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ABSTRACT 

 
AT&T participated in two tasks at TRECVID 2007: shot 

boundary detection (SBD) and rushes summarization. The 
SBD system developed for TRECVID 2006 was enhanced 
for robustness and efficiency. New visual features are 
extracted for cut, dissolve, and fast dissolve detectors, and 
SVM based verification method is used to boost the 
accuracy. The speed is improved by a more streamlined 
processing with on-the-fly result fusion. We submitted 10 
runs for SBD evaluation task. The best result (TT05) was 
achieved with the following configuration: SVM based 
verification method; more training data that includes 2004, 
2005, and 2006 SBD data; no SVM boundary adjustment; 
training SVM with high generalization capability (e.g., a 
smaller value of C). 

As a pilot task, rushes summarization aims to show the 
main objects and events in the raw material with least 
redundancy while maximizing the usability. We proposed a 
multimodal rushes summarization method that relies on both 
face and speech information.  

Evaluation results show that the new SBD system is 
highly effective and the human centric rushes 
summarization approach is concise and easy to understand.   
 

I. INTRODUCTION 
 

TRECVID started as a video track of TREC (Text 
Retrieval Conference) in 2001 to encourage research in 
automatic segmentation, indexing, and content-based 
retrieval of digital video and in 2003 it became an 
independent evaluation. TRECVID 2007 contains three 
fundamental tasks: shot boundary detection (SBD), high-
level feature extraction, and search (interactive, manually-
assisted, and/or fully automatic), and one new pilot task: 
rushes summarization. AT&T submitted results for two 
tasks: shot boundary detection and rushes summarization. 

Shot boundary detection has been widely studied for the 
last decade; early work can be found in [1-4]. TRECVID 
further stimulates the interest and effort in a much broader 
research community. AT&T’s SBD system achieved good 
results in TRECVID 2006 [5], and this year, we further 
enhance the existing system. Three major improvements are: 

1) New visual features are extracted for cut, dissolve, and 
fast dissolve detectors, 2) Support vector machine (SVM) 
based verification method is used to boost the accuracy and 
robustness of cut and fast dissolve detectors, 3) SBD 
processing is more streamlined with on-the-fly result fusion 
with low latency and an implementation of the algorithm in 
a Microsoft DirectShow filter to take advantage of a highly 
efficient MPEG codec. Evaluation results show that our 
SBD system is very time effective and accurate. 

Rushes summarization is new pilot task in TRECVID 
2007. Rushes are the raw material (extra video, B-rolls 
footage) used to produce a broadcast program.  Rush 
material may consist of as much as 20 to 40 times the 
amount of material actually used in the finished product. 
Video summarization is a very interesting yet challenging 
task with recent work found in [6, 7].  We adopt a 
multimodal approach for rushes summarization. The system 
relies on both speech and face information to create a human 
centric video summary. A shot clustering algorithm is 
applied to remove the content redundancy. Evaluation 
results show that the summaries we created are concise and 
easy to understand. 

This paper is organized as follows. Section II gives a 
detailed description of the shot boundary detection system. 
Section III addresses our work on the rushes summarization. 
Evaluation results are also presented and discussed in these 
sections respectively. Finally, we draw our conclusions in 
Section IV.  
 

II. SHOT BOUNDARY DETECTION 
 
2.1 Overview  
 

Fig. 1 shows the high level diagram of the SBD system. 
There are three main components in our SBD system: visual 
feature extraction, shot boundary detectors, and result 
fusion. The top level of the algorithm runs in a loop, and 
every loop processes one video frame. Each new frame and 
the associated visual features are saved in circular buffers. 
The loop continues until all frames in the MPEG file are 
processed. 

Given the wide varieties of shot transitions, it is difficult 
to handle all of them using a single detector. Our system 



adopts a “divide and conquer” strategy. We devised six 
independent detectors, targeting for six dominant types of 
shot boundaries in the SBD task. They are cut, fade in, fade 
out, fast dissolve (less than 5 frames), dissolve, and wipe. 
Essentially, each detector is a finite state machine (FSM), 
which may have different numbers of states. Finally, the 
results of all detectors are fused and the overall SBD result 
is generated in the required format. 

The SBD system in 2007 brought a few enhancements to 
the 2006 system. We employed more visual features and 
adopted data driven approaches in cut, fast dissolve, and 
dissolve detectors. In this section, we will focus on the new 
components. Interested readers may find more details of the 
2006 system in [5]. 

 

 
Fig. 1. Overview of the SBD system 

  
2.2 Feature Extraction  
 

For each frame, we extracted a set of visual features, 
which can be classified into two types: intra-frame and 
inter-frame visual features. The intra-frame features are 
extracted from a single, specific frame, and they include 
color histogram, edge, and related statistical features. The 
inter-frame features rely on the current frame and one 
previous frame, and they capture the motion compensated 
intensity matching errors and histogram changes.  

Fig. 2 illustrates how these visual features are computed. 
The visual features are extracted from a central portion of 
the picture, which we called the region of interest (ROI). 
The ROI is marked by a dashed rectangle in Fig. 2, overlaid 
on the original image. The size of ROI is 288x192 pixels. 

 

 
Fig. 2. Visual feature extraction 

 
Within the ROI, we extract the histogram of red, green, 

blue, and intensity channels and compute a set of statistics, 
including the mean, the variance, the skewness (the 3rd order 
moment), and the flatness (the 4th order moment). For each 
pixel in the ROI, we compute its discontinuities in the 
horizontal (with respect to vertical) direction by Sobel 
operators [8]. If the value is higher than a preset threshold, 
the pixel is labeled as horizontal (respectively, vertical) edge 
pixel. Finally, we use the ratio of the total number of 
horizontal (respectively, vertical) edge pixels to the size of 
ROI as an edge based feature.  

The temporal derivative (delta) of a feature (e.g., 
histogram mean) is fitted by a second-order polynomial to 
make it smooth. The delta values of histogram mean, 
variance, and dynamic range are computed as additional 
visual features.  

Motion features are extracted based on smaller blocks 
within the ROI. Specifically, in Fig. 2, we split the ROI into 
24 blocks (6 by 4), each with the size 48x48 pixels. The 
search range of motion vector for each block is set to 32x32. 
Either an exhaustive search for better accuracy or a 
hierarchical search for higher efficiency is used to estimate a 
block’s motion vector. The motion features for each block, 
e.g., block k, include the motion vector (MVk), the best 
matching error (MEk), and the matching ratio (MRk). The 
matching ratio is the ratio of the best matching error with 
the average matching error within the searching range, and it 
measures how good the matching is. The value is low when 
the best matching error is small and the block has significant 
texture. Based on the motion features of all blocks, we select 
the dominant motion vector and its percentage (the ratio of 
the number of blocks with this motion vector to the total 
number of blocks) as frame level features. We then rank all 
MEk (resp. MRk), and compute the order statistics, including 
the mean, MEA; the median, MEM; the average of the top 
1/3, MEH; and the average of the bottom 1/3, MEL (resp. 
MRA, MRM, MRH, MRL). These features are effective in 
differentiating the localized visual changes (e.g., foreground 
changes only) from the frame wised visual changes. For 
example, high MRH with low MRA indicates a localized 
transition. 

Based on the motion vectors of all blocks, we can 
determine the dominant motion vector and the percentage of 
blocks whose motion vectors are the same as the dominant 
one. If the dominant motion vector is non-trivial and the 
percentage is significant (e.g., more than 1/3), we set the 
global motion flag to be true for the frame, otherwise, false.  

To cope with the false shot boundaries introduced by 
zooming effects, we developed a simple yet effective 
zooming detector. Fig. 3 illustrates the method we adopted 
to detect zooming. Frames i and i-1 are two adjacent frames. 
For each frame, we extracted the intensity values for the 
center row (horizontal bars hi and hi-1), and those for the 
center column (vertical bars vi and vi-1). Dynamic 
programming is used to search the optimal match between 



the two horizontal bars, where the centers of the two bars 
are aligned.  Fig. 3 shows an example of zooming out, and 
the best match path (MPh) is marked in a solid line. The 
dotted solid line shows a possible match path for a case of 
zooming in. The tangent value of the angle of the match 
path (θ) is defined as the zooming factor. While zooming 
out, the factor is less than 1.0, and while zooming in, the 
factor is greater than 1.0. 

Using the single pixel wide horizontal (vertical) bars, we 
can find possible horizontal (vertical) zooming factors 
efficiently. Based on the optimal horizontal and vertical 
matching paths, the entire frames are used to verify the 
zooming decision. For the case of zooming out, frame i-1 is 
shrunk and compared to corresponding portion in frame i. 
The verification for the case of zooming in is similar. If the 
overall matching error is small enough, we set the zooming 
flag of current frame to be true, otherwise, false. 

 

 
Fig. 3. Zooming detection 

 
2.3 Shot Boundary Detectors 

 
The AT&T SBD system contains 6 detectors, which 

detect 6 common shot boundaries: cut, fast dissolve (less 
than 5 frames), fade in, fade out, dissolve, and wipe. These 6 
types of transitions cover most shot transitions in TRECVID 
sequences and they can be detected relatively reliably. 

Fig. 4 illustrates the general FSM structure for all shot 
boundary detectors. State 0 is the initial state. When the 
transition start event is detected, the detector enters the sub 
FSM, which detects the target transition pattern, and locates 
the boundaries of the candidate transition. If the sub FSM 
fails to detect any candidate transition, it returns to state 0, 
otherwise, it enters state N. State N further verifies the 
candidate transition with more strict criteria, and if the 
verification succeeds, it transfers to state 1, which indicates 
that a transition is successfully detected, otherwise, it returns 
to the initial state. Although the six detectors share the same 
general FSM structure, their intrinsic logic and complexity 
is quite different.  

The state of the FSM is determined by a set of state 
variables. There are three basic state variables that are 
common for all FSMs: state_id, which is the state of current 
FSM, start_frame, which is the last frame of previous shot, 
end_frame, which is the first frame of the new shot. Some 
detectors may have an additional state variable to track an 
adaptive threshold value used for determining the state 
transitions. 
 

 
Fig. 4. General FSM for transition detectors 

 
In the 2007 SBD system, we improved three detectors: 

cut, fast dissolve, and dissolve detectors. In the remainder of 
this section, we will focus on these three detectors.  
 
2.3.1 Cut detector 

 
To improve the effectiveness of the cut detector, we 

introduced more features for cut verification. For a 
candidate cut boundary at (pref, postf), these features are 
extracted from a verification window that starts at pref-2, 
and ends at postf+2. Table I lists all 22 features for cut 
verification. How these features are computed is also briefly 
described in Table I. The last feature, IsMono, is useful for 
the cases where two regular shots are connected by a 
sequence of black/white screens. The TRECVID reference 
labels consider this case a gradual transition, instead of two 
adjacent cuts. 

 
Table I. Features for cut verification 

 
Feature  Computation 

Corr_c Correlation between frames pref and postf: 
Corr(pref, postf) 

MEH_c MEH between pref and postf: MEH(pref, postf) 
MEL_c MEL between pref and postf: MEL(pref, postf) 
MEM_c MEM between pref and postf: MEM(pref, postf) 

HistDist_c Histogram distance between pref and postf: 
HistDist(pref, postf) 

Corr_pre Max{Corr(pref-2, postf), Corr(pref-1, postf)}  
MEH_pre Min{MEH(pref-2, postf), MEH(pref-1, postf)} 
MEL_pre Min{MEL(pref-2, postf), MEL(pref-1, postf)} 

HistDist_pre Min{HistDist(pref-2, postf), HistDist(pref-1, 
postf)} 

MEH_st Max{MEH(pref-2, pref-1), MEH(pref-1, pref)} 



HistDist_st Max{HistDist(pref-2, pref-1), HistDist(pref-1, 
pref)} 

Corr_st Min{Corr(pref-2, pref-1), Corr(pref-1, pref)} 
Corr_post Max{Corr(pref, postf+1), Corr(pref, postf+2)}  
MEH_post Min{MEH(pref, postf+1), MEH(pref, postf+2)} 
MEL_post Min{MEL(pref, postf+1), MEL(pref, postf+2)} 

HistDist_post Min{HistDist(pref, postf+1), HistDist(pref, 
postf+2)} 

MEH_end Max{MEH(postf, postf+1), MEH(postf+1, 
postf+2)} 

HistDist_end Max{HistDist(postf, postf+1), 
HistDist(postf+1, postf+2)} 

Corr_end Min{Corr(postf, postf+1), Corr(postf+1, 
postf+2)} 

MaxVar Maximum variance within the verification 
window {pref-2, pref-1, ..., postf+1, postf+2} 

MEH_ratio Ratio of MEH to the adaptive matching error 
threshold (a state variable of cut detector) 

IsMono True if either pref or postf is monochrome 
 

 In the 2006 SBD system, cut verification was mainly a 
threshold based method. In the 2007 system, we adopted a 
support vector machine (SVM) based verification engine 
using all the above mentioned 22 features as input. More 
details about SVM training can be found in Section 2.3.4. 

 
2.3.2 Fast dissolve detector 
 

In the 2007 system, there are two main improvements for 
the fast dissolve detector: more visual features and SVM 
based verification approach.  

Let X, Y, and Z denote the start_frame, end_frame, and 
an intermediate frame of the fast dissolve transition. We 
require that the duration of the fast dissolve transition be 
less than 5 frames, so it is reasonable to assume that there is 
no motion involved in the transition. With this assumption, 
Z can be written as a linear combination of X and Y, Z = αX 
+ (1 - α)Y, where 0 ≤ α ≤ 1. The value of α can be 
determined by a min square error criteria, and the minimum 
estimation error is denoted by EEL. To measure how 
accurate the estimation is, we also compute the energies of 
the difference images X-Z and Y-Z, denoted by EDX and 
EDY. The ratio of min(EDX, EDY) to EEL is used as the 
confidence (Conf) of the linear estimation.  

Table II lists all features used for fast dissolve 
verification, where the candidate boundary is (pref, postf). 
How to compute these features is also briefly described in 
the table. These features are designed to capture the 
distinctive nature of a fast dissolve transition. The features 
Zoom_p and Motion_p aide in removal of the false fast 
dissolves that are induced by zooming or camera motion. 

  
Table II. Features for fast dissolve verification 

 
Feature  Computation 

Corr_f Correlation between frames pref and postf: 
Corr(pref, postf) 

HistDist_f Histogram distance between pref and postf: 

HistDist(pref, postf) 
MEH_f MEH between pref and postf: MEH(pref, postf) 
MEL_f MEL between pref and postf: MEL(pref, postf) 
MaxError Max{EEL(pref+1), ..., EEL(postf-1)} 
MinConf Min{Conf(pref+1), ..., Conf(postf-1)}  
MaxAlpha Max{|α (pref+1)-0.5|, ..., |α (postf-1)-0.5|} 

MaxVar Maximum intensity variance: Max{Var(pref), 
..., Var(postf)} 

MEH_r 

Min{ MEH(pref, pref+1), ..., MEH(postf-1, 
postf)}/ Max{MEH(pref-2, pref-1), MEH(pref-
1, pref), MEH(postf, postf+1), MEH(postf+1, 
postf+2)} 

HistDist_r 

Min{ HistDist (pref, pref+1), ..., HistDist 
(postf-1, postf)}/ Max{ HistDist (pref-2, pref-
1), HistDist (pref-1, pref), HistDist (postf, 
postf+1), HistDist (postf+1, postf+2)} 

IsLowVar True f perf or postf is a low variance frame 

Zoom_p Percentage of frames whose zooming flags 
are true 

Motion_p Percentage of frames whose global motion 
flags are true 

Var_r Min{Var(pref+1), ..., Var(postf-1)} / 
Min{Var(pref), Var(postf)} 

 
In the 2006 system, fast dissolve verification was a 

heuristic rule based method. In 2007 system, we adopted a 
SVM based verification engine. All the above mentioned 14 
features are used as SVM input. More details about SVM 
training can be found in Section 2.3.4. 

 
2.3.3 Dissolve detector 

 
The majority of the gradual transitions are dissolves. 

Therefore, the performance of the dissolve detector largely 
determines the performance of detecting gradual transition. 
In the 2006 system, we developed a set of 66 features for 
dissolve verification, which were proven to be very 
effective. For the 2007 system, we added two new features 
based on the candidate dissolve boundary: the percentage of 
frames with zooming flag set and the percentage of frames 
with the motion flag set (similar to Zoom_p and Motion_p 
described in Table. II). These two features help to reduce the 
false positives introduced by motion and zooming.  

Similar to the 2006 system, we used an SVM based 
verification method for a dissolve detector. More details 
about SVM training are given in the next section. 

 
2.3.4 SVM Models 
 

Support vector machines are now standard for fast and 
robust classification. While this discriminative classifier 
greatly reduces training time by analyzing only marginal 
samples, care must be given to the training parameters and 
underlying kernel used in an SVM. For our experiments, we 
evaluated radial basis functions in a 3-fold validation 
process. We searched 7 linear settings and 70 RBF settings 
with random subsets of our training set split into 80/20 



training/testing partitions. All features are globally 
normalized to one before they are analyzed by the SVM. 
 
2.4 Fusion of Detector Results 
 

In the 2006 system, fusion of detector results occurs when 
all frames are processed. We first sorted the list of raw 
results by their starting frames and merge all overlapped 
fade out and fade in transitions into a single FOI transition. 
Then the overlapped transitions are removed based on their 
priorities. The adopted priority order is (from highest to 
lowest) FOI, dissolve, fast dissolve, cut, and wipe. The final 
step is to map the system types into two categories: cut and 
gradual. All shot boundaries except cuts are mapped into 
gradual. The 2007 SBD system kept the same logic for 
result fusion, but re-implemented it such that the fusion is 
conducted on-the-fly with low latency. Now, it is a one-pass 
process instead of the two-pass process in the 2006 system.  
 
2.5 Evaluation Results 

 
The TRECVID 2007 SBD evaluation data contains 17 

sequences, totally about 7 hours. There are both color and 
black/white videos in these sequences. Compared to the 
evaluation data of TRECVID 2006, the 2007 data has more 
cuts (about 90%, compared to 48.7% in 2006) and longer 
shots (275 frames/shot, compared to 158 frames/shot in 
2006). Our evaluation was conducted on a Windows 2003 
server with dual Intel Xeon 5110 1.6GHz CPUs, and it took 
less than 2 hours 5 minutes to finish each run. 

Table III shows the 10 runs we submitted for the shot 
boundary detection task. For runs 1, 2, 9, and 10, the cut 
verification is threshold based rules, and for the other runs, 
cut verification is SVM based. For all runs, the dissolve 
verification and fast dissolve verification are SVM based. In 
terms of the training data for the cut, dissolve, and fast 
dissolve SVM models, runs 1 to 4 rely on the SBD 
evaluation data in TRECVID 2005 and 2006; runs 5-10 use 
the SBD data in TRECVID 2004 also. 

As a tradeoff between the precision and the recall, we 
introduced a bias for the boundary used in SVM 
classification. Adjusting the SVM boundary to include more 
negative samples (e.g., a value of -0.1) increases the recall 
rate and decreases the precision. Table 1 lists the SVM bias 
value used in different runs. A value of zero means no bias 
is enforced. The C value in SVM training controls the 
tradeoff between the training error and the SVM margin, 
which affects the generalization capability of SVM. Higher 
C reduces training error, but decreases the margin at the 
same time. For different runs, we use different values of C. 
The last column of table III basically gives an idea of the C 
values we used.  

The best results of AT&T’s submissions in different 
categories are shown in Table IV. For example, run 5 
achieves the best overall result and the best gradual results 

among the 10 runs. Run 3 achieved the best cut and frame 
based gradual detection result.  

Gradual transition detectors provide good performance, 
which enabled the AT&T system to be one of the top 
contenders. The frame based gradual transition performance 
of the AT&T system also achieved good performance, 
which means that the proposed gradual transition (mainly 
the dissolve) boundary location approaches are very 
effective. 

 
Table III. AT&T’s 10 submissions for SBD 

 
Run SVM based 

cut 
verification 

Training 
dataset 

SVM 
boundary 

adjustment 

SVM 
generaliz

ation 
1 -0.1 
2 no 0.0 
3 0.0 
4 

2005 & 
2006 SBD 
data 

-0.03 
5 0.0 
6 -0.03 
7 -0.10 

High 

8 

yes 

0.0 
9 -0.10 Low 

10 no 

2004, 2005 
& 2006 
SBD data 

-0.03 High 
 
Table IV. The best runs of AT&T’s SBD submissions 

 
Performance (%) Run Category Recall Precision F-Measure 

Overall 95.6 95.4 95.5 
Cut 97.9 96.6 97.2 
Gradual 70.9 80.2 75.3 5 

Frame based 71.8 93.3 81.2 
Overall 95.5 95.3 95.4 
Cut 97.7 96.8 97.2 
Gradual 70.4 78 74 3 

Frame based 74.2 93.3 82.7 
 

III. RUSHES SUMMARIZATION 
 

3.1 Overview 
 

Rushes are the raw material (extra video, B-rolls footage) 
used to produce a video broadcast. Rushes material may 
consist of as much as 20 to 40 times the amount of material 
actually used in the finished product.  The rushes 
summarization task attempts to construct a short video clip 
that includes the major objects and events of the video to be 
summarized.  

Fig. 5 shows the diagram of the proposed rushes 
summarization method. Our system adopts a multimodal 
approach for rushes summarization. The system relies on 
speech and face information to create a human centric video 
summary. The video is first segmented into shots and three 
keyframes are selected for each shot. Based on the 
dissimilarities of corresponding keyframes, we compute the 



shot distance matrix, and apply a hierarchical agglomerate 
clustering (HAC) algorithm to remove redundancy. For each 
cluster, the longest shot is kept, and the total budget (less 
than 4% of the original duration) is assigned to all chosen 
shots based on their durations. Within each shot, we pick 
one continuous segment that contains most speech and face 
occurrences. The final video summary is simply the 
concatenation of all selected segments in their original time 
order.  

 

 
Fig. 5. Diagram of rushes summarization algorithm 

 
3.2 Video Summarization Algorithm 

 
In this section, we give more details on the components of 

shot clustering, face detection, speech detection, and the 
summary creation.  

 
3.2.1 Shot clustering 

 
We use our SBD system developed for TRECVID 2006 to 

detect the shot boundaries in the video. Within a shot, since 
there may be zooming, panning, tilting, and other camera 
motions, the visual content can change significantly. To deal 
with the content dynamics within a shot, we pick 3 
keyframes that are uniformly sampled from the shot to 
represent the content of the shot. For example, in a six frame 
shot, we pick the first frame, the third frame, and the fifth 
frame as the keyframes.  

Once we have all keyframes for each shot, we compute the 
distance between two shots based on the distances between 
all pairs of keyframes, one from each shot. Suppose that 
shot X has three keyframes {x1, x2, x3}, and shot Y has three 
keyframes {y1, y2, y3}. We use the matching error MEA (see 
section 2.2) between keyframes xi and yj as their distance dij. 
Then the shot distance D(X, Y) can be written as a weighted 
summation of all keyframe distances. 
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 There exists a set of weight {wij} that minimizes D(X, Y). 

Interested readers can find more details in [10]. We use the 
minimum value as the distance between shots X and Y. 
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Having determined the shot distances, we apply 

hierarchical agglomerative clustering (HAC) algorithm to 
cluster all shots. A threshold of 0.5 is used to terminate the 
clustering algorithm. To remove the redundant content, we 
only pick the longest shot from each cluster to be part of the 
video summary.  

 
3.2.2 Face detection 

 
Face detection and tracking has drawn a lot of attention in 

the last two decades. Some recent work can be found in two 
excellent overview papers [11, 12]. In this work, we adopt 
the face detection module in OpenCV [13], which 
implements the AdaBoost based face detection algorithm 
proposed by Viola and Jones in [14].  

To track faces in MPEG-1 sequence, we package the 
OpenCV face detection module into a Windows DirectShow 
filter. We then construct a software network of filters to 
detect faces in each frame that are passed to the video 
summary creation module. 

 
3.2.3 Speech detection 

 
For speech and non-speech classification, we segment an 

audio signal into audio clips, which are 3 seconds long on 
average and each clip consists of overlapping frames. The 
features of each audio clip are determined from the sub-
features of the associated frames. Each frame is 32 
millisecond (ms) long, overlapping with the previous one by 
22 ms. Eight features are computed for each frame. They are 
root mean square volume, zero crossing rate, pitch, 
frequency centroid, frequency bandwidth, and 3 energy 
ratios in subbands. We extract 14 features for each audio 
clip based on frame-level features. The 14 clip-level features 
are 1) volume standard deviation (VSD), 2) volume 
dynamic range (VDR), 3) volume undulation (VU), 4) non-
silence ratio (NSR), 5) standard deviation of zero crossing 
rate (ZSTD), 6) 4-Hz modulation energy (4ME), 7) standard 



deviation of pitch (PSTD), 8) smooth pitch ratio (SPR), 9) 
non-pitch ratio (NPR), 10) frequency centroid (FC), 11) 
frequency bandwidth (BW), 12-14) energy ratio in subbands 
1 - 3 (ERSB1, ERSB2, and ERSB3). For a detailed 
description of these features, please refer to [4]. Based on 
our prior experiments, Gaussian mixture models (GMMs) 
with 4 mixtures provide good performance of speech and 
non-speech classification. In this paper, we assume that the 
covariance matrix of each Gaussian mixture is diagonal.  

 
3.2.4 Video summary creation 

 
The video summary creation module is the core 

component that combines results from other modules and 
creates the recipe for a video summary. 

One requirement of rushes summarization is that the 
duration of a video summary is at most 4% of the original 
video to be summarized. This gives us an overall budget, B 
(number of frames), to be assigned to different shots that are 
picked by shot clustering. Assume that we have N shots, 
{S1, S2, …, SN}, and shot Si contains frames {fi

1, fi
2, … fi

Di}, 
where Di is the number of frames in Si. For each frame fi

j, 
we assign an importance value vi

j for it as follows, 
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The importance value of shot Si, denoted by Vi,, is the 

maximum frame important value within the shot. The 
budget for shot bi is given by the following formula, 
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The last step is to choose one continuous segment for 

each shot. Our method is straightforward – simply picking 
the segment with the maximum accumulated frame scores. 
To remove the beginning scenes with the movie clap board 
in most of the shots, we ignore the beginning 4 seconds 
within each shot when we determine continuous segments.  

The final video summary is created by concatenating all 
segments in their original temporal order. The 
accompanying audio streams are also kept such that the 
generated video summary provides a richer viewing 
experience.  
 
3.3 Results 

 
The TRECVID 2007 rushes summarization task provides 

a development dataset and a test dataset. The development 

dataset contains 47 MPEG-1 videos, totally 19.5 hours, and 
the test dataset contains 42 videos, totally about 18 hours. 
We generate the visual summarization results using the 
same server that runs the SBD task. Specifically, it is a 
Windows 2003 server with dual Intel Xeon 5110 1.6GHz 
CPUs. Overall, it took 37.5 hours to process all the data. 
Table V shows the detailed processing time used by 
different components. 

 
Table V. Processing time for rushes summarization (hours) 

 

SBD
Face 
tracking 

Speech 
detection 

Shot 
clustering 

Summary 
rendition Other 

6 24 1 5.5 0.5 0.5 
 
There are 7 performance measurements for the 

summarization: 1) Duration of the summary in seconds 
(DU), 2) Difference between target and actual summary size 
in seconds (XD), 3) Total time spent judging the inclusions 
in seconds (TT), 4) Total video play time judging the 
inclusions (VT), 5) Fraction of inclusions found in summary 
(IN), 6) Was the summary easy to understand (EA) 
(1=strongly disagree, 5=strongly agree), 7) Was there a lot 
of duplicate video (RE) (1=strongly agree, 5 = strongly 
disagree).  

Table VI shows the evaluation results of our submission. 
One possible reason that our system performs relatively 
poor for IN is that our approach is more human centric and 
it does not put enough emphasis on other objects or events. 
Nevertheless, the TT, EA and RE scores of our system are 
decent, which means the human centric approach is actually 
effective in removing redundancy and easy to understand. 
Figures 6 and 7 draw the EA vs. TT, and EA vs. RE plots, 
which clearly show the effectiveness of our rushes 
summary.  

 
Table VI. Evaluation results of rushes summarization 

 
Measure Mean 

score 
Median 
score 

DU 54.76 59.15 
XD 5.11 5.49 
TT 95.66 86.33 
VT 54.95 59.5 
IN 0.38 0.35 
EA 3.37 3.33 
RE 3.89 4 

 



 
Fig. 6. Ease of understanding vs. Judge time 

 

 
Fig. 7. Ease of understanding vs. Non-redundancy 

 
IV. CONCLUSIONS 

 
In this paper, we reported the AT&T system for 

TRECVID 2007 evaluation. AT&T participated in two 
tasks: shot boundary detection and rushes summarization. 
We enhanced the 2006 SBD system by utilizing more visual 
features and employing SVM based verification for cut, 
dissolve, and fast dissolve detectors. The proposed rushes 
summarization method is a human centric approach, where 
both speech and face information is exploited. The 
evaluation results show that the new SBD algorithm is 
effective and promising, and the proposed rushes 
summarization method is effective and easy to understand.  
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