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1Equipe Traitment des Images et du Signal-ENSEA
6 avenue du Ponceau 95014 Cergy-Pontoise - France

2Federal University of Minas Gerais
Computer Science Department
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ABSTRACT
The first step for video-content analysis, content-based video
browsing and retrieval is the partitioning of a video sequence
into shots. A shot is the fundamental unit of a video, it cap-
tures a continuous action from a single camera and represents
a spatio-temporally coherent sequence of frames. Thus, shots
are considered as the primitives for higher level content anal-
ysis, indexing and classification. Although many video shot
boundary detection algorithms have been proposed in the lit-
erature, in most approaches, several parameters and thresh-
olds have to be set in order to achieve good results. In this
paper, we present a robust learning detector of shot bound-
aries without any threshold to set nor any pre-processing step
to compensate motion or post-processing filtering to elimi-
nate false detected transitions. Our experiments provide very
good results dealing with a large amount of features thanks
to our kernel-based SVM classifier method.

1. INTRODUCTION

The development of shot boundary detection algorithms was
initiated some decades ago with the intention of detecting
abrupt transitions (cuts) in video sequences. A vast major-
ity of all works published in the area of content-based video
analysis and retrieval are related in one way or another with
the problem of shot boundary detection.

Shots can be divided in two groups: abrupt transitions
and gradual transitions. Gradual transitions (GT) include
camera movements: panning, zooming, tilting and video
editing effects: fade-in, fade-out, dissolve and wipe.

A common approach to detect abrupt transitions is com-
puting the difference between two adjacent frames (color,
motion, edge and/or texture features) and compare this dif-
ference to a preset threshold (threshold-based approach). Del
Bimbo [1], Brunelli et al. [2], Lienhart [3] collect exten-
sive reviews of this set of techniques. The main drawback of
these approaches lies in detecting different kind of transitions
with a unique threshold. To cope with this problem, video
shot segmentation can be seen, from a different perspective,
as a categorization task. The detection of abrupt transitions
between two shots was the most extensively studied area in
shot boundary detection, nowadays gradual transition detec-
tion becomes the new challenge.

GT detection could not be based on the same assumption
of cut detection, i.e., high similarity between frames corre-
sponding to the same shot and low similarity between frames
corresponding to two successive shots, since this similarity is
also high in gradual transitions. The visual patterns of many
GT are not as clearly or uniquely defined as that of abrupt
transitions.

Among the most commonly used features for gradual
transitions, we must mention intensity variance statistics
[4, 5, 6]. In [7], Zhang et al. used a twin threshold mech-
anism based on histogram difference metric. Zabih et al. [8]
have used a measure based on the number of edges changes
for detecting editing effects, also for cut detection. Other
methods are based on correlation in frame differences[9, 10].

Recently machine learning approaches were proposed to
overcome the problem of shot boundary detection. [11] ap-
ply HMMs with separate states to model shot cuts, fades,
dissolves, pans and zooms. Adcock et al. [12] combines
pairwise dissimilarity analysis, kernel correlation and unsu-
pervised multi-class clustering. Gunsel et al. [13] consider
temporal video segmentation as a 2-class clustering problem
(“scene change” and “no scene change”) and use K-means to
cluster frame differences. Qi et al. [14] transform the tempo-
ral segmentation into a multi-class categorization.

We propose to use a supervised classification technique
to determine both kinds of transitions, in a hierarchical
scheme composed of two stages. We first extract features
computed on frame differences in order to detect abrupt tran-
sitions. The features are classified by a kernel-based SVM
(Support Vector Machines) classifier, because of its well-
known performances in statistical learning information re-
trieval [15]. Indeed, the SVM is a two-class classifier able
to separate between cuts and non-cuts, after training with a
selected data-set. Moreover with the use of kernel functions,
it can efficiently deal with a large number of features. With
many features it is possible to better describe the information
included in the shot and to better handle illumination changes
and fast movement problems. Thus the pre-processing steps
are not necessary anymore. Once the video sequence is seg-
mented into sharp-cut-free segments, we extract new features
in each segment in order to detect possible gradual transitions
without using any sliding window like most of the authors do
[14].

This paper is organized as follows. In section 2, we
present our machine learning approach for cut detection. In
section 3, we detail our gradual transitions detection algo-
rithm. In section 4, we describe our kernel-based SVM clas-
sifier. In section 5, we present the results of the proposed
method. In section 6, we conclude and we present future
work.

2. CUT DETECTION

Statistical learning approaches have been recently introduced
in multimedia information retrieval context and have been
very successful [16]. For instance, discrimination methods
(from statistical learning) may significantly improve the ef-



fectiveness of visual information retrieval tasks.
The system that we propose in this paper deals with a sta-

tistical learning approach for video cut detection. However,
our classification framework is specific. Figure 1 shows the
steps of the approach. First, the feature extraction process
captures different information of each frame. We extract, for
every, frame in the video stream a feature vector, then a pair-
wise similarity measure is calculated. We use χ2 distance as
a dissimilarity metric. Then, each dissimilarity feature vector
(distance for each type of feature: color histogram, moments
and projection histograms) is used as an input in the classi-
fier. As soon as we use a lot of features, the dimension of the
input classification space is high.

Using a kernel function leads to a set of classification
methods. For Pattern Recognition, statistical learning tech-
niques such as nearest neighbors [17], support vector ma-
chines, bayes classifiers have been used. We have previously
shown that the SVM classification method is highly adapted
to the multimedia retrieval context [18]. Thus, we use SVM
as classification method. The decision function (previously
trained using a data set selected for that purpose) provides as
a result the binary labels, i.e., if the frame is detected as a
“cut” or “non cut”.

The advantage of this approach is that all the thresh-
olds are tuned by the classifier. Thus, the number of fea-
tures do not represent an issue. Another advantage of the
approach is that with many features it is possible to better
describe the information content in the frame and avoid the
pre-processing step. The choice of SVM as a classifier is due
to the well known performance in statistical learning infor-
mation retrieval.

2.1 Visual features

Cuts generally correspond to an abrupt change between two
consecutive images in the sequence. Automatic detection is
based on the information extracted from the shots (bright-
ness, color distribution, motion, edges, etc.). Cut detection
between shots with little motion and constant illumination, is
usually done by looking for sharp brightness changes. How-
ever, brightness changes cannot be easily related to transition
between two shots, in the presence of continuous object mo-
tion, or camera movements, or change of illumination. Thus,
we need to combine different and more complex visual fea-
tures to avoid such problems. In the next subsections we will
review the main visual features used for shot boundary de-
tection. The features used in this work are:

1. Color Histograms: The color spaces used in this work
are the RGB, HSV and opponent color (brightness-
independent chromaticities space). In the case of RGB
and HSV we consider 2 bins per channel.
The opponent color representation of RGB color space is
defined as: (R + G + B,R−G,B−R−G). By choosing
this color space, the proposed cut detection algorithm is
less sensitive to lighting changes. The advantage of this
representation is that the last two chromaticity axes are
invariant to changes in illumination intensity and shad-
ows.
These features are stored in vectors denoted RGBh,
HSVh, R-Gh,. . .

2. Shape descriptors
• Zernike moments: The Zernike moment, of order pq,

Figure 1: Learning-based Approach for video cut detec-
tion. Feature vectors Ft ,Zt , . . .Ct represent Fourier Mellin
moments, Zernike moments, Color histogram, from frame ft .
The other features are detailed in Section 3. dt = D( ft , ft+1)
is the similarity distance for each feature where D is one of
the similarity measure detailed in Section 4. The SVM clas-
sifier is detailed in Section 5.

is defined as :

Zpq =
p+1

π

∫ 2π

0

∫ 1

0
I(ρ,θ)V ∗

pq(ρ,θ)ρdρdθ (1)

where p = 0,1,2, . . . ,∞ defines de order, I(ρ,θ) is
the image in polar coordinates (ρ,θ ), while q is an
integer depicting the angular dependence, or rotation.
The Zernike polynomial Vpq is a set of complex poly-
nomials which form a complete orthogonal basis set
defined on the unit circle and {}∗ denotes the conju-
gate in complex domain [19, 20]. Moments of order
5 (p = 5, p− |q| = even and |q| ≤ p) are computed
for each frame, and arranged in a vector denoted Zt .

• Fourier-Mellin moments: Upq is the ortogonal
Fourier-Mellin function of order p,q (uniformly dis-
tribute over the unit circle) defined as:

Upq(ρ,θ) = Qp(ρ)e− jqθ , (2)

and the orthogonal Fourier-Mellin moments Fpq are
defined as:

Fpq =
p+1

π

∫ 2π

0

∫ 1

0
I(ρ,θ)Upq(ρ,θ)ρdρdθ (3)

where I(ρ,θ) is the image in polar coordinates (ρ,θ ),
q = 0,±1,±2, . . . is the circular harmonic order, the
order of the Mellin radial transform is an integer p



with p ≥ 0. For a given degree p and circular har-
monic order q, Qp(ρ) = 0 has p zeros.

3. Projection histograms: Projection is defined as an op-
eration that maps a image into a one-dimensional array
called projection histogram [21]. Two types of projec-
tion (vertical and horizontal). These features are stored
in vectors denoted Vh and Hh.

4. Phase Correlation Method (PCM): The phase-
correlation method [22] measures the motion directly
from the phase correlation map (shift in the spatial
domain is reflected as a phase change in the spectrum
domain). This method is based on block matching:
each block r in frame ft is sought the best match in the
neighbourhood around the corresponding block in frame
ft+1. When one frame is the translation of the other, the
PCM has a single peak at the location corresponding to
the translation vector. When there are multiple objects
moving, the PCM tends to have many peaks, see Figure
2.

non cut

cut cut

Figure 2: Phase correlation.

In this work a block size of 32 × 32 was chosen. The
PCM for one block is defined as:

ρ(rt) =
FT−1{r̂t(ω)r̂t+1

∗(ω)}√∫
|r̂t(ω)|2dω

∫
|r̂t+1(ω)|2dω

(4)

where ρ is the spatial coordinate vector and ω is the spa-
tial frequency coordinate vector, r̂t(ω) denote the Fourier
transform of block rt , FT−1 denotes the inverse Fourier
transform and {}∗ is the complex conjugate.
By applying a high-pass filter and performing normalised
correlation this method is robust to global illumination
changes [23]. Porter [23] suggest the use of the maxi-
mum correlation value as a measure for each block, but
one problem with this measure is that we do not have in-
formation of the neighbors of the maximum correlation
value. Instead of using that measure, we propose the use
of the entropy Er of the block r as the goodness-of-fit
measure for each block. The entropy give us global in-
formation of the block, not only information for a single
element of the block.
The similarity metric Mt is defined by the median of all
block entropies instead of the mean to prevent outliers
[23].

Mt = median(Er) (5)

Although, the PC feature is particularly relevant in pres-
ence of illumination changes, it provides false positive
cuts for “black” frames due to Mpeg-1 artifacts. In order
to overcome this limitation, we add the illumination vari-
ance (Var). Indeed, two “black” frames PC will be high
like for non-similar images while variance will be little in
the first case and high in the second. Indeed, the PC fea-
ture of two successive ”black” frames will be high like in
case of two non-similar frames while variance will allow
us to discriminate these configurations.

3. DISSOLVE DETECTION

In [7], Zhang et al. used a twin threshold mechanism based
on histogram difference metric. Frame differences are accu-
mulated as long as inter-frame difference is above a lower
threshold but smaller than a higher threshold. When the ac-
cumulated differences exceed the higher threshold, a gradual
transition is defined. Camera or object motions may result
in a sustained increase in the inter-frame difference same as
gradual transitions and cause false detection. Zabih et al. [8]
have used a measure based on the number of edges changes
for detecting editing effects, also for cut detection. This
method requires global motion compensation before com-
puting dissimilarity. Low precision rate and time-consuming
are the drawbacks of this technique. Another feature that
is commonly used for dissolve detection is intensity vari-
ance. During a dissolve transition, the intensity curve forms
a downwards-parabolic shape. In [4], Alattar proposed a
variance-based approach, many other researchers have used
this feature to build their dissolve detectors [5, 6]. Alattar
[4] proposed to take the second derivative of intensity vari-
ance, and then check for two large negative spikes. Again
object/camera motion and noise make difficult the dissolve
detection (spikes were not to pronounced due to motion and
noise). Troung et al. [6] proposed an improved version with
more constraints. Won et al. [24] proposed a method based
on the analysis of a dissolve modeling error that is the differ-
ence between an ideally modeled dissolve curve without any
correlation and an actual variance curve with a correlation.
Other researches based on correlation are [9, 10]. Nam and
Tewfik [25] use B-spline polynomial curve fitting technique
to detect dissolves. The main drawback of these approaches
lies in detecting different kind of transitions with a unique



threshold. We want to be rid of the threshold setting as much
as possible.

In this second step (gradual transition detection), we
compute illumination variance and global edge information,
with the Effective Average Gradient (EAG), looking for spe-
cific shapes of these curves that characterize dissolve. We de-
tect the candidate regions, then process a verification based
on our Double Chromatic Difference (DCD).

3.1 Dissolve modeling error
Won et al. [24] demonstrated the effect of correlation be-
tween neightbor scenes. Early researches in dissolve detec-
tion based their methods in the characteristics of an ideal
model without any correlation between neighbor scenes.
However, in real sequences, there is often a correlation be-
tween neighbor scenes, which affects the dissolve detection.
This correlation must be taken into account for the precise
detection of a dissolve.

The dissolve modeling error [24] is the difference be-
tween an ideal dissolve for region [p,q] and the actual vari-
ance curve. At the center of a dissolve, the dissolve modeling
error is proportional to the correlation [24].

If a correlation c is defined in the region [p,q], the max-
imum dissolve modeling error Mmax c, becomes σpσqc

2 . A
dissolve is detected if the maximum dissolve modeling error
Mmax is less than Mmax c, this region can be identify as a dis-
solve with a correlation of less than c. Hence, the maximum
dissolve error Mmax c with correlation c becomes an adap-
tative threshold determinated by the characteristics of each
region, where c is the target correlation.

3.2 Variance sequence
In this subsection, we describe the first feature used for find-
ing candidate regions. The candidate regions are extracted
using the first and second derivatives of the variance curve.

3.3 Effective average gradient (EAG)
In this subsection, we describe the second feature used for
finding candidate regions. The candidate regions are ex-
tracted using the first and second derivatives of the effective
average gradient curve (EAG).

The local edge magnitude can be computed with

G2 = (G2
x +G2

y) (6)

where Gx is the gradient on horizontal direction and Gy is
the gradient on vertical direction. The gradient magnitude of
image sequence during dissolve also show parabolic shape.

The edge count (EC) of an image is the total number of
pixels with non-zero gradient values:

EC(t) = |F(G) > 0|(x,y) (7)

where |.| denotes de cardinality and F(.) is a thresholding
function. EC results more accurately for predicting fades and
dissolves, as compared to color histogram, frame difference,
and motion vector.

The EAG is simply defined as the average edge intensity
of a given image:

EAG(t) =
∑(x,y) F(G)

EC(t)
(8)

where G is the local edge magnitude, [26].

3.4 Dissolve filtering
Candidate regions are only identified using on analysis of
characteristics of first and second derivative of temporal evo-
lution curves of both variance and EAG, i.e., searching a
downward parabola.

3.4.1 Verification of candidate region

Some of the candidate regions may include parabolas cor-
responding to false dissolve caused by object and camera
motion. Therefore, a parabola corresponding to a true dis-
solve must be distinguished using other dissolve character-
istics. Candidate regions are verified with on the modeling
error [24].

Figure 3 shows a flow chart for verifying the dissolve re-
gion. For each candidate region, the maximum dissolve mod-
eling error Dmax c between a dissolve model with a given tar-
get correlation c and an ideal dissolve model with no corre-
lation is estimated with variances at the start and end points
of each candidate region and the given target correlation c.
Then Dmax becomes the adaptive threshold to verify each
candidate region as a dissolve.

The maximum dissolve modeling error Dmax in each can-
didate is defined by the difference between the variance
σ2

center at the center of each candidate region and the vari-
ance σ̃2

center at the center of an ideal dissolve model. Then,
the double chromatic difference (DCD) is computed for each
regions accepted as possible dissolves

Figure 3: Flow chart for verifying dissolve region

3.5 Modified Double Chromatic Difference
We refine the dissolve detection obtained with dissolve mod-
eling error using a modification of the DCD test proposed by
Yu et al. [27]. The feature can identify dissolve from zoom,
pan and wipe. The DCD of frame ft of a moving image se-
quence is thus defined as the accumulation of pixel-wised



comparison between this average and the intensity of frame
f (x,y, t), where f (x,y, t) is a frame in the possible segment
of dissolve.

DCD(t) = ∑
x,y

F(| f (x,y, t0)+ f (x,y, tN)
2

− f (x,y, t)|) (9)

where t0 ≤ t ≤ tN , t0 and tN define the starting point and end-
ing frames of a dissolve period. F(.) is a thresholding func-
tion.

Ideally, there exists a frame f (x,y, t), where

f (x,y, t) =
f (x,y, t0)+ f (x,y, tN)

2
(10)

We propose a modification of this well known descriptor
reducing highly the complexity of its computation. Indeed,
we use projection histograms [21] (1D) instead of the frame
(2D). Projection histograms allow us not only to reduce the
size of data concerned with DCD test but also to preserve
color and spatial information. For out modified DCD, the
formulation Eq. (9) remains the same if f (x,y, t) represents
projection histogram.

3.6 Visual features
Before we describe the features we use in our approach it is
important to remember that when we said center of region,
we are talking about the position, along the curves of vari-
ance and EAG, with the lowest value in the interval (candi-
date region). The features used are:
1. Ddata: different information extracted from the dissolve

region, the features used are:
(a) 2 correlation values : one between frames at the be-

ginning and the ”center”, the other between the ”cen-
ter” and the end of the dissolve segment,

(b) 2 color histogram differences : one between frames
at the beginning and the ”center”, the other between
the ”center” and the end of the dissolve segment,

(c) correlation by blocks of interest in the sequence: this
feature is computed only on the target intervals and
use the dissolve descriptor [28].

2. DCD features: the DCD curve (2D) is approximated by
a parabola. The first DCD feature is the quadratic coef-
ficient of this parabola [29]. The second is the “depth”
of the parabola, defined as the height difference taken at
dissolve segment boundaries and at the “center” [5]. The
“center” position is defined by the maximal value of the
DCD curve inside the dissolve segment.
Some characteristics are computed from the DCD: curve
fitting with degree of two is used to match with the
parabola generated by DCD in the case of a true dissolve
and the “deep” of the parabola based in the ratio of the
boundaries and the “center” of the parabola. The perfor-
mance is evaluated by the estimated quadratic coefficient
B̂2 > 0, see [29] and the ratio ψ [5]

ψ(i) =

{
1− min(DCDi(m),DCDi(N))

max(DCDi(m),DCDi(N)) , if R ≤ 0

1− min(DCDi(m),DCDi(0))
max(DCDi(m),DCDi(0)) , if R > 0

(11)

where R = |DCDi(m) − DCDi(N)| − |DCDi(m) −
DCDi(0)| and m is the position with the lowest value in
the DCD, N is the size of the DCD and i is the interval
number.

3. SCD features: the improved DCD curve (1D) is ap-
proximated by a parabola. The first SCD feature is the
quadratic coefficient of this parabola. The second is the
“depth” of the parabola, defined as the height difference
taken at dissolve segment boundaries and at the “center”.

4. VarProj: difference of the projection histograms ex-
tracted in the first step (cut detection).

5. Motion: motion vectors are also extracted in the first step,
when the phase correlation method is computed, for each
block we compute the magnitude of the motion vector.

3.7 Summary

The system that we propose in this step deals with a statisti-
cal learning approach for dissolve detection. Figure 4 shows
the steps of our approach. The first step is the detection of
possible dissolves, this step is based on three processes: the
computation of illumination variance and the EAG, the ex-
traction of candidate regions and, the verification of candi-
date regions. The second and third processes are executed
for variance and for EAG. We filter these possible dissolves
eliminating the intervals that corresponds to cuts and fades.
We use our cut detection algorithm proposed in [30]. The
third step consists of two processes: DCD confirmation and
computation of DCD features. In the DCD confirmation we
compute the DCD of each filtered possible interval and ex-
tract some characteristics of the DCD in the second process
(quadratic coefficient and “deep” of the parabola).

Figure 4: Proposed model for dissolve detection

4. FADE DETECTION

A fade process is a special case of a dissolve process. Dur-
ing a fade, a fade in a video sequence gradually darkens and
is replaced by another image which either fades in or begins
abruptly. Alattar [4] detects fades by recording all negative
spikes in the second derivative of frame luminance variance
curve. The drawback with this approach is that motion also
would cause such spikes. Lienhart [31] proposes detecting
fades by fitting a regression line on the frame standard devi-
ation curve. Troung et. al. [6] observe the mean difference



curve, examining the constancy of its sign within a poten-
tial fade region. We present further extensions to these tech-
niques.

A fade-out process is characterized by a progressive dark-
ening of a shot P until the last frame becomes completely
black. A fade-in occurs when the picture gradually appears
from a black screen. The fades can be used to separate dif-
ferent TV program elements such as the main show material
from commercial blocks.

Fade-in and fade-out occur together as a fade group, i.e.,
a fade group starts with a shot fading out to a color C which
is the followed by a sequence of monochrome frames of the
same color, and it ends with a shot fading in from color C .

As a fade is a special case of a dissolve we can explore
some of the features used for dissolve detection. The salient
features of our fade detection algorithm are the following:
1. The existence of monochrome frames is a very good clue

for detecting all potential fades, these are used in our al-
gorithm. In a quick fade, the monochrome sequence may
be compound by a single frame while in a slower fade
it would last up to 100 frames [6]. Therefore, detecting
monochrome frames (candidate region) is the first step in
out algorithm.

2. In this second step we are going to use a descriptor that
characterize a dissolve, our improved DCD. The variance
curves of fade-out and fade-in frame sequences have a
half-parabolic shape independent of C . Therefore, if we
compute the DCD feature in the region where the fade-
out occurs we will have a parabola shape, the same prin-
ciple is applied for the fade-in.

3. We also constrain the variance of the starting frame of
a fade-out and the ending of a fade-in to be above a
threshold to eliminate false positives caused by dark
scenes, thus preventing them from being considered as
monochrome frames.

5. SUPPORT VECTOR MACHINE

The classification problem can be restricted to a two-class
problem. The goal is, then, to separate the two classes with a
function induced from available examples. We hope to pro-
duce, hence, a classifier that will properly work on unknown
examples, i.e. which generalises efficiently the classes de-
fined from the examples.

The SVM have been developed as a robust tool for classi-
fication and regression in noisy and complex domains. SVM
can be used to extract valuable information from data sets
and construct fast classification algorithms for massive data.

Another important characteristic of the SVM classifier is
to allow a non-linear classification without requiring explic-
itly a non-linear algorithm thanks to kernel theory.

In kernel framework data points may be mapped into a
higher dimensional feature space, where a separating hyper-
plane can be found. We can avoid to explicitly compute the
mapping using the kernel trick which evaluate similarities be-
tween data K(dt ,ds) in the input space.

We evaluate different kernel functions: linear, poly-
nomial, gaussian radial basis, gaussian with χ2 distance
(Gauss-χ2) and triangular [32]. Even though the result with
the different kernels were almost the same, the Gauss-χ2

was the best one. Thus, we use a gaussian with χ2 distance
K(dt ,ds) = e−χ2(dt ,ds)/2σ2

kernel function.

The advantage of this approach is that all the thresh-
olds are tuned by the classifier. Thus, the number of fea-
tures do not represent an issue. Another advantage of the
approach is that with many features it is possible to better
describe the information content in the frame and avoid the
pre-processing step. The choice of SVM as a classifier is due
to the well known performance in statistical learning infor-
mation retrieval.

6. EXPERIMENTATION

Our training set consists on a single video of 4197 frames
(2mins. 20 secs.) with 50 cuts. This video is captured from
a TV-station and is composed by a segment of commercials.
We use a SVM classifier and train it with a gaussian with χ2

distance kernel.
The nomenclature used for the features is as follows:

RGB color histogram (Ch), HSV color histogram (HSVh),
opponent color histogram (R-Gh), Zernike moments (Zer),
Fourier-Mellin moments (Fou), Horizontal project histogram
(Hor), Vertical projection histogram (Ver), Phase correlation
(Ph) and Variance (Var). In Table 1, we present the visual
feature vectors for cut detection used for the 10 runs.

In Table 1, we present the visual feature vectors for dis-
solve detection used for the 10 runs.

For fade detection we choose a threshold of 200 for the
variance of each frame, if the variance is lower than that
value we consider it as a monochrome frame and a possible
fade. After that is necessary to see if the interval have two
download parabolas, one for fade-in and other for fade-out.

In Table 2 we show the performance of our system for
cut and gradual transition detection, measured in recall and
precision.

Figure 5 shows the performance of our system for (a) all
transitions and (b) for cut detection, (c) for gradual transi-
tion, measured in recall and precision and (d) measures the
accuracy of gradual transitions. We compare our results to
all other submissions.

We want to emphasize with these results that our system
for cut detection is very robust to training data set. Indeed,
the training data set used here is brazilian TV videos which
are very different in terms of quality, format and length from
TRECVID videos we used for testing our system.

7. CONCLUSIONS

We present our hierarchical system for shot boundary detec-
tion. The first step is dedicated to sharp cut detection using
learning-based approach. Then we seek for gradual transition
inside the shots delimited by the sharp cuts resulting from
first step. The hierarchical structure of our system allows us
to reduce to two modalities the identification of gradual tran-
sitions: fast motion or dissolve. We provide new features to
caracterize dissolves. We combine these features with other
classic ones that describe the characteristics of the dissolve
segments.

Even though our system only detects dissolves and fades,
in the case of gradual transitions, the performance of the sys-
tem is satisfactory. Our next step is to improve the perfor-
mance of our hierarchical system including more edition ef-
fects detection. We want now to extend our video segmenta-
tion system to a video content-based retrieval system adapt-
ing our content analysis system Retin with the results of the
system proposed in this paper.



sysID Cuts Gradual Transitions
Etis1 Ph, HSVh, Zer, Hor, Var Ddata, VarProj
Etis2 Ph, HSVh, Ver, Hor, Var Ddata, Motion
Etis3 Ph, HSVh, Ch, Fou, Zer, Var Ddata, DCD
Etis4 Ph, Ch, Zer, Ver, Hor, Var Ddata, DCD, SCD
Etis5 Ph, R-Gh, HSVh, Ch, Fou, Hor, Var Ddata, DCD, VarProj
Etis6 Ph, HSVh, Ch, Fou, Zer, Hor, Var Ddata, DCD, Motion
Etis7 Ph, Ch, Fou, Zer, Ver, Hor, Var Ddata, SCD
Etis8 Ph, HSVh, Zer, Ver, Hor, Var Ddata, SCD, VarProj
Etis9 Ph, R-Gh, HSVh, Ch, Fou, Zer, Hor, Var Ddata, SCD, Motion
Etis10 Ph, HSVh, Ch, Fou, Zer, Hor, Ver, Var Ddata, SCD, VarProj, Motion

Table 1: 10 best combinations of visual features for cuts and gradual transitions

Run All transitions Cuts Gradual Transitions
Recall Precision Recall Precision Recall Precision F-Recall F-Precision

Etis1 0.757 0.876 0.821 0.909 0.585 0.771 0.766 0.849
Etis2 0.764 0.868 0.825 0.889 0.602 0.798 0.773 0.850
Etis3 0.768 0.888 0.818 0.908 0.632 0.825 0.775 0.849
Etis4 0.771 0.879 0.827 0.886 0.621 0.853 0.775 0.849
Etis5 0.771 0.851 0.832 0.876 0.607 0.769 0.769 0.847
Etis6 0.761 0.861 0.828 0.876 0.581 0.807 0.774 0.849
Etis7 0.769 0.878 0.827 0.886 0.612 0.849 0.775 0.850
Etis8 0.762 0.850 0.821 0.879 0.604 0.758 0.770 0.849
Etis9 0.751 0.894 0.813 0.911 0.586 0.837 0.772 0.851

Etis10 0.743 0.842 0.803 0.868 0.583 0.757 0.767 0.843

Table 2: Detailed results for all runs for various settings.
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