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Structured Abstract 

What approach or combination of approaches did you test in each of your submitted runs? 
TRECVID2005_UNIMORE_??.xml: the same linear transition detector (LTD) was tested for 
every run, with ten uniformly spaced thresholds for the detection.  
What if any significant differences (in terms of what measures) did you find among the 
runs?  
The system behaved as expected: the higher the threshold the better the recall. Of course the 
precision lowered correspondently. Interesting enough, it seems that we cannot overcome the 
overall limit around 80% for recall and 88% for precision, independently of the other parameter. 
Based on the results, can you estimate the relative contribution of each component of your  
system/approach to its effectiveness?  
One of the main objective of our system was to test the performance of a single algorithm for 
both cuts and gradual transitions. So all the merit and the demerits are related to our LTD. 
Overall, what did you learn about runs/approaches and the research question(s) that 
motivated them?  
The use of a single algorithm allows the system to be run without training. Just a single 
parameter may be employed to tune the sensibility of the system, thus allowing its use in general 
purpose/user friendly systems. 
 

1. Introduction 

This is the second year that the University of Modena and Reggio Emilia tries the Shot Boundary 
Detection task of TRECVID. As in last year try [1], our approach is strictly focused on gradual 
transitions with a linear behavior, including cuts. We developed an iterative algorithm that, given 
a range of frames possibly including a transition, alternatively tries to find the best center 
position or the best length, by minimizing an error function, which measures the fitness of data to 
the linear model [2]. The features used to characterize the frames are the DC color image in the 
RGB color space and the three RGB independent histograms computed on the full sized image. 

2. Shot Boundary Detection  

Before describing our algorithm in detail, it is useful to define the ideal model of linear transition 
and to underline its important properties. These will be exploited by the algorithm to cope with 
non idealities and to measure the confidence of the detection.  



2.1. The Transition Model 

Let’s consider two consecutive shots in a video sequence, the first one ending at frame e, and the 
second one starting at frame s, with e s< . If 1s e= +  we have an abrupt cut, otherwise there are 
some frames of gradual transitions between e and s. 
To design a shot segmentation algorithm, two assumptions must be done: the first one is that a 
feature ( )F t  is computable for each frame at time t, with the characteristic of being 
discriminating and almost constant within the shot; ideally 
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The second assumption is that a distance function exists in the feature space Φ : :d Φ ×Φ → , 
which shows a constant behavior during the transition. Ideally: 

 ( ) ( )( ), 1d F t F t c e t s− = < ≤  (2) 

Sometimes there is confusion on the definition of length of a transition, because one may include 
in the count the first frame of the new shot after the transition (e.g. [3]), or the last one of the 
previous one. In our model, the length is the number of frames in which the transition is visible, 
that is 1L s e= − − . Note that this model includes in the definition of transition abrupt cuts too, as 
transitions with length 0L = . The transition center is defined as ( ) 2n e s= +  and may 
correspond to a non-integer value, that is an inter-frame position. This is always an inter-frame 
position in case of cuts. 
Differently from other difference metric formulations, instead of computing the difference 
between the frames ( )F i  and ( )F i w+ , with w being the frame-step, we calculate a metric n

wM  
centered on frame or half-frame n, with 2n ∈ , and with frame-step 2w∈N . It is defined as: 
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Figure 1. Values of n
wM  for an ideal linear transition with 5L =  at varying w. 
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The second term of the expression is a linear interpolation adopted for inter-frame positions. This 
is necessary because the feature F is relative to a single frame and cannot be computed at half-
frames. 
In Fig. 1 we see an example of an ideal linear transition with 5L = , from a shot with white 
pixels to one with black pixels. If the transition is perfectly linear according with the hypothesis 
of Eq. 1 and Eq. 2, the shape of function n

wM  is an isosceles trapezoid centered in n , for each w, 
that degenerates into a triangle when 2 1w L= + . 
We can verify that in this ideal case, given the model and Eq. 3, both the up and down slopes last 
for ( )min 2 , 1w L +  frames, and that the plateau of absolute maximum is ( )2 1w L− +  long. It’s 
also straightforward to verify that: 

 , if 2 1; , if 2 1n n
w wM M w L M M w L< < + = ≥ +  (4) 

where ,max n
w n wM M=  (see Fig. 1). We define ( ), ; ,n

w L i b hψ  the generic trapezoidal function, 
centered in n, whose value is h at the center (the absolute height of the minor base) and b is the 
value outside the trapezoid. The function is plotted in Fig. 2. We define ( ),

n
w L iψ ( ), ;0,n n

w L wi Mψ= , 
the function which corresponds to the ideal transition case. 
In the real case, camera and objects motion, color and luminance variation and so on cause the 
feature F to be non constant on the shot, thus making Eq. 1 and Eq. 2 not satisfied. The 
consequence is that the shapes of both the slopes and the plateau are usually disturbed. 

2.2. Two-steps Algorithm 

Due to lack of ideality in most of the shot transitions, instead of relying only on correlation 
between data and the ideal ( ),

n
w L iψ  function, we employ an algorithm constructed of two steps: 

the first one searches for the transition center position n, assuming a fixed frame step 2w, and the 
second searches for the transition length L, by trying different values of w, but keeping the 
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Figure 2. Trapezoidal shaped function ( ), ; ,n

w L i b hψ  



transition center fixed. While in the ideal case even the first step would be sufficient, in real 
cases an error in locating the center position would also lead to a wrong estimate of the length. 
For this reason a second step is introduced to provide a different view of the function behavior, a 
possible confirmation on the first step outcome and a new estimate for the window size. 
Iteratively repeating the two steps allows progressively decreasing the error. In this section we 
explain in details our transition detection algorithm. We perform the following analysis on 
overlapped windows of 60 frames, distant 30 frames each other, since we suppose that transitions 
are much shorter and farther than that.  

2.2.1. First step.  
In the first step the values of n

wM  are calculated using the frame-step w , which is found in the 
previous iteration of the algorithm, or it’s arbitrary chosen for the first iteration. The best 
trapezoid ( ),

n
w L iψ  is searched by moving the center n, and trying different values for L, but 

keeping w  fixed. The trapezoid extends over  ( )min 2 , 1w L wδ = + + −  ( )1 2L +  frames on the 
left and on the right of the center frame. For each couple of n and L the following matching 
measure is computed: 
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The value of n is searched within the 60 frames window, and also L must be selected such that 
n δ+  and n δ−  don’t exceed the window. 
In Eq. 5, two components are evident: the first one is needed to maximize the area under the 
trapezoid, while the second component describes the similarity of our linear hypothesis with the 
data. It is very important to include both components, since we expect the distance measure to 
give a trapezoidal shape (the second term in Eq. 5), but we also request its strength, i.e. the 
amount of difference between the first and the second scene, to be significant. The first term in 
Eq. 5 in fact describes how much the value of n

wM  surpasses the ideal trapezoid. After finding 
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Figure 3. Example of real n

wM  values and the best trapezoid fitted. 



the trapezoid which maximizes ,
n
w LΛ , we consider ,arg max n

w L
n

n = Λ  the candidate transition 
center. In Fig. 3 we show an example of trapezoid fitting with real data. 

2.2.2. Second Step.  
Thanks to the definition of n

wM  as a distance function centered in n, as in Eq. 3, increasing the 
frame-step w makes the value of n

wM  to grow up to an absolute maximum when ( )1 2w L= +  
and then to be stable. It is easy to demonstrate that, in the ideal case, this growth is linear. Thus 
the growing function can be plotted as shown in Fig. 4, with a linear slope followed by a 
horizontal line, when the value of n

wM  is stable. The second step of the algorithm uses this 
propriety to give an estimate of the transition length, by finding the smallest w which 
maximizes n

wM . To provide a technique able to deal with noise, the tilt change of the chart is 
searched by minimizing the function: 
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where W is the maximum size that a transition can assume. The w value that minimizes n
wZ  

becomes our current frame step for the next iteration of the algorithm.  
In simple cases the algorithm progressively narrows the trapezoid minor base leading to the 
expected triangular shape. Convergence is not guaranteed in non ideal conditions, and, for this 
reason, we add a convergence constraint: at each iteration the minor base of ( ),

n
w L iψ  is forced to 

become smaller. In Fig. 5 the n
wM  values are shown for 4 successive iterations of the algorithm 

in a real gradual transition case. At each iteration, we achieve a more precise estimate of the 
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Fig. 4. Values of the distance metric n
wM , with respect to different w values. This corresponds to 

the transition of Fig. 1. 
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Figure 5. Four successive iterations of the algorithm in a real gradual transition: at each iteration, 
the shape of n

wM  values becomes more similar to a triangle 



transition center and length, and thus a shape more similar to a triangle. 

2.2.3. Decision Space.  
Given the transition length 2 1L w= −  and its center n , as detected by the algorithm, the 
function ( ),

n
w L iψ  becomes  triangular shaped. We must now verify the significance of the 

transition and how much the real data fit to the linear transition model. We introduce the 
following measure: 

 ( )2 2min ,n n n w n w
w w w wPeak M M M− += − . (7) 

The Peak value measures the height of the center value with respect to the lower of the two 
values of M in correspondence to the extremes of the triangle, and provides information on the 
transition significance. In fact, while in the model 2 0n w

wM ± = , in real cases this is not true, 
because of object and camera motion that causes the feature F to be not constant before and after 
the transition. To cope with this we have to get rid of the hypothesis of having an isosceles 
triangle and define the fitting error measure as: 
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Fig. 6. Graph reporting the results obtained by the TRECVID participants. Some results are out of 

scope. Our results are shown with a cross connected by a line.  



The error sum is divided by the triangle’s base 4w  to obtain a measure which is independent 
from the transition length. The final decision space is then based on two parameters only, which 
are the same for cuts and transitions. The decision rule to have a valid transition is: 

 1n n
w werr Peakα β⋅ + ⋅ >  (9) 

where α  and β  are two real coefficients. 

3. Results 

In Fig. 6 the results obtained by our system with respect to all other TRECVID participants are 
shown. For all the ten submitted runs, the error coefficient α  was fixed to -32, while the peak 
coefficient β  was varied from 0.0001 to 0.001 in ten equally spaced steps. As expected, the 
lower the coefficient, the better the recall. Of course the precision lowered correspondently. 
Interesting enough, it seems that we cannot overcome the overall limit around 81% for recall and 
88% for precision, independently of the other parameters. Another noticeable result is given by 
run TRECVID2005_UNIMORE_01.xml (peak value 0.0001), in which the high request for the 
peak value does not lead to a better precision. In fact the detected transitions with higher peak 
are, instead false ones. 
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