

Milind Naphade
Intelligent Information Analytics Group
IBM Thomas J Watson Research Center

Team: Milind Naphade, Dhiraj Joshi, Dipankar Datta, Paul Natsev, Lexing Xie, Shahram Ebadoolahi, John Smith, Alexander Haubold, Jelena Tesic, Joachim Seidl

The IBM TRECVID 2006 Concept Detection System

Feature Extraction

Visual

- Color Correlogram (166)
- Co-occurrence Texture (96)
- Color Moments (9)
- Wavelet Texture (12)
- Motion Magnitude & Direction (260)

Granularity

- Grid
- Global
- Compressed Domain Macro-block

ASR

Text
Search
System

MARVEL MODELER

A tool for building models optimized over features, parameters and learning

Approach 1: Multiple Instantiations

- Consider multiple instantiations of learning problem
 - Different development corpus partitions
 - Different ground truth interpretations
 - Different learning algorithms
 - Different optimization schemes
- Fuse across the multiple instantiations using multiple normalization and simple fusion strategies

Reusing what we have – 2005 Models

- 2005 Models for 39 LSCOM-lite concepts using 5 visual features
- Run against 2006 data and combined using late fusion
- Development Corpus partitioned into 4 sets
- Uses SVM-light package and a range of gamma and C values for parameter optimization
- Uses the training set of 28055 images for training and validation set of 4400 images for validation and parameter optimization
- Uses a liberal interpretation of ground truth (annotation assumes positive when any annotator tags it positive) when multiple annotators inputs were available

Using Marvel : Modeler: 2006 Models

- 2006 Models for 39 LSCOM-lite concepts using 5 visual features
- Run against 2006 data and combined using late fusion
- Development Corpus partitioned into 3 sets
- Uses IBM implementation of SVM SMO and a range of gamma and C values for parameter optimization
- Uses the training set of 42000 images for training and validation
- Uses multiple interpretations of ground truth ranging from the most liberal to the most strict when multiple annotators inputs were available
- All new models built using Marvel Modeler using 7 parameter configurations for 5 features for each concept.
- Number of parameter configurations and features constrained by the time for the effort: 1 week

Multi-view Approach: Fusion

- Normalization
 - 1. Gaussian
 - 2. Sigmoid
 - 3. Range
 - 4. Rank
- Aggregation
 - 1. Average
 - 2. Weighed Average

Comparison between 2005 and 2006 SVM Models

- Older models built for TREC 2005
- Newer 2006 models built using Marvel Modeler
- Performance evaluated: 2005 Test Set
- Number of Concepts: 10
- Ground Truth: Provided by NIST
- MAP for 2005 models: 0.31
- MAP for 2006 models: 0.31
- MAP for fused 2005 and 2006 models: 0.37 20 % performance improvement fusing 2 views

Approach: Multi-kernel Learning

- Problem: Fusing multiple inputs: color moments, correlogram, texture ...
- Late fusion
 - 1. Train SVM on each
 - 2. Perform weighted fusion on the prediction values
- Equivalent to having kernel weights for each support vector

$$(1) y_j^* = \sum_i \eta_i K_j(\hat{x}, x_i)$$

(2)
$$y* = \sum_{j} \mu_{j} y_{j}^{*}$$

$$= \sum_{i} \sum_{j} \eta_{ij} \mu_{j} K_{j}(\hat{x}, x_{i})$$

- Alternative
 - Train one decision function for both the support vector weights and the kernel weights
 - ... and make the support vector weights shared among kernels?
- Advantages:
 - Decision + fusion learned in one pass
 - Less weights to learn and keep
 - Faster to evaluate on test data

$$\hat{y} = \sum_{j} \sum_{i} \mu_{j} \eta_{i} K_{j}(\hat{x}, x_{i})$$

Multiple Kernel Learning: Solution

SVM

$$\widehat{y} = \sum_{i} \eta_{i} K_{j}(\widehat{x}, x_{i})$$

support vectors

MKL

$$\hat{y} = \sum_{j} \sum_{i} \mu_{j} \eta_{i} K_{j}(\hat{x}, x_{i})$$

Second-order cone programming

$$\min \quad \frac{\gamma^2}{2} - e^T \alpha$$

s. t.
$$\alpha^T D_y K_j D_y \alpha \leq \frac{\operatorname{tr}(K_j)}{d} \gamma^2$$
 $j = 1, \dots, k$ [bach, lankriet, jordan2003] [sedumi 2001]

$$j=1,\ldots,k$$

Approach: Text Baseline

- IBM Text Search Engine for Shot-level ranking
 - JURU Search Engine used
 - No story level processing
 - Normalization of Text-based Run different than other runs
 - Fusion with visual models for generating multimodal runs
- Manual expansion from concepts to keywords
 - Potential use of LSCOM, CyC, WordNet to be explored
- Held Out Set Performance lower than Visual Models
 - Strength of approach is in combination hypothesis

Fusion Across Multiple Approaches

Normalization

- 1. Gaussian
- 2. Sigmoid
- 3. Range
- 4. Rank
- Aggregation
 - 1. Average
- 2. Weighed Average
- Weight Selection
 - 1. Validity-based

LSCOM Models

- Time limitation forced to build 70 LSCOM models
- Focused on frequent concepts that were also relevant
- Marvel Modeler leveraged for building models
- Same IBM colleague performed model building
- Context enforcement performed using manual mapping
- Few LSCOM-lite concepts targeted for context enforcement
 - Military Personnel
 - Waterscape
 - Airplane
- Resulted in 1 Type B Run mistakenly tagged Type A

IBM Runs

Run Name	Туре	Description
VB	A	Visual Baseline: Using 5 upto visual features and Multi-view SVM Models with naïve fusion
UB	A	Unimodal Baseline: Best of Visual Baseline and Text Baseline selected based on held out set performance
MBW	А	Fusion of Multi-view SVM Visual and Text Baselines
MBWN	A	Sigmoid Normalization and Decision Fusion of Multi-view SVM Visual and Text Baselines
MRF	А	Aggregating across all subsystems including Text Baseline, Visual Baseline Multi-kernel Linear machines, and Image Upsampling
MAAR	В	Aggregating across all subsystems including Text Baseline, Visual Baseline Multi-kernel Linear machines, Image Upsampling, and LSCOM context and using held out set for optimal selection

NIST Evaluation: Performance Summary

- All IBM runs except Visual Baseline buggy for 3 concepts
 - Submitted with Incorrect feature numbers (fnum)
 - Did not contribute to the pooling
- Mean Inferred Average Precision
 - Ranges from 0.145 (Visual only) to 0.1773 (Multimodal)
- NIST Returned Precision @100
 - Ranges from 22 (Visual Only) to 26 (Multimodal)
- Top performance for 7 of the 20 concepts
- Second highest MAP among all sites
- Top MIAP and IP@100 accounting for the bug
 - Excluding the 3 concepts that did not make it to the pool

- IBM Runs returned near top performance with bug, top performance discounting bug
- NIST Returned P@100: Multimodal runs improve over Visual baseline by 10 %
- InfAP: Multimodal Runs improve over Visual baseline by 22 %
- IBM Runs have top performance for 7/20 concepts

- IBM Runs returned near top performance with bug, top performance discounting bug
- NIST Returned P@100: Multimodal runs improve over Visual baseline by 10 %
- InfAP: Multimodal Runs improve over Visual baseline by 22 %
- IBM Runs have top performance for 7/20 concepts

- IBM Runs returned near top performance with bug, top performance discounting bug
- NIST returned P@100: Multimodal runs improve over Visual baseline by 10 %
- InfAP: Multimodal Runs improve over Visual baseline by 22 %
- IBM Runs have top performance for 7/20 concepts

- IBM Runs returned near top performance
- NIST returned P@100: Multimodal runs improve over Visual baseline by 10 %
- InfAP: Multimodal Runs improve over Visual baseline by 22 %
- IBM Runs have top performance for 7/20 concepts

- IBM Runs returned near top performance
- NIST returned P@100: Multimodal runs improve over Visual baseline by 10 %
- InfAP: Multimodal Runs improve over Visual baseline by 22 %
- IBM Runs have top performance for 7/20 concepts

But Was this Analysis Conclusive?

- Random Sampling of the Pool raises questions about conclusiveness Actual P@100 Range: 44 to 52 NIST Returned P@100 Range: 22 to 26 Absolute Numbers Matter: So Relative Ordering may not be enough Performance discrepancy significant for 15 of the 20 concepts

Observations

- Visual Baseline created by leveraging Marvel Modeler Asset
- Text+Visual improve performance by 10 % over Visual-only
- Context helps when underlying contributors are robust
- Need more work on event and object detection
- Normalization & multimodal fusion leads to re-ranking
 Significant improvement in concepts such as Airplane (3x better)
- LSCOM provides large untapped potential
 - Quality is Key
 - Once Acceptable Quality guaranteed, Quantity is game changer

From LSCOM-lite to LSCOM

Goal and Vision

LSCOM

Deliverables

- 1000+ concept lexicon
- Annotated corpus
- 39 Use Cases and 250 + Queries
- Ontology
- Experimental Evaluation

Page 25

Impact

• Largest annotated video corpus

Filter concepts that are very rare or with

very high inter-annotator disagreement

- Leveraged at TRECVID and other fora
- LSCOM mapped into openCyC and ResearchCyC
- Dissemination at various fora for optimizing utilization leading to collaboration opportunities

What is LSCOM?

- 1000+ concepts that describe broadcast news from the intelligence analyst perspective
- An annotated corpus of 61901 shots (80 hours) of broadcast news video (3 languages, 6 channels) for 449 concepts
- Compilation of 39 use cases and 250+ TRECVID style Queries that represent analyst requirements
- Mapping of LSCOM concepts and subsequent expansion using CyC (packaged in OpenCyC and ResearchCyC releases)
- Initial results on modeling 300 of the annotated concepts

Evaluation Results

Extrapolating MAP by # concepts:

How many concepts do we need? 3K-5K