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Abstract

Our experiments in TRECVID 2007 include participation in the high-level feature extraction, search, and video summarization
tasks, using a common system framework based on multiple parallel Self-Organizing Maps (SOMs).

In the high-level feature extraction task, we applied a method of representing semantic concepts as class models on parallel
SOMs, combined with external text search results. This year, we introduced a further post-processing stage in which the concepts’
temporal and inter-concept co-occurrences were analyzed. We submitted the following six runs:
• A_PicSOM_1_6: Required visual baseline
• A_PicSOM_2_5: Visual features and text search
• A_PicSOM_3_3: Visual features using variable convolution and text search
• A_PicSOM_4_4: Visual features using variable convolution
• A_PicSOM_5_2: Visual features, text search, and temporal context based on training set
• A_PicSOM_6_1: Visual features, text search, and temporal context based on validation set
The results show that the temporal and inter-concept co-occurrence analysis improved the results considerably. On the other hand,
inclusion of the text search worsened the results, leading to overall degradation of performance also on the subsequent runs. For
this reason, we later executed additional runs in which the co-occurrence post-processing stage was employed without the text
search.

In the search task, we submitted a total of six fully-automatic runs. In this year’s experiments, we augmented the baseline
ASR/MT search and content-based retrieval runs with high-level semantic concepts and pseudo relevance feedback. The overall
settings for the six runs were as follows:
• F_A_1_PicSOM_1_6: Required text search baseline
• F_A_1_PicSOM_2_5: Required visual baseline
• F_A_2_PicSOM_3_4: Text search and visual features
• F_A_2_PicSOM_4_3: Text search and visual features, with pseudo relevance feedback
• F_A_2_PicSOM_5_2: Text search and visual features, semantic concepts
• F_A_2_PicSOM_6_1: Text search and visual features, semantic concepts, with pseudo relevance feedback
In this year’s experiments, retrieval based on the visual features performed very poorly, and consequently the text baseline
outperformed also the combined run with both visual and text features. In the further experiments, the inclusion of both the
semantic concepts and pseudo relevance feedback resulted in performance improvement.

I. INTRODUCTION

In this paper, we describe our experiments for the
TRECVID 2007 [1] evaluations. This year we participated in
the high-level feature extraction, automatic search, and, for
the first time, rushes video summarization. The basic system
and methodology used in these experiments remains the same
as in our previous participations in years 2005–2006. In the
high-level feature extraction task, our main new addition to the
system was a post-processing stage in which the temporal and
inter-concept co-occurrences were analyzed. For our automatic
search runs, we applied different combinations of external text
search results, content-based retrieval based on visual (image
and video) features, semantic concept modeling, and pseudo
relevance feedback.

The rest of this notebook paper is organized as follows.
The PicSOM system and the used visual and textual content
descriptors are briefly described in Section II. Our experiments
for the high-level feature extraction and fully automatic search
tasks are described in Sections III and IV, respectively. The
approach used in the video summarization task is briefly

introduced in Section V and conclusions are presented in
Section VI.

II. INDEXING VIDEO WITH PICSOM

The PicSOM system [2] is a general framework for research
on content-based indexing and retrieval of visual objects.
The system is based on using several complementary Self-
Organizing Maps (SOMs) [3], each trained with separate
feature data.

For video material, the index is based on a multimodal
hierarchy for each individual video shot, which is considered
as the main or parent object. The associated keyframes, the
audio track, and ASR/MT text are linked as children of the
parent object. Both the parent and children objects have one
or more associated feature indices, and the relevance ratings
and annotations are propagated within the object hierarchy.
For a more detailed description of the used basic setup in our
TRECVID evaluations, see [4], [5].

We extracted in total 15 video and 17 still image features
from the Sound and Vision material. The still images were



keyframes extracted from the video shots in the master shot
reference [6] using a heuristic algorithm. In this selection
video frames are awarded for closeness to the temporal center
of the shot, and penalized for distance from the calculated
average image and for having big changes as compared to
neighboring frames. The keyframe is selected as the frame
with the highest score, the idea being that it should be close
to the center, but at the same time be “typical” and not contain
rapid movement, which could introduce e.g. motion blurring.
No audio features were used in this year’s experiments. The
ASR/MT output was indexed separately using an external
text search engine. All these features are briefly described in
Sections II-A to II-C.

Separate 256×256-sized SOMs were trained for each of
the video and image features. In this year’s experiments, we
actually trained two SOM indices for each feature: one using
our original Tree-Structured SOM (TS-SOM) algorithm [2]
and another using a triangular neighborhood kernel in the
training of the TS-SOM.

A. Image features

For the keyframes, we extracted a large set of different
features. First, six standard MPEG-7 descriptors, i.e. Color
Layout, Color Structure, Dominant Color, Scalable Color,
Edge Histogram, and Region Shape, were extracted using the
MPEG-7 XM1 reference software. For comparison, we also in-
cluded our own implementations of four MPEG-7 descriptors,
namely Color Layout, Dominant Color, Scalable Color, and
Edge Histogram. All these descriptors were extracted globally
from every keyframe.

In addition to the MPEG-7 features, we also extracted
the following six non-standardized image features (see [5]
for details): Average Color, Color Moments, Texture Neigh-
borhood, Edge Histogram, Edge Co-occurrence, and Edge
Fourier. These were calculated for five spatial zones of each
image and the values concatenated to one image-wise vector.

Furthermore, we included a new image feature, Interest
Points, based on histograms of interest point features. The
interest points were detected using a combined Harris-Laplace
and Difference-of-Gaussian detector, and SIFT features [7]
were calculated for each interest point. Histograms of the
SIFT features were then formed according to codebook vectors
selected using the SOM as a clustering method. The size of
the used SOM was 40×50 units, thus making the size of the
codebook 2000 vectors.

Finally, we utilized a set of specific frame-level detectors
for different purposes. For face detection, we used the detector
included in Intel’s OpenCV Library2. The detector is based
on Haar-like features and a cascade of boosted tree classifiers.
The face candidates returned by the OpenCV detector were
pruned by using a simple skin color detector in the YCbCr
color space [8]. This face detector was utilized in all three
tasks. Additionally, we used a greyscale shot detector based

1http://www.lis.ei.tum.de/research/bv/topics/mmdb/e mpeg7.html
2http://www.intel.com/technology/computing/opencv/

on the Average Color feature in the search task, as well as a
“junk” shot detector (for color bars and empty frames) and a
motion detector in the rushes summarization task [9].

B. Video features

On the video shot level, we used the MPEG-7 Motion
Activity descriptor (MA) and temporal versions of both our
own implementations of the four MPEG-7 descriptors and
the six non-standard still image features described above. The
temporal versions of the still-image features were calculated
by averaging over the frames contained within five non-
overlapping temporal video slices in the shot. Each frame was
also divided into five spatial zones. This way we obtained
feature vectors that describe changes in the still-image features
over time in different spatial areas of the video.

C. Text features

Both the automatic speech recognition (ASR) output [10]
and the machine-translated (MT) English version of it were
separately indexed and queried using the Apache Lucene3

text search engine. The ASR output (in Dutch) was used
in the high-level feature extraction task. Each shot was in-
dexed separately, i.e. the ASR outputs were not spread within
the shots’ temporal neighborhoods. In the search task, only
the machine-translated English index was queried using the
provided English language topic descriptions. In this task,
the text search was a combination of shot-wise indices and
using a three-shot-radius neighborhood to temporally spread
the ASR/MT outputs. The Snowball stemmers4 were used for
both Dutch and English (Porter2), with the included stop word
lists.

III. HIGH-LEVEL FEATURE EXTRACTION

For the high-level feature extraction task this year, we incor-
porated a temporal and inter-concept co-occurrence analysis
step to our existing SOM-based method for concept modeling.
The basic method is based on modeling probability densities
of the concepts using kernel-based estimation of discrete
class densities over the SOM grids. See [4], [11] for more
details. All 36 high-level concepts are detected using the same
procedure based on the concept-wise ground-truth annotations
gathered by the organized collaborative annotation effort [12].

Table I gives an overview of the high-level feature extraction
runs. The columns refer to the inclusion of text features, the
size of the used kernels (common width or optimized for each
concept separately), and the two methods used for temporal
and inter-concept co-occurrence analysis.

The first run is the required baseline where only visual
features are used. Run 2 combines the visual features with
the external text search results in Dutch. The Apache Lucene
search engine was used for the text-based search, with the
concept-wise query terms consisting of the most common
terms in the ASR output of the the positive training examples
in the development set. In these runs, the radius of the

3http://lucene.apache.org/
4http://snowball.tartarus.org/



TABLE I
AN OVERVIEW OF THE RUNS IN THE HIGH-LEVEL FEATURE EXTRACTION

TASK. SEE TEXT FOR DETAILS.

text kernel size temporal mean
# run id feat. common variable train val InfAP
1 A_PicSOM_1_6 • 0.0621
2 A_PicSOM_2_5 • • 0.0550
3 A_PicSOM_3_3 • • 0.0526
4 A_PicSOM_4_4 • 0.0612
5 A_PicSOM_5_2 • • • 0.0747
6 A_PicSOM_6_1 • • • 0.0772

7 additional run • • 0.0792
8 additional run • • 0.0804

9 additional run oracle 0.0636
10 additional run oracle 0.0694
11 additional run • oracle 0.0926

triangular-shaped kernel in the class density estimation over
the SOM surfaces is always 8 units. This value is the result
of two-fold cross-validation on the development data.

For runs 3 and 4, the kernel size is optimized for each
concept separately, again with two-fold cross-validation on the
development set. This resulted in kernel radii varying from 5
to 30 units. Otherwise, the runs differ only on the inclusion
of the text features.

The runs 5 and 6 include a post-processing step based on the
temporal co-occurrence of the concepts. The used technique
is described in Section III-B and in more detail in [13]. Run
2 was selected as the starting point for the temporal post-
processing for the submitted runs 5 and 6. However, as the
text features turned out to degrade the results compared to
the visual baseline (run 1), the same experiments were later
reproduced with the baseline run 1 as the starting point. These
results are shown in Table I as additional runs 7 and 8.

In order to complement our submitted experiments with
varying kernel sizes, we also carried out additional experi-
ments in which the radius of the kernel was set to all values
between 5 and 30 map units. Based on these experiments, we
composed two additional runs, numbered 9 and 10, in which
the common and concept-wise kernel sizes, respectively, are
given the optimal or oracle values. For the common kernel
radius parameter (run 9), the oracle value was either 10 or 11
map units.

Finally, in run 11 we have the same post-processing based
on temporal and inter-concept co-occurrence as in runs 5–8,
but using optimal (oracle) selection of the post-processors.

A. Feature selection and weighting

As in our previous TRECVID experiments, the set of
features (and associated SOM indices) was selected for each
concept separately using a greedy feature selection scheme [4].
In these experiments, the pool of potential feature indices
was, however, doubled as both a standard and a triangular-
neighborhood SOM were trained for each feature. Both SOMs
were included separately in the pool, so it was possible that
both indices would be selected for the same concept.

The feature selection algorithm resulted in 9.4 feature
indices per concept on average. The most frequently selected

features were Interest Points, the MPEG-7 XM version of the
still-image Edge Histogram, and the temporal versions of Edge
Fourier and Texture Neighborhood.

The text search results were included as external features
into the feature fusion stage of the PicSOM system. However,
as the inherent feature weighting mechanism of the system is
not able to automatically weight externally provided features,
the corresponding concept-wise weights were optimized using
the development set. The same optimization was performed
also for the OpenCV face detection results, but this resulted in
non-zero weights only for concepts face and person, neither of
which were included in the set of concepts evaluated at NIST.

B. Temporal and inter-concept co-occurrence

For runs 5 and 6 the detection results of run 2 were post-
processed to take advantage of both temporal and inter-concept
co-occurrences. N-gram models of order 1 to 4 were used
as the temporal component. The inter-concept co-occurrences
were put to use by clustering the 36-dimensional concept
detection vectors into 16 clusters with the LBG-algorithm and
modeling each cluster separately. In addition to clustering the
detection vectors of single time instants, we also generated
clusterings based on average detection vectors in temporal
windows of various lengths.

We generated 15 separate post-processors applying the
outlined techniques in various combinations and with various
model parameters (including a do-nothing baseline). Each
post-processor was trained using six-fold cross-validated de-
tections of the development set. For the two runs we tried two
methods of selecting a post-processor for each concept. For run
5 we chose the post-processor with maximum performance in
the training set. For run 6 we performed a separate validation
experiment of the post-processors by training with half of the
development set and validating in the other half.

C. Results
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Fig. 1. Mean InfAP values for our runs in the high-level feature extraction
task; the submitted runs shown as black bars. The median of all submitted
runs in also shown.

Figure 1 illustrates the mean inferred average precision
(InfAP) [14] values of our runs in the high-level feature
extraction task. The highest mean InfAP score of our submitted



runs was 0.077 obtained with run 6. The median and maximum
over all 105 submissions were 0.046 and 0.132, respectively.

First of all, from the runs 1–4 it can be observed that the
ASR text features degrades the overall results, both when
using common and variable kernel sizes. This result is con-
trary to our results in last year’s high-level feature extraction
experiments [5], highlighting the significance of the difference
between the types of used video materials. Furthermore, the
concept-wise optimization of the kernel radius also degraded
the overall results, making the visual baseline (run 1) the
highest scoring run among the runs 1–4.

We analyzed the effect of the kernel radius parameter
further with two additional (non-submitted) runs. In run 9,
the common value for the kernel radius is set to its optimal
or oracle value of 10 units. The corresponding mean InfAP
value, however, shows only a modest improvement over the
visual baseline. In run 10, the concept-wise kernel radii are
set to their corresponding oracle values in the range of 5 to
30 map units. Here, it can be seen from the mean InfAP value
that this results in a notable improvement compared to both
runs 1 and 4. The two-fold cross-validation performed on the
development set was not, however, able to select these optimal
values, or even improve over the common kernel size shared
by all the concepts.

The temporal and inter-concept co-occurrence post-
processing shows rather consistent improvement in mean
InfAP. Runs 5 and 6 show 36% and 40% increase over their
starting point (run 2). These results were, however, burdened
by the performance degradation caused by the inclusion of
the text-based search results. Therefore, we reproduced the
analysis using the visual baseline (run 1) as the starting point.
These additional runs 7 and 8 show similar behavior, resulting
in increases of 27% and 29%, respectively, in mean InfAP.
Furthermore, in run 11 the result is shown if we select the
post-processors optimally for each concept. This produces an
increase of 48% over the visual baseline.

The concept-wise results are illustrated in Figure 2, which
shows the InfAP values of our submitted runs for all concepts.
The best one among our submitted runs was substantially over
the median with concepts weather (3), office (5), meeting (6),
waterscape/waterfront (17), animal (26), computer/tv screen
(27), car (30), boat/ship (33), and people marching (35). For
the concept meeting, our run 6 resulted in the highest InfAP
over all runs submitted in the TRECVID 2007 evaluations.

IV. AUTOMATIC SEARCH

For the search task, we submitted six automatic runs sum-
marized in Table II. All runs were trained only on com-
mon TRECVID development data, thus qualifying as type
A runs. The retrieval technique is similar to the one used
in our previous TRECVID submissions. The general idea
is to combine retrieval based on SOM indices trained with
visual features with external text-based search and semantic
concept models. The runs numbered 1 and 2 constitute the
required baseline runs using only text-based search and visual
features, respectively. Runs 3 and 4 combine the text and visual

TABLE II
AN OVERVIEW OF OUR SUBMITTED SEARCH TASK RUNS.

# run id text visual concepts PRF MAP
1 F_A_1_PicSOM_1_6 • 0.0122
2 F_A_1_PicSOM_2_5 • 0.0014
3 F_A_2_PicSOM_3_4 • • 0.0085
4 F_A_2_PicSOM_4_3 • • • 0.0115
5 F_A_2_PicSOM_5_2 • • • 0.0191
6 F_A_2_PicSOM_6_1 • • • • 0.0220

modalities, with pseudo relevance feedback (PRF) applied in
run 4. The semantic concept models are then introduced in
runs 5 and 6, again with PRF in the latter run.

A set of 8 visual (4 image and 4 video) features was
selected as a common feature set for all topics based on
their performance in the feature selection process of the high-
level feature extraction task (see Section III-A). For analyzing
the topic-wise text descriptions, the Stanford part-of-speech
tagger5 [15] was used. The nouns and verbs of each textual
description were used as the text search queries for the Apache
Lucene text search engine. The relative weight of the text-
based search results were increased for topics containing
proper nouns in the textual description. This applied only to
topic 219.

A. Semantic concept matching

The search topics were matched with suitable semantic con-
cepts to facilitate concept model based retrieval in runs 5 and
6. In these experiments, we limited the selection of available
concepts to the 36 high-level features detected in the high-level
feature extraction task and additional keyframe-based detectors
for faces and greyscale shots (see Section II-A). The semantic
concepts were modeled on the same 8 common features used
for content-based retrieval. The matching of semantic concepts
to queries was based on a lexical analysis of the topic-wise
textual descriptions.

B. Pseudo relevance feedback

This year we included an optional pseudo relevance feed-
back (PRF) stage to re-rank the retrieval results in the au-
tomatic search task. For each topic, one round of PRF was
carried out, with the 20 best-scoring shots marked as additional
positive examples. This processing step was applied in runs 4
and 6.

C. Results

The MAP scores for all our search runs are listed in Table II
and the topic-wise results are shown in Figure 3. The runs
1 and 2 are of the required baseline type, among which the
maximum and median over all submissions were 0.043 and
0.004, respectively. Of our baselines, the ASR/MT text search
run performed considerably better than the run using only
visual features.

All our runs used only the common TRECVID development
data, thus qualifying them as type A runs. Over all type A au-
tomatic search submissions, the maximum and median values

5http://nlp.stanford.edu/software/tagger.shtml
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Fig. 2. The concept-wise InfAP results of our submitted runs for each evaluated concept. The runs including the temporal co-occurrence analysis are shown
as black bars. The median and maximum values over all submissions are illustrated as horizontal lines.
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Fig. 3. The topic-wise AP results for our submitted automatic search runs, with runs 2, 4 and 6 drawn as black bars. The median and maximum values over
all submissions are illustrated as horizontal lines; not all maximums are visible in the figure.

were 0.087 and 0.014, respectively. Run 3 is a combination
of the text search and content-based retrieval. Due to the poor
performance of the latter modality, the resulting MAP does not
reach the text baseline. Next, the inclusion of the semantic
concept models in run 5 improves the results. From the
topic-wise results it can be observed that the concept models
help significantly with about one third of the topics. Small
improvements can also be observed by using pseudo relevance
feedback, both with and without the semantic concepts.

V. VIDEO SUMMARIZATION

We also participated in the BBC rushes summarization
task [16] using an approach consisting of initial shot boundary
detection followed by shot similarity assessment and pruning,
with both stages implemented using multiple SOMs. The
approach is described in more detail in [9]. First, we apply
our shot boundary detection algorithm [17], [5] to the rushes
videos. For each video, this provides us with lists of shots,
which are used in the following stages as basic units of
processing. We detect and remove unwanted “junk” shots
(color bar test screens, empty frames) from the videos, and
apply face detection and motion activity estimation. Next,
we compute the visual similarities between all pairs of shots

and remove overly similar shots. Each remaining shot is then
represented in the summary with a separately selected one-
second clip, with the audio track not included. The selected
clips are combined using temporal ordering and fade-outs and
fade-ins from black.

VI. CONCLUSIONS

This was our third year participating in the TRECVID
evaluations. The basic functionality of the system has been the
same in all experiments, and we have introduced new additions
to the system each year.

Extracting high-level features using the SOM-based ap-
proach is efficient and highly scalable to large ontologies due
to the modeling of the concept densities in low-dimensional
spaces using non-parametric kernel-based density estimation.
It shows relatively good performance, although not quite
reaching the level of computationally more complex discrimi-
native methods such as SVMs. The method is not particularly
sensitive to width or form of the kernel function. The common
size is a stable parameter, but it is possible to improve the
results using concept-wise values, at least in the optimal case.

The high-level feature extraction results can be further
improved with different techniques, such as using auxiliary



concepts (in last year’s experiments [5]) and analyzing tempo-
ral and inter-concept co-occurrences. This analysis technique
introduced here is still rather preliminary and undoubtedly
has room for improvement. Despite this it proved to be very
promising giving a significant increase in retrieval perfor-
mance.

Due to the change in the type of video material analyzed,
there were no useful annotations for the full LSCOM [18]
ontology. This is because we discovered in initial experiments
that by using the previous year’s ground-truth directly, the
resulting concept models were not satisfactory. As a result,
we did not employ any auxiliary concepts in the high-level
feature extraction task and mapped only the set of 36 high-
level features into the topics in the search task. Despite the
smaller set of concepts available, the semantic concept models
were again found to be useful in automatic search,

We also included a pseudo relevance feedback option to
the system this year. The results indicate that it generally
leads to small improvements in search performance. After the
submissions, we tested including pseudo relevance feedback to
the high-level feature extraction runs as well, with very similar
results.
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nen. PicSOM experiments in TRECVID 2005. In Proceed-
ings of the TRECVID 2005 Workshop, pages 262–270, Gaithers-
burg, MD, USA, November 2005. Available online at http://www-
nlpir.nist.gov/projects/tvpubs/tv.pubs.org.html.
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