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Abstract 
 

In this paper, we summarize our results for the shot 
boundary detection task and the rushes task at 
TRECVID 2006. The shot boundary detection 
approach which was evaluated last year at TRECVID 
2005 served as a basis for our experiments this year 
and was modified in several ways. First, we 
investigated different parameter settings for the 
unsupervised approach. Second, we experimented with 
the possibility to create an unsupervised ensemble that 
consists of several clusterings that have been obtained 
with different parameter settings. Our prototype for the 
rushes task consists of a summarization component 
and a retrieval component. Rushes videos are 
segmented on a sub-shot basis in order to separate 
redundant from non-redundant sequences within a 
shot. The summarization component is based on sub-
shots clustering, and an appropriate visualization of 
clusters is presented to the user. The sub-shots are 
clustered with respect to a number of low-level and 
mid-level features, and they are visualized such that 
the user can navigate through these sub-shots. The 
retrieval component enables the user to search the 
rushes material automatically according to several 
features: camera motion, audio features (silence, 
speech, music, action, and background), speaker 
identity and interviews, shot sizes, face appearances, 
and by queries by example based on color and texture 
features.  
 
1. Structured Abstract 
 
The paper is structured as follows. In this section, the 
results of our participation in both tasks are presented 
in form of the requested structured abstract. The shot 
boundary detection approach and the related 
experimental results are presented in section 2. Our 

system suggested for the exploration of the rushes 
material is described in Section 3 along with the 
experimental results. Section 4 concludes the paper. 
 
The following definitions are used in this paper: 
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Shot Boundary Detection: “What approach or 
combination of approaches did you test in each of 
your submitted runs?” 
The unsupervised approach investigated this year relies 
on our TRECVID system from 2005 [6]. In this 
system, k-means clustering is used for both cut 
detection and gradual transition detection.  
To detect cuts, two different frame dissimilarity 
measures are applied: Motion-compensated pixel 
differences of subsequent DC-frames [4] and the 
histogram dissimilarity of two frames within a pre-
defined temporal distance of 2. A sliding window 
technique similar to [23] is used to measure the relative 
local height of a peak value. For cut detection, the best 
sliding window size is estimated by evaluating the 
clustering quality of “cut clusters” for several window 
sizes. Thus, the minimum and maximum sliding 
window sizes serve as parameters for both dissimilarity 
metrics. Several ranges for this parameter were tested 
in the experiments for both dissimilarity measures. 
Also, the unsupervised approach was optionally 
extended for cut detection by additional unsupervised 
respectively supervised classifiers to obtain an 



ensemble of classifiers. Optionally, a false alarm 
removal took place.  
To detect gradual transitions, dissimilarity measures 
for different frame distances were applied. Feature 
vectors were created similar to the cut detection 
approach using a sliding window technique. K-means 
was applied to cluster these feature vectors. This 
approach was extended by a fade detector following 
the proposal in [21]. Finally, false alarms were 
removed if the start and end frame of a transition are 
too similar. Several runs were submitted and tested, 
and the different parameter settings for each run are 
described in Table 1. For the purpose of simplification 
the run ids are renamed to marburg0 – marburg9 as 
follows: 
 
marburg0: MR_1_2_1_6_1_8_0_11_def:  
marburg1: MR_1_2_3_10_6_20_0_removefalsecuts 
marburg2: MR_1_2_4_10_4_20_0_removefalsecuts 
marburg3: MR_1_2_4_10_4_20_0_refcm_votes2mini 
marburg4: MR_1_2_4_10_4_20_2_kmeans_3er_ens. 
marburg5: MR_1_2_4_10_4_20_2_kmeans_ensemble 
marburg6: MR_1_2_4_10_4_20_4_kmeans_5er_ens. 
marburg7: MR_1_2_4_14_5_11_0_remfcuts 
marburg8: MR_1_2_5_10_10_20_0_removefalsecuts 
marburg9: MR_1_2_5_10_5_20_0_removefalsecuts 
 
Shot Boundary Detection: “What, if any significant 
differences (in terms of what measures) did you 
find among the runs?” 
The different settings of the range for the minimum 
and maximum possible sliding window size had very 
little impact on the detection results in case of cut 
detection: Recall was about 90% and precision about 
80% for all runs. Increasing the maximum sliding 
window size led to a slightly higher precision rate, 
while recall was slightly lower, as expected. The 
extension of the unsupervised basis system to form an 
ensemble with additional supervised or unsupervised 
classifiers did not improve the cut detection 
performance significantly.  
The detection of gradual transitions was quite stable as 
well, achieving in the best case a recall of about 60% 
and a precision of 67%. Frame-based recall was about 
59% and frame-based precision about 74%. 
 
Shot Boundary Detection: “Based on the results, 
can you estimate the relative contribution of each 
component of your system/approach to its 
effectiveness?” 
The runs submitted this year ended up with the same 
performance in nearly all cases.  
 

Rushes Task: “What approach or combination of 
approaches did you test?” 
Our prototype for the rushes task consists of a 
summarization component and a retrieval component. 
The summarization component is based on clustering 
of sub-shots and an appropriate visualization of sub-
shot clusters. Rushes videos were segmented on a sub-
shot basis with respect to camera motion, face 
appearances, speech and silence in order to separate 
redundant from non-redundant sequences within a 
shot. Those sub-shots were clustered with respect to a 
number of low-level and mid-level features, and they 
were visualized such that the user can navigate through 
these sub-shots. The retrieval component enables the 
user to search the rushes material according to several 
features: camera motion (pan, tilt, and zoom), 
interviews, audio information (silence, music, speech, 
action, background), speaker identity, shot sizes, face 
appearance, and a query by example system based on 
color and texture features. 
 
Shot Boundary Detection and Rushes Task: 
“Overall, what did you learn about 
runs/approaches and the research question(s) that 
motivated them?” 
The unsupervised approach to shot boundary detection 
has reached a mature level of robustness and detection 
quality, in particular for the task of cut detection. The 
precision is significantly lower than last year. Analysis 
showed that in case of cut detection many of the false 
alarms are not definite detection failures, they could be 
judged as a cut as well. An example for such a case are 
picture-in-picture effects where a shot is displayed in a 
part of the frame region: Though there might be a cut 
in this frame part, the rest of the frame remains the 
same – how to judge such cases remains a subjective 
decision. 
The system developed for the rushes task provides a 
video summarization by a visualization of sub-shot 
clusters as well as a retrieval component to search 
several features. Experiments indicate that sub-shots 
are a reasonable processing unit to explore rushes 
videos. The precision of retrieved sub-shot lists is 
promising but it should be further improved for 
individual features. In the future, it is planned to 
extend the retrieval component with the possibility to 
search for several additional high-level features. 
 
2. Shot Boundary Detection 
 
The shot boundary detection approach is split up in 
two parts in order to detect cuts and gradual transitions 
appropriately. 



2.1 Video Cut Detection 
Unsupervised learning is utilized in the cut detection 
approach which was optionally extended to an 
ensemble of several classifiers using majority voting. 
For this purpose, additional classifiers were trained on 
an appropriate training set respectively variants of the 
unsupervised approach were used with different 
parameter settings. The basic unsupervised approach to 
cut detection works as follows. 
Two frame dissimilarities are used for the 
unsupervised cut detection task. Motion compensated 
pixel differences of subsequent frames (i.e. their frame 
distance is 1) and frame histogram differences are 
computed. The histograms have 512 bins where each 
bin represents a combination of the Y, Cb and Cr color 
channel each with 8 quantization levels. A frame 
distance of 2 is used for a second frame dissimilarity 
metric which is aimed at detecting very short gradual 
transitions. Time series that are based on a frame 
distance n>1 are subsampled by a factor of n. 
For the dissimilarity values with a frame distance of 1, 
GoP-oriented (GoP: Group of Pictures) frame 
difference normalization is applied [3] to remove 
compression artifacts in the dissimilarity time series. 
Two features are extracted for both metrics at frame 
positions where the dissimilarity is the maximum in the 
middle of a sliding window of size 2*m+1:  

1.) max: the ratio of the dissimilarity value 
divided by the maximum dissimilarity value 
in this video, and,  
2.) sec: the ratio of the second largest value 
divided by the maximum of the sliding 
window.  

Then, k-means (k is known a-priori in case of cut 
detection: 2) is applied separately for each metric using 
all feature vectors belonging to the same sliding 
window size and metric. The cluster whose average 
feature vector is nearer to the feature space point (1, 1) 
is considered as the “cuts” cluster. Now, for each 
cluster and for each sliding window size and metric the 
silhouette coefficient is computed which describes the 
compactness of a cluster (more details are described in 
[4]). The cluster with the highest coefficient represents 
the best sliding window size for a given metric and is 
considered as the cut detection result. If a cut is 
detected using both metrics, only the shorter transition 
is included in the final result.  
 
2.2 Video Cut Detection Using an Ensemble of 
Classifiers 
Last year, we have extended the unsupervised basic 
system with two supervised classifiers. This year, we 
investigated the possibility to also extend the basis 

system with two or four additional unsupervised 
classifiers using different settings with respect to 
minimum and maximum sliding window size.  
It has been shown that such an ensemble of classifiers 
can improve accuracy in recognition tasks [10]. Since 
most transitions in a video are abrupt (without any 
transitional frames between the different shots), the 
ensemble was added to the unsupervised approach for 
cut detection. The extension of the basis system to an 
ensemble with supervised classifiers works as follows. 
We have chosen Adaboost (e.g. described in [22]) as 
the first classifier to select the best features for a given 
training set (in our case the TRECVID 2005 shot 
boundary test set). The key idea of the Adaboost 
approach is to combine a number of n “weak 
classifiers” to build a strong classifier within n rounds 
of training. For each feature, a threshold is estimated 
which minimizes the classification error on the (re-
weighted) training set. The classification error is 
computed based on the weights of the training 
samples. Misclassified training samples are re-
weighted such that they have more impact in the next 
training round for the next “weak classifier”. Each 
“weak” classifier’s weight depends on its error rate. 
The final strong classifier rule checks if the weighted 
sum of the weak classifiers’ positive votes exceeds a 
threshold. For the task of cut detection, we have 
defined 42 features for a certain frame distance 
describing dissimilarity of DC-frames with respect to: 

• motion compensated pixel differences, 
• histogram differences, 
• luminance mean and variance,  
• edge histograms of Sobel-filtered (vertically 

and horizontally) DC-frames,  
• local histogram differences, and  
• ratio of the second largest dissimilarity value 

divided by the local maximum for several 
sliding window sizes. 

 
In this study, we have further used Adaboost for 
feature selection where the best m<=n features are 
used to train a SVM on the same test set of 2005. Two 
frame distances (1 and 2) were investigated resulting in 
a total feature number of 84. Thus, we finally got three 
classifiers evaluating each frame (considering the 
unsupervised approach as a kind of classifier as well). 
A majority vote is implemented in our approach, i.e. a 
cut is detected if at least two “experts” vote that a 
frame belongs to a new shot. In [7], we have modified 
this system in a manner that an ensemble of classifiers 
is built adaptively for a given video. In this approach, 
classifiers are trained with training data that are labeled 
automatically using the unsupervised basic approach, 



employing only the data from the video under 
consideration. 
 
2.3 Gradual Transition Detection 
The main idea of the gradual transition detection 
approach is to view a gradual shot change as an abrupt 
shot change at a lower temporal resolution. It is also an 
unsupervised approach. This basic approach is 
extended by a fade detector following the approach in 
[21]. The approach to detect gradual transitions works 
as follows: 
1.) First, frame dissimilarities are computed based on 
histograms of approximated DC-frames. Those 
dissimilarities are computed for certain temporal 
resolutions ∆t. To detect gradual transitions, frames are 
compared at a higher temporal distance, e.g. up to 50 
frames. Due to this, a histogram based metric seems to 
be more suited to compute frame dissimilarities than a 
motion compensated pixel-based comparison, which is 
more sensitive to object and camera motion. A 
subsampled set of frame dissimilarity values {d0, ∆t, d1, 

∆t, ..., di, ∆t, ..., dn/∆t, ∆t } is obtained for each of the 
temporal resolutions ∆t, where ∆t ∈ Ν\{0}, and di, ∆t is 
the dissimilarity value for the frames i*∆t and 
(i+1)*∆t. As mentioned above, the idea is to view a 
gradual shot change as a cut at a lower temporal 
resolution. Therefore, each time series of dissimilarity 
values for resolution ∆t is subsampled by the factor ∆t. 
If a gradual transition of length k (this might be a cut 
of length 0 as well) starts at position n, in all time 
series with ∆t>=k this transition should be represented 
by a peak in the dissimilarity measurements.  
2.) The feature vectors are now created similar to the 
task of cut detection and consist of the same two 
components: max and sec. The value max is 
normalized for each time series ∆t using the respective 
maximum. For each temporal resolution ∆t the basic 
sliding window size of 2*m+1 is set separately based 
on the parameter x: m=max(x/∆t, c), where c is a 
constant and controls the minimum size for m, e.g. 
c=2. The parameter x represents the length of the 
sliding window at the finest temporal frame resolution. 
By computing m separately for each ∆t, fewer 
dissimilarity values are taken into account at lower 
temporal resolutions due to the preceding subsampling. 
The sliding window is not kept at constant absolute 
size for the lower temporal resolutions since 
neighboured cuts and transitions would probably fall in 
the sliding window and affect the usefulness of the 
parameter sec. 
3.) Then, these feature vectors are clustered using k-
means (again with 2 clusters). Different strategies are 
possible to cluster the time series. First, clustering can 

be conducted separately for each time series ∆t, and 
the clustering result must be merged afterwards. 
Alternatively, the feature vectors of all time series can 
be clustered in one clustering process since the feature 
vectors are normalized accordingly. After k-means 
clustering, the members of the gradual transition 
cluster(s) must be processed further. If clustering has 
been applied for each ∆t separately, then several 
“transition clusters” exist, one for each temporal 
resolution. In case when two or more feature vectors 
are finally in one or more “transition cluster” and have 
a frame overlap, or a cut has been detected in this 
frame interval before, then, the longer transition(s) are 
removed. The transition start and end positions are 
optionally refined by comparing the dissimilarity 
between pairs of frames in the transition interval. 
Finally, false alarms are removed if the start frame and 
the end frame are too similar, i.e. the dissimilarity 
value between start and end frame is below a 
threshold. 
 
2.4 Experimental Results 
The shot detection approach was tested with the 
following parameter settings for all runs. The frame 
distance for the second cut detection metric was set to 
2. The frame distances for the gradual transition 
detection were set to: 6, 10, 20, 30, 40, 50; the 
parameter x describing the initial sliding window size 
for the finest temporal resolution was set to 24. The 
MDC decoder was used for MPEG decoding [11]. 
Feature selection using Adaboost was performed on 
the TRECVID 2005 shot boundary test set. Eleven 
features were selected from the whole feature set to 
build an Adaboost classifier. Those best features were 
used to train a SVM [1] on eight of the twelve videos 
from the last year’s test set.  
The experimental settings and the results for the 
different runs are shown in Table 1 and 2. The 
parameters for the sliding window sizes had very little 
impact for both cut detection and gradual transition 
detection, and the results are very similar for all runs. 
For cut detection, recall is about 90% and precision 
about 80%, for gradual transition detection recall is 
about 59% and precision about 67%. Increasing the 
maximum sliding window size led to slightly better 
precision values, whereas recall decreased very 
slightly. This effect can be observed if one compares 
the run marburg0 with the other runs. For marburg0, a 
lower range of window sizes was used which yielded 
an increased recall and a decreased precision. The 
unsupervised ensemble approaches marburg4-6 
achieved the best results in terms of the f1-measure 
(see Table 3), but the improvement is not significant. 



 
Run Cuts: 

MinWin 
Size 
Metric1 

Cuts: 
MaxWin 
Size 
Metric1 

Cuts: 
MinWin 
Size 
Metric2 

Cuts: 
MaxWin 
Size 
Metric2 

#Classifiers False  
Alarm 
Removal 

marburg0 1 6 1 8 1 0 
marburg1 3 10 6 20 1 1 
marburg2 4 10 4 20 1 1 
marburg3 4 10 4 20 3-supervised 0 
marburg4 4 10 4 20 3-clusterings 0 
marburg5 4 10 4 20 3-clusterings 0 
marburg6 4 10 4 20 5-clusterings 0 
marburg7 4 14 5 11 1 1 
marburg8 5 10 10 20 1 1 
marburg9 5 10 5 20 1 1 

Table 1: The parameter settings for the different runs: minimum and maximum sliding window sizes for 
different frame distances, the option for false alarm removal. In the column “#Classifiers”, the number of 

classifiers and the type of the additional classifiers is given (clustering or supervised classification). 

 
Cuts Gradual  

Transitions 
Gradual Trans. 
Frame-based 

All Transitions Run 

Recall Prec. Recall Prec. Recall Prec. Recall Prec. 
marburg0 0.923 0.777 0.582 0.675 0.586 0.742 0.831 0.755 
marburg1 0.906 0.802 0.587 0.667 0.586 0.745 0.820 0.772 
marburg2 0.908 0.804 0.588 0.668 0.586 0.744 0.821 0.773 
marburg3 0.893 0.810 0.587 0.664 0.586 0.743 0.810 0.777 
marburg4 0.908 0.804 0.588 0.668 0.586 0.744 0.821 0.773 
marburg5 0.908 0.804 0.588 0.668 0.586 0.744 0.821 0.773 
marburg6 0.905 0.806 0.588 0.667 0.586 0.744 0.820 0.774 
marburg7 0.902 0.801 0.583 0.670 0.586 0.742 0.816 0.772 
marburg8 0.895 0.807 0.597 0.661 0.586 0.742 0.814 0.773 
marburg9 0.902 0.806 0.588 0.666 0.587 0.744 0.817 0.774 

Table 2: Recall and precision for the different runs, separated for cuts, gradual transitions, for gradual 
transitions on a frame basis, and for all transitions. 

 
Run 

Cuts 
 

Gradual  
Transitions 

Gradual  
Transitions 
Frame-based 

All  
Transitions 

marburg0 0.844 0.625 0.655 0.791 
marburg1 0.851 0.624 0.656 0.795 
Marburg2 0.853 0.625 0.656 0.796 
Marburg3 0.849 0.623 0.655 0.793 
Marburg4 0.853 0.625 0.656 0.796 
Marburg5 0.853 0.625 0.656 0.796 
Marburg6 0.853 0.625 0.656 0.796 
Marburg7 0.849 0.623 0.655 0.793 
Marburg8 0.849 0.627 0.655 0.793 
Marburg9 0.851 0.625 0.656 0.795 

Table 3: F1-measures for all runs, separated for cuts, gradual transitions, frame-based detection 
performance of gradual transitions, and all transitions. 



3. Rushes Video Exploration 
 
In this section, we describe our system prototype to 
explore the rushes material. The system consists of a 
summarization component and a retrieval component. 
All components have been integrated in our video 
content analysis software “Videana” which originally 
is aimed at supporting scientific movie studies.  
The rushes videos are segmented on a sub-shot basis. 
Initially, shot segmentation is applied to the videos. In 
case of the rushes material, only cut detection is 
needed, since there are no complex transition effects 
present in these videos. Then, the shots are segmented 
further in order to obtain sub-shots with respect to 
events like speech, silence, camera motion and face 
appearances. This is motivated by the fact that users 
normally are only interested in parts of a rushes shot 
and that there are many sequences within a shot that 
contain redundant material. For example, consider an 
interview shot with a long silent period in the 
beginning due to camera adjustment. Thus, we believe 
that such sub-shots are the fundamental processing unit 
for the rushes material. In the following, a brief 
description is given for the several components of the 
proposed rushes system with respect to: feature 
extraction, sub-shot segmentation, rushes 
summarization and visualization, and finally with 
respect to retrieval of sub-shots. 
 
3.1 Feature Extraction  
At first, videos are segmented into shots using the cut 
detection approach described in section 2. 
 
3.1.1 Camera Motion Features  
Motion vectors embedded in MPEG videos are 
employed to compute camera motion at the granularity 
of P-frames, according to the approach presented in 
[5]. The following camera motion types are 
distinguished: pan, tilt and zoom.  
 
3.1.2 Face Features 
Frontal faces are detected in each video frame using 
the face detector provided by Intel’s OpenCV library 
[www.intel.com/technology/computing/opencv]. The 
detector normally reports several detections at slightly 
different sizes and positions for one face.  This number 
of detection hits is considered as a feature as well. To 
reduce the number of falsely detected face 
occurrences, detected faces are tracked across several 
frames. As a result of the face feature extraction 
process, we obtain face sequences across several 
frames, the position and size of each detected face, and 

the number of hits (which is related somehow to the 
probability that a frontal face is shown).  
 
3.1.3 Keyframe Features 
Each sub-shot is represented by a keyframe, for this 
purpose the frame from the middle of a sub-shot is 
chosen. From each of those keyframes, color and 
texture features are extracted. Each keyframe is 
divided into a number of local regions for feature 
extraction. Two color features and a texture feature 
[13] as suggested for the MPEG-7 standard [15] are 
extracted: the scalable color descriptor (SCD), the 
color structure descriptor (CSD) and edge histograms 
are extracted for each region. In addition, Gabor 
wavelet features are extracted for several orientations 
and frequencies (similar to the Gabor features used in 
[8]).  
 
3.1.4 Audio Features  
The following low-level features are extracted to 
analyze audio data: Energy, zero crossing rate (ZCR), 
mel-frequency cepstral coefficients (MFCCs), band 
periodicity, brightness and bandwidth, noise frame 
ratio and spectrum flux. These features are then 
evaluated in order to recognize the following semantic 
audio concepts (similar to the approach suggested in 
[12]): silence, speech, music, action (shooting, sirens, 
explosions, screams etc) and background (machinery, 
nature, background, environmental sounds). 
Furthermore, for each video a speaker indexing [19] is 
performed which outputs a speaker id for speech 
segments. The speaker indexing process is based on a 
clustering of all speech segments exceeding 2.5s in 
length. Speech segments are modeled by Gaussian 
Mixture Models (GMM), dissimilarity is measured via 
the Earth Mover’s Distance (EMD), and the clustering 
partition selection criterion is the within-cluster 
dispersion [9]. 
 
3.2 Sub-Shot Segmentation 
Sub-shot segmentation is based on the idea that the 
user is only interested in those parts of the shots which 
contain non-redundant, interesting content. First, video 
cut detection is performed as described in the previous 
section. Then, face sequences, camera motion and 
audio features are employed to segment these shots 
further into sub-shots. In particular, long sequences 
without any motion respectively long silent sequences 
are possible indicators for redundancy. The face, 
motion and audio features are not used at low-level but 
rely on a classification process of camera motion 
estimation approach suggested in [5], face sequence 
generation proposed in [8], respectively audio 
segmentation according to [12]. Camera motion types 



of pan, tilt and zoom are distinguished and used for 
segmentation as well as the appearance of face 
sequences, while the features silence and speech are 
utilized for sub-shot segmentation with respect to 
audio information. For the purpose of sub-
segmentation, the binary classification results for these 
features are utilized at a temporal granularity of one 
second. A new sub-shot begins (respectively the 
preceding sub-shot ends) when one of the feature 
classifications changes from 0 to 1 respectively from 1 
to 0. For example, if a zoom event starts that might be 
of interest for the user, the related feature value should 
change from 0 to 1 and a new sub-shot is created. 
 
3.3 Video Summarization and Visualization 
An important issue in exploring the rushes material is 
the removal of redundant material. Since it is believed 
that it is hard to anticipate the user’s interests in 
exploring rushes and that they normally change over 
time as well, an unsupervised clustering approach 
along with an appropriate visualization is suggested. 
The user can control which features are used for 
clustering and visualization. Sub-shots can be clustered 
according to several feature types: 
 

1. Camera motion: pan, tilt, zoom; 
2. Audio features: silence, music, speech, action, 

background; 
3. Face information: number of faces and shot 

size;  
4. Color and texture features;  
5. Interview: information based on speaker 

analysis.  
 
Based on the features selected by the user, a distance 
matrix expressing the similarity of sub-shots is 
generated. The visualization of the relationships 
between sub-shots based on their similarity requires a 
mapping of the high-dimensional feature space to a 
two- or three-dimensional space. Capturing the 
structure of these relationships using only linear 
projections is difficult. However, several approaches 
exist, aimed at reproducing nonlinear, high-
dimensional data structures. These approaches either 
map objects into the lower-dimensional space 
analytically, such as classical multidimensional scaling 
(MDS) [14], or they try to optimize low-dimensional 
mappings so that the new distances in the low-
dimensional space reflect the original distances in the 
higher-dimensional space, such as non-metric methods. 
The non-metric methods differ by the distance 
weighting scheme and the optimization algorithm used. 
The Sammon mapping [17] represents one such 
technique that performs non-metric MDS. In our 

prototype, we have used both classical MDS and the 
Sammon mapping for achieving low-dimensional 
projections of sub-shot relationships.  
Before visualization can take place, the sub-shots are 
clustered using k-means where the number k of 
clusters can be defined by the user and should typically 
range between 10 and 100. Then, for each pair of 
clusters, the distance of their centers is computed and 
all these distances are used to create a similarity 
matrix. This matrix is then used for the purpose of 
visualization using either the Sammon mapping or 
classical MDS. The visualization allows the user to 
zoom into or out of parts of the visualization.  
Via this clustering, similar sub-shots are grouped 
together and the user gets quickly an overview over the 
rushes material. The user can browse through these 
clusters, e.g. zoom into one cluster, and thus search 
efficiently for interesting sub-shots.  
 
3.4 Retrieval of Rushes Sub-Shots 
In the preprocessing stage, the videos have been 
analyzed and several low-level and high-level features 
have been extracted or computed automatically. The 
following features are computed as described above, 
and the user can start an automated search for sub-
shots exhibiting one or a combination of these features: 
 

1. Interview or not: Whether an interview is 
conducted in a sub-shot; 

2. Shot size: Representing the camera distance; 
3. No. of faces present in a sub-shot; 
4. Camera motion: pan; 
5. Camera motion: tilt; 
6. Camera motion: zoom; 
7. Query-by example: User can select an 

arbitrary frame region and search for it in the 
sub-shot database; 

8. Silence; 
9. Speech: 
10. Music; 
11. Action; 
12. Background sound;  
13. Speaker identity. 

 
Relevant shots are retrieved and returned to the user 
ranked by the probability that they exhibit the 
requested feature.  
 
3.5 Experimental Results 
In the experiments, the TRECVID rushes video test 
data were used. First, the clustering and visualization 
method was tested for several k of the k-means 
clustering process. Furthermore, the visualization 



techniques of classical MDS and Sammon mapping 
were compared with respect to their performance in 
organizing the rushes content. Finally, we conducted 
retrieval experiments for features presented in the 
previous subsection. 

 
Figure 1: Screenshot of our visualization of the 
video franco85.mpg using the Sammon mapping 
and k=30. 

 
Figure 2: Visualization of the same video using 
classical MDS and only 3 clusters. 

Figures 1 and 2 exemplarily display two facts learned 
from the experiments regarding clustering and 
visualization:  
First, it is shown how the user can efficiently and 
intuitively reduce the inherent redundancy by first 
specifying a large number of clusters (as in figure 1), 
which gives a general overview of a video’s content. 
The likely over-segmentation can be handled in a 
second step by interactively decreasing the number of 
clusters to a visually more suitable number (as shown 
in figure 2). As can be seen from figure 3, our sub-shot 
clusters offer a high degree of purity necessary for 
reliable summarization. 
Second, the examples show that both the classical 
MDS and the Sammon mapping technique are able to 
produce visually appealing, well-organized results. 

The actual choice of method for this specific task thus 
depends mainly on personal preferences. 
We evaluated the performance of our retrieval 
component by using our graphical user interface 
depicted in figure 4. It returns the top-50 retrieval list, 
for which we computed the precision as performance 
index. The results for the best working individual 
features are given in table 4. It is interesting to look at 
the false positives therein: For music, 43% of the false 
positives include chirping of birds or blowing of a 
whistle, which is anyhow strongly related to the 
concept of music. For camera pan, tilt and zoom, 93%, 
71% and 35%, respectively, of the falsely retrieved 
sub-shots show the movement of a big foreground 
object along the desired camera-movement axis, which 
is hard to distinguish even for humans.  

 
Figure 3: A zoom into the lower right cluster of 
figure 2. 

Feature Top-50 precision 
Audio: Music 0.580 
Audio: Silence 1.000 
Audio: Speech 0.940 
Camera motion: Pan 0.720 
Camera motion: Tilt 0.720 
Camera motion: Zoom 0.420 
No. of faces = 1 1.000 

Table 4: Top-50 precision of the features in 
column 1 using the complete rushes test material. 

These results are quite promising, though the retrieval 
performance for camera motion was lower than it was 
expected. The reason is that currently the rotation 
angle respectively the zoom factor was used to rank 
the sub-shots. However, these values are not directly 
related to the detector’s confidence that there was 
camera motion. 



 
Figure 4: Screenshot of the graphical user interface for the retrieval component. The retrieval list on the 
right side shows the result for the feature shot size = 30%. 

 
4. Conclusions  
 
In this paper, we have presented our experiments for 
two tasks of TRECVID 2006: shot boundary detection 
and the rushes exploration task. Our shot boundary 
detection approach consisted mainly of the last year’s 
approach. This year’s focus was to investigate the 
impact of different sliding window size ranges for cut 
detection and the possibility to build an ensemble of 
classifiers by extending the basic approach with 
unsupervised classifiers which rely only on different 
parameter settings. However, the experiments showed 
that the impact of different sliding window size ranges 
is negligible, and changing sliding window size ranges 
had nearly no impact on detection results. The tested 
unsupervised ensembles achieved only a slightly better 
performance. This is possibly due to the fact that the 
individual classifiers of an ensemble normally should 
exhibit a certain degree of independence in order to 
improve the overall performance. Experimental results 
indicated that this was not the case for the ensembles 
employed this year. Overall, the performance was as 
follows. For cut detection, a recall of about 90% and a 
precision of 80% were achieved, while for gradual 
transition detection a recall of about 60% and a 
precision of 67% were achieved.  
The proposed system for rushes exploration was 
integrated into our video content analysis platform 

“Videana”. It consists of a summarization and a 
retrieval component and works as follows. First, video 
cut detection is applied to the rushes material. Then, 
rushes shots are segmented further to obtain sub-shots 
with respect to events like speech, silence, camera 
motion and face appearances. Summarization is 
achieved by clustering those sub-shots using high-level 
audiovisual features (camera motion, face detection, 
shot size, speech, silence, music, action, background). 
The resulting clusters are visualized and the user can 
navigate interactively through these sub-shots to search 
the videos. Two visualization techniques were 
compared: Sammon mapping and classical MDS. The 
experiments demonstrated that both methods work 
equally well for our application. Furthermore, users 
can employ an automated search using the retrieval 
component with respect to the following features: 
number of faces, shot size, pan, tilt, zoom, silence, 
speech, music, action, background noise, and 
interview. In addition, a user can select arbitrary frame 
regions to search for similar regions in the rushes 
material (query-by-example). In the experiments, the 
top-50 precision was measured for several features. 
These experiments showed very good retrieval results 
for audio and face features, while our work with 
camera-motion features showed room for 
improvement, especially in the case of ranking in the 
retrieval list. Overall, the proposed system 
demonstrated its potential for efficient exploration of 



rushes videos. In the future, it is planned to extend the 
retrieval component with the possibility to search for 
several additional high-level features. Finally, the 
retrieval performance should be further improved for 
selected features. 
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