detection. The detection of gradual transitions was satisfactory with an f1-measure of
about 0.7, and its improvement will be subject to future work, in particular with
respect to frame accuracy.
The camera motion estimation approach which makes use of motion vector
information embedded in compressed videos worked very well. The detection of
zoom achieved a precision of 0.931 and a recall of 0.894. In terms of the f1-measure,
this was the best submission for this task this year. Detecting tilt and pan worked also
well with a precision of 0.962 and a recall and 0.724 respectively 0.924 and 0.761.
For tilts, only the runs of one other institute achieved better f1-values. Thus, it seems

 12

to be possible to approximate the optical flow based on motion vector information.
Clearly, the filtering of the motion vector field is essential to achieve good results. We
suppose that the very good zoom estimation benefited from the consideration of
motion vectors in the outer frame area (but not at the frame border) in combination
with a 3D-camera model. Future experiments will investigate this subject.

5 Acknowledgements

This work is financially supported by the Deutsche Forschungsgemeinschaft (SFB/FK
615, Teilprojekt MT).

6 References

1. Dante, A., and Brookes, M.: Precise Real-Time Outlier Removal from Motion Vector Fields
for 3D Reconstruction. In Proc. of IEEE International Conference on Image Processing, Vol.
1, Barcelona, Spain, (2003) 393-396

2. Ewerth, R., and Freisleben, B.: Improving Cut Detection Algorithms for MPEG Videos by
GOP-Oriented Frame Difference Normalization. In Proc. of the 17th International
Conference on Pattern Recognition, Vol. 2. Cambridge, United Kingdom (2004) 807-810

3. Ewerth, R., and Freisleben, B.: Frame Difference Normalization: An Approach to Reduce the
Error Rates of Video Cut Detection in MPEG Videos. In Proc. of the IEEE International
Conference on Image Processing, Vol. 2. Barcelona, Spain (2003) 1009-1012

4. Ewerth, R., and Freisleben, B.: Video Cut Detection without Thresholds., Proc. of 11th Int’l
Workshop on Systems, Signals and Image Processing, Poznan, Poland (2004) 227-230

5. Ewerth, R., Schwalb, M., Tessmann, P., and Freisleben, B.: Estimation of Arbitrary Camera
Motion in MPEG Videos. In Proc. of the 17th International Conference on Pattern
Recognition, Vol. 1. Cambridge, United Kingdom (2004), 512-515

6. Kuncheva, L. I., Whitaker, C. J., Shipp, C. A., and Duin, R. P. W.: Limits on the Majority
Vote Accuracy in Classifier Fusion. In Pattern Analysis and Applications, Vol. 6, No. 1, ,
Springer-Verlag, London (2003) 22-31

7. Li, D., Sethi, I.: MPEG Developing Classes.
http://www.cs.wayne.edu/~dil/research/mdc/docs.

8. Petersohn, C.: Fraunhofer HHI at TRECVID 2004: Shot Boundary Detection System.
TREC Video Retrieval Evaluation Online Proceedings, TRECVID, 2004.
URL: www-nlpir.nist.gov/projects/tvpubs/tvpapers04/fraunhofer.pdf

9. Shen, K., and Delp, E. J.: A Fast Algorithm for Video Parsing Using MPEG Compressed
Sequences. In Proc. of IEEE ICIP 1995. Washington, DC. (1995) 252-255

10. Srinivasan, M. V., Venkatesh, S., and Hosie, R.: Qualitative Estimation of Camera Motion
Parameters from Video Sequences. In Pattern Recognition, Vol. 30, No. 4, Elsevier Science
Ltd. (1997) 593-606

11. Truong, B.-T., and Venkatesh, S.: New Enhancements to Cut, Fade and Dissolve Detection.
In Proc. of ACM International Conference on Multimedia, Los Angeles, USA, (2000) 219-
227

12. Viola, P., and Jones, M. J.: Robust Real-Time Face Detection. In International Journal of
Computer Vision 57(2), Kluwer Academic Publishers, Netherlands, (2004) 137-154

13. Yeo, B., and Liu, B.: Rapid Scene Analysis on Compressed Video. In IEEE Transactions on
Circuits and Systems for Video Technology, Vol. 5, No. 6. (1995) 533-544

14. Chang, C.-C., and Lin, C.-J.: LIBSVM: A Library for Support Vector Machines.
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

