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1 CLIPS-IMAG, BP53, 38041 Grenoble Cedex 9, France
2 LSR-IMAG, BP53, 38041 Grenoble Cedex 9, France

Stephane.Ayache, Georges.Quenot@imag.fr

Abstract

This paper presents the systems used by CLIPS-
IMAG and LSR-IMAG laboratories for their par-
ticipation to TRECVID 2006 and the obtained re-
sults.

Shot boundary detection was performed using a
system based on image difference with motion
compensation and direct dissolve detection. This
system gives control of the silence to noise ratio
over a wide range of values and for an equal value
of noise and silence (or recall and precision), the
F1 value is 0.805 for all types of transitions, 0.833
for cuts and 0.727 for gradual transitions.

High level feature detection was performed using
networks of SVM classifiers arranged in a variety
of architectures and taking into account a variety
of low level descriptors combining text, local and
global information as well as conceptual context.
The inferred average precision of our first run is
0.088.

The search system uses a user controlled combi-
nation of five mechanisms: keywords, similarity
to example images, semantic categories, similarity
to already identified positive images, and tempo-
ral closeness to already identified positive images.
The mean average precision of the system (with
the most experienced user) is 0.184.

1 Shot Boundary Detection

The CLIPS-IMAG team have participated to the
Shot Boundary Detection (SBD) task with little
modifications from previous participations. The

system detects “cut” transitions by direct image
comparison after motion compensation and “dis-
solve” transitions by comparing the norms of the
first and second temporal derivatives of the im-
ages. It also contains a module for detecting pho-
tographic flashes and filtering them out as erro-
neous cuts and a module for detecting additional
cuts via a motion peak detector. The precision
versus recall or noise versus silence tradeoff is con-
trolled by a global parameter that modifies in a co-
ordinated manner the system internal thresholds.
The system is organized according to a (software)
dataflow approach and Figure 1 shows its archi-
tecture.

Very little modification was made relatively to the
previous versions of the system, only minor adjust-
ments of control parameter.

1.1 Cut detection by Image Compari-
son after Motion Compensation

This system was originally designed to evaluate
the interest of using image comparison with mo-
tion compensation for video segmentation. It
has been complemented afterward with a photo-
graphic flash detector and a dissolve detector.

1.1.1 Image Difference with Motion Com-

pensation

Direct image difference is the simplest way for
comparing two images and then to detect disconti-
nuities (cuts) in video documents. Such difference
however is very sensitive to intensity variation and
to motion. This is why an image difference af-
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Figure 1: Shot boundary detection system architecture

ter motion compensation (and also gain and offset
compensation) has been used here.

Motion compensation is performed using an opti-
cal flow technique [1] which is able to align both
images over an intermediate one. This particu-
lar technique has the advantage to provide a high
quality, dense, global and continuous matching be-
tween the images. Once the images have been op-
timally aligned, a global difference with gain and
offset compensation is computed.

Since the image alignment computation is rather
costly, it is actually computed only if the simple
image difference with gain and offset compensa-
tion alone has a large enough value (i.e. only if
there is significant motion within the scene). Also,
in order to reduce the computation cost, the dif-
ferences (with and without motion compensation)
are computed on reduced size images (typically 88
× 60 for the NTSC video format). A possible cut
is detected if both the direct and the motion com-
pensated differences are above an adaptive thresh-
old.

In order for the system to be able to find shot
continuity despite photographic flashes, the direct
and motion compensated image difference modules
does not only compare consecutive frames but also,
if needed, frames separated by one or two interme-
diate frames.

1.1.2 Photographic flash detection

A photographic flash detector module was imple-
mented in the system since flashes are very fre-
quent in TV news (for which this system was origi-
nally designed for) and they induce many false pos-
itives. Flash detection has also an interest apart
from the segmentation problem since shots with
high flash densities indicate a specific type of event
which is an interesting semantic information.

The flash detection is based on an intensity peak
detector which identify 1- or 2-frame long peaks on
the average image intensity and a filter which uses
this information as well as the output of the image
difference computation modules. A 1- or 2-frame
long flash is detected if there is a corresponding
intensity peak and if the direct or motion com-
pensated difference between the previous and fol-
lowing frames are below a given threshold. Flash
information is used in the segmentation system for
filtering the detected cut transitions.

1.1.3 Motion peak detection

It was observed from TREC-10 and other eval-
uations that the motion compensated image dif-
ference was generally a good indicator of a cut
transition but, sometimes, the motion compensa-
tion was too good at compensating image differ-
ences (and even more when associated to a gain
and offset compensation) and quite a few actual
“cuts” were removed because the pre- and post-
transition images were accidentally too close after



motion compensation. We found that it is possible
not to remove most of them because such compen-
sation usually requires compensation with a large
and highly distorted motion which is not present in
the previous and following image-to-image change.
A cut detected from simple image difference is then
removed if it is not confirmed by motion compen-
sated image difference unless it also corresponds
to a peak in motion intensity.

1.2 Dissolve detection

Dissolve effects are the only gradual transition ef-
fects detected by this system. The method is
very simple: a dissolve effect is detected if the L1

norm (Minkowski distance with exponent 1) of the
first image derivative is large enough compared to
the L1 norm of the second image derivative (this
checks that the pixel intensities roughly follows a
linear but non constant function of the frame num-
ber). This is expected to detect dissolve effects be-
tween constant or slowly moving shots. This first
criterion is computed in the neighborhood (± 5
frames) of each frame and a filter is then applied
(the effect must be detected or almost detected in
several consecutive frames).

1.3 Output filtering

A final step enforces consistency between the out-
put of the cut and dissolve detectors according to
specific rules. For instance, if a cut is detected
within a dissolve, depending upon the length of
the dissolve and the location of the cut within it,
it may be decided either to keep only one of them
or to keep both but moving one extremity of the
dissolve so that it occurs completely before or after
the cut.

1.4 Global tuning parameters

The system has several thresholds that have to be
tuned for an accurate detection. Depending upon
their values, the system can detect or miss more
transitions. These thresholds also have to be well
balanced among themselves to produce a consis-
tent result. Most of them were manually tuned as
the system was built in order to produce the best
possible results using development data.

For the TREC-11 and following evaluations, as
well as for other applications of the system, we
decided to have all the threshold parameters be a
function of a global parameter controlling the re-
call versus precision tradeoff (or, more precisely,
the silence to noise ratio). We actually used two
such global parameters: one for the cut transitions
and one for the gradual transitions. A function
was heuristically devised for each system thresh-
old for how it should depend upon the global pa-
rameters.

Ten values were selected for the global parameters.
These values were selected so that they cover all
the useful range (outside of this range, increasing
or decreasing further the global parameter pro-
duces a loss on both the silence and noise mea-
sures) and within that range they set targets on a
logarithmic scale for the silence to noise ratio.

1.5 Results

Ten runs have been submitted for the CLIPS-
IMAG system. These correspond to the same sys-
tem with a variation of the global parameter con-
trolling the silence versus noise (or precision versus
recall) tradeoff.

Figure 2 shows the relative variation of precision
and recall of the SBD system with the global sys-
tem parameter that controls the silence to noise ra-
tio. Results are shown for all transitions and sep-
arately for cuts and gradual transitions. Figure 3
shows the same for frame-precison and frame-
recall within detected gradual transitions.

The CLIPS-IMAG system appears to be quite
good for gradual transitions both for their detec-
tion and location. The F1 measure (harmonic
mean of precision and recall) is of 0.727 when the
global tuning parameter is set so that precision
and recall have comparable values while the best
system has an F1 of 0.818. This indicates that the
chosen method (comparison of the first and second
temporal derivative of the images) is quite good
even if theoretically suited only for sequences with
no or very little motion. We observe in figure 3
that when the recall inreases and the precision de-
creases for gradual transition detection, the frame
recall remains quite constant while the precision
decreases. This may be due to the fact that when
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Figure 2: Precision × recall of the CLIPS Shot Boundary Detection system while varying the global
system parameter that controls the silence to noise ratio
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Figure 3: Frame precision × recall for gradual transitions of the CLIPS Shot Boundary Detection system
while varying the global system parameter that controls the silence to noise ratio



the recall of gradual transitions is increased, more
difficult transitions are considered.

For cuts, the CLIPS-IMAG system has an F1 of
0.833 when the global tuning parameter is set
so that precision and recall have comparable val-
ues while the best system has an F1 of 0.900.
The motion-compensated immage difference cou-
pled to photographic flashes eilimiation is still a
good method for shot segementation.

Finally, for all transitions, the CLIPS-IMAG sys-
tem has an F1 of 0.805 when the global tuning
parameter is set so that precision and recall have
comparable values while the best system has an
F1 of 0.875. The systems is still quite good even
though it is a few year old and it has not been
optimized on TRECVID 2005 or 2006 data. The
golbal control parameter was again very efficient
for adjusting the precision versus recall tradeoff.

2 High Level Feature Extraction

High level feature detection was performed using
networks of SVM classifiers arranged in a variety
of architectures and taking into account a variety
of low level descriptors combining text, local and
global information as well as conceptual context.
The 39 concepts are derived from “intermediate”
concepts, themselves derived from “low level” de-
scriptors and not necessarily related to the 39 “fi-
nal” concepts. This apporach is linked to the idea
that it may be better to cross the semantic gap
in several steps in which the complexity remains
low and the correlation between the inputs and
the outputs is kept high. It is related to stacking
approaches [2]

2.1 “Local” intermediate concepts

“Local” intermediate concepts are computed on
image patches. There are 260 (20 × 13) approx-
imately half-overlapping 32 × 32 pixels patches.
15 intermediate concepts were learned each by a
single classifier (the same classifier is applied to all
the patches within an image) that takes as imputs:

• 9 color components (RGB means, variances
and covariances)

• 24 texture components (8 orientations × 3
scales Gabor transform)

• 7 motion components (the central velovity
components plus the mean, variance and co-
variance of the velocity components within
the patch; a velocity vector is computed for
every image pixel using an optical flow tool
[1] on the whole image).

The intermediate concept classifiers are trained
from positives and negative samples extracted
from manually labelled image regions.

The 15 × 260 outputs of the 15 classifiers applied
to the 260 patches of the test image are the inputs
for the higher level classifiers (the 39 classifiers cor-
responding to the 39 TRECVID 2006 concepts or
intermediates stages of them). In pratcice, not all
of the 15 intermediate concepts are used for all of
the 39 concepts but only a subset of them. This
subset is manually chosen for each of the 39 con-
cepts and typically contains 5 or 6 intermetidate
concepts. These 5 to 6 × 260 components are com-
pleted by visual features at the image level (that
do not depend upon the intermediate concept; this
is actually already an “early” fusion of the patch-
concepts and the global low-level image descrip-
tors). These include:

• 64 color components (4 × 4 ×4 color his-
togram)

• 40 texture components (8 orientations × 5
scales Gabor transform)

• 5 motion components (the mean, variance and
covariance of the velocity components within
the image)

Therefore, the “intermediate” “local” descrip-
tor typically contains about 1500 components.
The vector components corresponding to patchs-
concepts are not binary but a real value between 0
and 1 corresponding to the estimated probability
of the patch of containing the concept as they are
computed by the libsvm package [11].

The 15 intermediate concepts considered are: An-
imal, Building, Car, Cartoon, Crowd, Fire, Flag-
US, Greenery, Maps, Road, Sea, Skin face, Sky,
Sports, Studio background. They have been



learned from the collaborative corpus annotation
of TRECVID 2003 and 2005 that we cleaned up
and enriched.

2.2 “Reuters” intermediate concepts

“Reuters” intermediate concepts are computed
on audio segments of the ASR-MT transcription.
They are then projected on the keyframes, each
keyframe receiving the values associated to the au-
dio segment in which it is included or the value
associated to the nearest ausio segment if it if not
included in an audio segment.

The 103 hierarchical Reuters categories have been
learned using a Rocchio type classifier using a tf.idf
weighting of terms from the 810,000 annotated
news samples of the RVC1 Reuters corpus [13].
The classifier is the applied to the speech segments
and each one receive a score (also real value be-
tween 0 and 1) for each of the 103 reuters category
(hiererchy is actually ignored). These 103 values
are finally the component of the “intermediate”
“reuters” descriptor.

2.3 “Text” intermediate concepts

“Text” intermediate concepts are also computed
on audio segments of the ASR-MT transcription.
A list of 2500 terms associated to the concepts
(these are directly the 39 final ones) is built consid-
ering the most frequent ones excluding stopwords.
The “intermediate” “text” descriptor is a boolean
vector whose components are 0 ore 1 if the term is
absent or present in the audio segment. Again the
vectors built at the level of the audio segments are
projected on the keyframes in the same way.

2.4 Fusion schemes

The descriptors correponding to the different in-
termediate concepts may be used simultaneously.
We tried and compare several fusion schemes for
that purpose. This is a difficult problem as the
various descriptors differ in nature, in quality and
in component count. We consider three fusion
schemes inspired from the usual early and late
fusion schemes [3] and some variations of them.
Those schemes use a classifier to learn the relations

between modality components at different abstrac-
tion levels.

2.4.1 Early and late fusion

Figure 4 and 5 describe the process of early and
late fusion schemes. The feature extraction (FE)
process extracts and create a vector for each
modality of the video item. We show the SVM
process as two main steps: first, the construction
of the Kernel, then the Learning or Classification
(L / C) processes aims to assign a classification
score to the video item.

Merging all the descriptors into a single flat classi-
fier leads to a fully integrated fusion strategy since
the fusion classifier obtains all the information
from all sources. The advantage of such a scheme
is its capacity to learn the regularities formed by
the components independently from the modali-
ties. Also, it is easy to use as it just consists in
concatenating the various data in a single vector.
The main disadvantage is the use of a unique ap-
proach (classifier and/or kernel) to merge different
types of information. Using an SVM classifier with
RBF kernels, an early fusion scheme is equivalent
to multiply the kernels which share the same σ

parameter. Assuming two concatenated vectors x

and y from sets of features 1 and 2, we have the
following kernel:

K(x,y) = e
−

‖x−y‖2

2σ
2 = e

−
‖x1−y1‖

2
+‖x2−y2‖

2

2σ
2

= e
−

‖x1−y1‖
2

2σ
2 e

−
‖x2−y2‖

2

2σ
2

The σ parameter is often fixed by using cross val-
idation, it is then optimal for the concatenated
vectors, but not necessary for each modality.

A late Fusion is performed on top of several clas-
sifiers. It has been presented using different for-
malisms, such as meta-classification which aims to
re-classify the classification results made by other
classifiers [4]. The closest theory to illustrate a
late Fusion is the Stacking Ensemble learning [2]
which is part of the ensemble methods [5]. The
idea behind Ensemble learning methods (e.g. bag-
ging, boosting, stacking) is to improve the gen-
eralization by training more than one model on
each problem (e.g. train 10 SVM instead of just



Figure 4: “Early” fusion scheme

Figure 5: “Late” fusion scheme

one) and then to combine their predictions by av-
eraging, by voting or by other methods. Using
stacking, the combination is achieved by a final
classifier which provides the final result. Hence, in
the context of multimedia indexing, the late fusion
scheme consists in performing a first classification
separately on each modality and then in merging
the outputs using a higher level classifier. In such a
way, in contrast with the early fusion, one can use
different classifier algorithms and different train-
ing sets according to the modalities. Furthermore,
the late fusion scheme also allows to combine var-
ious classifiers for the same modality. However,
the significant dimensional reduction induced by
the stacked classifiers might be a disadvantage as

the fusion classifier cannot fully benefit from the
correlation among the sources of information.

2.4.2 Kernel Fusion

Kernel combination is a current active topic in
the field of machine learning. It takes benefit
of Kernel-based classifier algorithms. Advantages
of merging modalities at kernel level are numer-
ous. First, it allows to choose the kernel func-
tions according to the modalities. For instance,
histograms of colors can take advantage of specific
histogram matching distances. Likewise, textual
modality can be categorized using appropriate ker-
nels such as String Kernels [6] or Word-Sequence
kernels [7].



Figure 6: “Kernel” fusion scheme

Kernel fusion also allows to model the data with
more appropriate parameters. Merging modalities
using an early fusion scheme leads to model the
data using a single kernel function. Consequently,
when using a RBF kernel, a single σ parameter is
expected to “fit” properly the sample vectors rela-
tions, whereas it makes much more sense to train
a combined RBF kernel using one σ per modality.
Combination of unimodal kernels leads to keep as
much information as possible from each modality.
A combined RBF kernel has the following form:

Kc(x,y) = F (Km(xm,ym)(1≤m≤M))

where Kc(x,y) is the combined kernel value for
samples x and y, (Km)1≤m≤M are the considered
unimodal RBF kernels, F is the combining func-
tion over the M modalities, xm and ym are the
sample vectors for modality m. Figure 6 shows
the kernel fusion process, the unimodal kernels are
merged using a fusion function in order to create
the multimodal kernel. Then, learning and classi-
fication steps aims to assign a classification score
to the video item.

One of the main issues in the current kernel re-
search is the learning of such combined kernels.
Called Multiple Kernels Learning, it aims to learn
at the same time the parameters of all the uni-
modal kernels and the parameters of the combin-
ing function [8]. In our experiments, we used a
very simple strategy to create combined kernels.
The following algorithm describes the steps to sim-
ply create combined kernels:

1. Construct each unimodal kernels Km,

2. Perform cross-validation on each unimodal
kernels to fix their parameters,

3. Construct the combined kernel using the F

combining function,

4. Perform cross-validation to optimize the pa-
rameters of F .

This algorithm assumes that the best parameters
of unimodal kernels are suitable enough to allow
efficient generalization of the combined kernel.

Combining individual kernels using a product op-
erator is hightly comparable to the classic early
scheme where feature vectors are just concate-
nated. Assuming two samples x and y from sets
of features 1 and 2, and using RBF individual ker-
nels, a product combination leads to the following
kernel:

K(x,y) = e
−

‖x−y‖2

2σ
2 = e

−
‖x1−y1‖

2
+‖x2−y2‖

2

2σ
2

= e
−
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2

2σ
2 e

−
‖x2−y2‖

2

2σ
2

The early fusion scheme is equivalent to multiply
kernels which share the same σ parameter. Fur-
thermore, due to the product operator, this com-
bination might lead to sparse kernels and provide
poor generalization. We used the sum operator in-
stead of the product operator to try to avoid too
sparse kernel representations. Summing unimodal



kernels should be more suitable for concept detec-
tion when extracted features from a single modal-
ity are noisy and lead to incorrect detection.

We actually combine unimodal kernels by linear
combination (weighted sum). Using RBF uni-
modal kernels, combined kernels are defined by the
following formula:

Kc(x,y) =
∑

m

wm e
−

‖xm−ym‖2

2σ
2
m

where σm is the RBF parameter of kernel m and
wm is the weight of the associated modality. The
wm’s can be fixed a priori or by cross-validation.
In the conducted experiments, we optimized the
wm’s on the training set.

2.5 Normalized Early Fusion

The number of extracted features depends upon
the modalities and the type of the features. Hence,
an early fusion scheme based on simple vector con-
catenation is much affected by the vector which
have the highest number of inputs. Such fusion
should have an impact on the classification, espe-
cially with a RBF kernel which is based on Euclid-
ian distance between each training sample.

In traditional SVM implementation, a normaliza-
tion process is integrated and aims to transform
each input in the same range (e.g. [0..1], [−1..1])
in order to unbiased the Euclidian distance. But,
for the scope of merging features, this normaliza-
tion doesn’t take into account the number of input
from individual features. The goal of normalized
early fusion scheme is to avoid the problem of im-
balanced features input by reprocessing each fea-
ture vectors before concatenation. We normalized
each individual vector so that its average norm is
about the same. The normalization formula be-
comes:

xi′ =
xi − mini

(maxi − mini) ×
√

Card(x)

where xi is an input of the feature vector x, mini

and maxi are respectively the minimum and max-
imum value of the ith input among the training
samples and Card(x) is the number of dimension
for the vector x.

2.6 Contextual-Late Fusion

Usual late fusion scheme first classify each con-
cept using individual modalities and then merge
the scores in a second layer of classifier. Here, we
generalize this scheme by considering more than a
single concept. Contextual information has been
widely exploited in multimedia indexing [9, 10].
Here, the second layer (stacked) classifier is able
to exploit contextual relation between the differ-
ent concepts. This proposed scheme merges each
unimodal classification score from a set of several
concepts, in order to exploit both multimodal and
conceptual contexts.

Assume that we have M modalities (e.g. visual,
audio and text) and C concepts (e.g. Car, Face,
Outdoor, Bus, etc). The stacked classifier merges
M scores to classify the C concepts in the classic
late fusion scheme. The late context fusion scheme
merges M × C classification scores to classify the
C concepts.

2.7 Optimized Fusion

The various fusion schemes presented above are
characterized by different features, and should
have different behaviour among the 39 concepts.
The optimized fusion is inspired by the pathfinder
framework [9], where an optimization is performed
in order to find the best way to infer a concept.
Here, we add a selection process to identify the
best fusion scheme for each concept, by evaluate
the corresponding MAP on the training set.

2.8 Results

Six official runs were submitted since this was the
maximum allowed by TRECVID organizers but we
actually prepared thirteen of them. The unofficial
runs were prepared exactly in the same conditions
and before the submission deadline. They are eval-
uated in the same conditions also using the tools
and qrels given by the TRECVID organisers. The
only difference is that they did not participate to
the pooling process (which is statistically a slight
disadavantage).

Table 2.8 gives the inferred average precision
(IAP) of all our runs. We experienced different



strategies including the choice of the intermedi-
ate features, and the fusion scheme. The official
runs are the numbered ones and the number cor-
responds to the run priority. The IAP of our first
run is 0.088 which is slightly above the median
while the best system had an IAP of 0.192.

Number Run IAP
1 local-reuters-scale 0.0884
2 local-text-scale 0.0864
3 local-reuters-kernel-sum 0.0805
4 local-reuters-kernel-prod 0.0313
5 optimized-fusion-all 0.0674
6 local-reuters-late-context 0.0753
- local-reuters-early 0.0735
- local-reuters-late 0.0597
- local-text-early 0.0806
- local-text-late 0.0584
- local 0.0634
- reuters 0.0080
- text 0.0106

Table 1: Inferred Average Precision for the high
level feature extraction task; “-”: not within th
official evaluation

2.8.1 Unimodal runs

We observe that the visual and text-based uni-
modal runs are very different in terms of accuracy;
the visual based classification is about 6 times bet-
ter than the best text based concept detection.
This is probably due to the nature of the assessed
concepts which seems to be hard to detect using
text modality. This point is actually interesting
for the evaluation of the ability of the various fu-
sion schemes to handle such heterogeneous data.
The features we want to merge lead to different
accuracies and are also imbalanced regarding the
number of input features.

2.8.2 Classic Early and Late fusion

schemes

The two classical fusion schemes do not merge uni-
modal features similarly. While early fusion is able
to outperform both unimodal runs, the late fusion
scheme achieves poorer accuracy than the visual

run. It might be due to the low number of di-
mensions handled by the stacked classifier. The
early fusion scheme exploits context provided by
all of the local visual features and the textual fea-
tures. The gain obtained by such fusion means
that those two modalities provide distinct kind of
information. The merged features are, somehow,
complementary.

2.8.3 Early based fusion schemes

The gain obtained by the normalized fusion
schemes is the most important compare to other
fusion schemes. Processing the unimodal features
by re-equilibrating them according to the number
of dimensions is determinant in order to signifi-
cantly outperform unimodal runs. In such a way,
despite the different number of dimensions, both
the visual and textual modalities have the same
impact on concept classification. This normaliza-
tion process leads to a gain of almost 17% (in
IAP) comparing to the classic early fusion scheme,
which simply normalize input in a common range,
and 28% comparing to the better unimodal run.

The gain obtained by the kernel fusion scheme is
less significant than the gain obtained by the nor-
malized fusion run. However, when comparing to
the classic early fusion, it seems that a combi-
nation using sum operator leads to better accu-
racy than multiplying kernels (which is somehow
what the classic early fusion do). Furthermore,
it is important to notice that the σ parameters
are selected first by cross-validation on unimodal
kernels and that we optimize then separately the
linear combination. We can expect that an inte-
grated framework which learn simultaneously σm

and wm parameters should lead to better results.

2.8.4 Contextual-Late fusion scheme

Contextual-Late fusion is directly comparable
with the classical late fusion scheme. This fu-
sion scheme take into account the context from
the score of other concepts detected in the same
shot. By doing so, the context from other concepts
leads to a gain of 26%. Furthermore, we observe
that the MIAP obtained using the late contextual
fusion scheme is almost the same as the one ob-
tained for the classical early fusion scheme. In



order to go further in this study, it could be inter-
esting to evaluate the impact of the number and/or
accuracy rate of concepts used in the context.

We notice that both of unimodal runs lead to
poorer accuracy than the median of TRECVID’06
participants. This may be due to the basic and
not so optimized features used in our experiments.
However, the gain induced by the three fusion
schemes presented in this paper lead to better ac-
curacy than the median. We think that an op-
timization in the choice of descriptors for each
modality could enhance the accuracy rate of both
unimodal and multimodal runs.

2.8.5 Optimized fusion scheme

Surprisingly, the optimized fusion scheme didn’t
outperform the other fusion schemes. We identi-
fied that this is because of a misstake in our op-
timization procedure : the optimization has been
perform on the training set, which was also used
for the learning of the various fusion schemes.
Thus, the optimal fusion schemes were found by
overfitting the data.

3 Search

The CLIPS-IMAG search system uses a user-
controlled combination of five mechanisms: key-
words, similarity to example images, semantic cat-
egories, similarity to already identified positive im-
age, and temporal closeness to already identified
positive image (Figure 7).

The system outputs an ordered list of relevant
shots for each topic after interaction with the user
(initial query and multiple relevance feedback).
The reference segmenation include shots and sub-
shots and was generated by HHI [14]. The system
computes a score for each subshot according to the
user query and feedback and assign a score to each
shot simply as the best score of all its subshots.

3.1 Keyword based search

The keyword based search is done using a vector
space model. The words present in the ASR-MT
transcription are used as vector space dimensions.
Stemming ans stopword list are used. Relevance

is first assigned to speech segments (as provided
in the ASR-MT transcription) and projected onto
overlapping shots.

3.2 Similarity to image examples

Visual similarity between key frames and image
examples is looked for using color and texture
characteristics. The same primary vector descrip-
tors than for the feature extraction task are used
(4×4×4 color histograms and 8×5 Gabor trans-
forms). Distance are computed, normalized and
then turned into a relevance value for each char-
acteristic. A 65% color and 35% texture linear
combination is then used.

3.3 Feature based search

The goal of this part is to help focusing on specific
categories of the video shots, according to a non-
crisp labeling of their keyframes. All keyframes
are automatically labeled according to the 39 cat-
egories used in the high level feature task.

3.4 Visual similarity to already identi-
fied positive images

Visual similarity to already retrieved images can
be used for the search. These images have to be
marked as positive examples for similarity based
search by the user (relevance feedback). The
search is performed in the same way as for the
original image examples. Key frames are ranked
according to their closeness to thes positive ex-
amples. The images selected for similarity-based
search need not to be actually positive example for
the current search.

3.5 Temporal closeness to already iden-
tified positive images

Temporal closeness (within the video stream) to
already retrieved images can be used for the
search. These images have to be marked as pos-
itive examples for similarity based search by the
user (relevance feedback). Key frames are ranked
according to their temporal closeness to thes posi-
tive examples. The images selected for similarity-
based search need not to be actually positive ex-
ample for the current search.



Figure 7: View of the CLIPS-IMAG search system

3.6 Combination of search criteria

The user can define dynamically his search strat-
egy according to the topic and/or the looking of
the retrieved images. Each search mechanism can
be configured independently and each mechanism
can be given a global weight for the search (Fig-
ure 7). Relevance are computed independently for
each mechanism and for each key frame (or sub-
shot). The per-mechanism relevances are then lin-
early combined according to the mechanism weight
to produce the final key frame relevance. A rele-
vance is computed for each shot at the maximum
of the relevances associated to each key frame (or
subshot). A ranked list of shots is the produced.

3.7 Search strategy

The system is designed for very fast response time
and efficient user feedback. The user is encouraged
to use whatever search mechanism seems best ap-
propriate and to view and mark as many images

as possible in the given time (900s). At each iter-
ation, the system displays 49 images. By default
they are marked as negative. The user only has to
mark the positive that he sees by clicking on them.
In case of doubt he can see them at actual size in a
separate window just by mouse overlap and, if still
necessary, he can play the shot by clicking below
the images. By default also, the positive images
are also positive examples for visual similarity and
temporal closeness based search but this can be
changed also by the user. Any key frame marked
positive by the user receives a relevance of 1 and
any key frame marked positive by the user receives
a relevance of 0.

The same system has been used for manual and
interactive submissions. Manual submissions are
the results of the system at the first iteration
(without any feedback). Interactive submissions
are the results of the system after as many iter-
ation as possible within the allocated time. The
system keep track of the output (ranked list of



1000 shots) at each iteration as well as the time
elapsed since the beginning of the topic process-
ing. This allows to display the evolution of the
Mean Average Precision (MAP) over time during
the search.

3.8 Results

Four users have participated to the tests. Some of
them did not have the time to process all topics
and other (new) users completed the processing of
the remaining topics. Each user processed each
topic at most once. Table 3.8 shows the Mean Av-
erage Precision for each user for manual (a single
iteration, no feedback) and interactive searches.
For comparison, the best interactive system has a
MAP of 0.303 and the median is has a MAP of
0.163.

User Manual Interactive
1 0.0354 (5) 0.140 (1)
2 0.0295 (6) 0.184 (2)
3 0.0374 (-) 0.167 (3)
4 0.0261 (-) 0.120 (4)

Table 2: Mean Average Precision for the search
task; the MAP value is followed by the TRECVID
run number in parentheses; “-”: not within th of-
ficial evaluation

It can be noticed that there is a significant vari-
ability of the system performance according to the
user. The relative user performance is consistent
with the knowledge and the experience the user
has of the system. It is also most probable that
the mother language as well as the cultural back-
ground of the users significantly affect the sys-
tem/user performance. None of the users here is
an English native speaker. None of them either is
much familiar with the politics and sports in the
US.

Ths Search system is instrumented so that it
keeps track of all the system intermediate results
each time the user clicks on the “search” button.
It is therefore possible, at each time between 0
and 900 seconds to obtain the best results list ob-
tained by the system and the user at that time
and it is possible to compute the corresponding

system and user performance (Mean Average Pre-
cision) at that time. It is then possible to display
the performance of the system and of the user as
a function of the time. Figure 8 shows the corre-
sponding plots for the four users that participated
to the tests.

4 Conclusion

We have presented the systems used by CLIPS-
IMAG and LSR-IMAG laboratories for their par-
ticipation to TRECVID 2006 and the obtained re-
sults.

Shot boundary detection was performed using a
system based on image difference with motion
compensation and direct dissolve detection. This
system gives control of the silence to noise ratio
over a wide range of values and for an equal value
of noise and silence (or recall and precision), the
F1 value is 0.805 for all types of transitions, 0.833
for cuts and 0.727 for gradual transitions.

High level feature detection was performed using
networks of SVM classifiers arranged in a variety
of architectures and taking into account a variety
of low level descriptors combining text, local and
global information as well as conceptual context.
The inferred average precision of our first run is
0.088.

The search system uses a user controlled combi-
nation of five mechanisms: keywords, similarity
to example images, semantic categories, similarity
to already identified positive images, and tempo-
ral closeness to already identified positive images.
The mean average precision of the system (with
the most experienced user) is 0.184.
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