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ABSTRACT

This paper describes the MSRA-USTC-SJTU experiments for
TRECVID 2007. We performed the experiments in high-level
feature extraction and automatic search tasks. For high-level
feature extraction, we investigated the benefit of unlabeled
data by semi-supervised learning, and the multi-layer (ML)
multi-instance (MI) relation embedded in video by MLMI
kernel, as well as the correlations between concepts by cor-
relative multi-label learning. For automatic search, we fuse
text, visual example, and concept-based models while using
temporal consistency and face information for re-ranking and
result refinement.

Index Terms— support vector machines, semi-supervised
learning, manifold ranking, multi-layer multi-instance ker-
nel, linear neighborhood propagation, temporally consistent
Gaussian random field, optimal multi-graph learning, correl-
ative multi-label annotation, video annotation, video search.

1. INTRODUCTION

This is the second time we participate in TRECVID. We took
part in two tasks and submitted 6 runs for high-level feature
extraction and 6 runs for automatic search task.

In high-level feature extraction, we focused on applying a
variety of new learning-based methods for video annotation.
The first category is semi-supervised learning by leveraging
both labeled and unlabeled data, including manifold rank-
ing (MR) [1], optimal multi-graph semi-supervised learning
(OMGSSL) [2], temporally consistent Gaussian random field
(TCGRF) [3], and linear neighborhood propagation (LNP)
[4]. The second category is using multi-layer multi-instance
kernel (MLMIK) [5] which considers multi-layer structure

∗ This work was performed when this author was visiting at Microsoft
Research Asia as a research intern.

and multi-instance relation embedded in video in a single for-
mulation. And the third category is correlative multi-label
learning (CML) [6] which simultaneously models the con-
cepts and correlations among concepts. Support Vector Ma-
chine (SVM) [7] was adopted as the baseline. As a result,
there are 7 classifiers employed in high-level extraction. For
each classifier, we trained three different models on three types
of low-level visual modalities (i.e., shot, frame, and region
level), as well as different data splitting manners. In total, we
trained 73 different models. Then, based on different fusion
strategies (i.e., early and late fusion; linear, max, and average
fusion) of these models, we had 15 methods in total. Finally,
we fused the models and methods according to different fu-
sion strategies and submitted 6 runs. The pipeline of high-
level feature extraction is shown in Figure 1, including data
preparation, modalities (i.e., low-level features), classifiers,
models, and methods. And the runs we submitted are

• A MSRA USTC SJTU HLF 1: linearly weighted fu-
sion of all the 15 methods and the 23 models.

• A MSRA USTC SJTU HLF 2: linearly weighted fu-
sion of all the 15 methods.

• A MSRA USTC SJTU HLF 3: linearly weighted fu-
sion of SVM related runs where the weights are ob-
tained based on 2007 fusion set (defined in Figure 1),
including (1) max fusion of SVM-LF and SVM-TVS-
LF, (2) max fusion of SVM-TV-EF-CV3, SVM -TVS-
EF-CV3, and SVM-TVS-LF-CV3, (3) MLMIK-EF, MLMIK-
EF-C+C-, and MLMIK-LF, and (4) CML-LF.

• A MSRA USTC SJTU HLF 4: linearly weighted fu-
sion of the top 5 methods for each concept based on the
evaluations on 2007 selection set (defined in Figure 1).

• A MSRA USTC SJTU HLF 5: linearly weighted fu-
sion of MLMIK-EF, MLMIK-EF-C+C-, and MLMIK-
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Fig. 1. The MSRA USTC SJTU TRECVID 2007 high-level feature extraction pipeline. CV3 - 3-fold cross validation, EF -
early fusion, LF - late fusion, 2007 - 2007 data set, 2005 - 2005 data set, T - training, V - validation, F - fusion, S - selection, C
- only tuning parameter C in SVM, C+ and C− – tuning both of two parameters for SVM.

Table 1. The performances of six runs for feature extraction
RUN ID MAP

A MSRA USTC SJTU HLF 1 0.0960
A MSRA USTC SJTU HLF 2 0.0926
A MSRA USTC SJTU HLF 3 0.0903
A MSRA USTC SJTU HLF 4 0.0909
A MSRA USTC SJTU HLF 5 0.0646
A MSRA USTC SJTU HLF 6 0.0707

LF where the weights are obtained based on 2007 se-
lection set.

• A MSRA USTC SJTU HLF 6: max fusion of SVM-
LF and SVM-TVS-LF.

The corresponding performances of high-level feature ex-

Table 2. The performances of six runs for automatic search
RUN ID MAP

A MSRA USTC SJTU SEARCH 1 0.0873
A MSRA USTC SJTU SEARCH 2 0.0639
A MSRA USTC SJTU SEARCH 3 0.0610
A MSRA USTC SJTU SEARCH 4 0.0659
A MSRA USTC SJTU SEARCH 5 0.0375
A MSRA USTC SJTU SEARCH 6 0.0291

traction are listed in Table 1, in which we found that A MSRA
USTC SJTU HLF 1 achieved the best MAP among the sub-

mitted 6 runs.
In automatic search, we focused on text and visual base-

line, query by example (QBE), fusion, reranking, and result
refinement methods. The pipeline of automatic search is shown
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Fig. 2. MSRA USTC SJTU automatic search pipeline.

in Figure 2. Finally, we submitted the following 6 runs:

• A MSRA USTC SJTU SEARCH 1: linearly weighted
fusion of SEARCH 4 and concept mapping search.

• A MSRA USTC SJTU SEARCH 2: average fusion
of SEARCH 4 and concept mapping search.

• A MSRA USTC SJTU SEARCH 3: average fusion
of SEARCH 1, SEARCH 4, SEARCH 5 and query by
example (QBE), as described below.

• A MSRA USTC SJTU SEARCH 4: linear fusion of
text-based search with reranking and result refinement
at shot and scene level.

• A MSRA USTC SJTU SEARCH 5: visual baseline
without using text information, i.e., average fusion of
concept mapping and concept vector based search.

• A MSRA USTC SJTU SEARCH 6: text baseline.

The corresponding performances of automatic search are
listed in Table 2, in which we found that A MSRA USTC
SJTU SEARCH 1 achieved the best MAP among the submit-
ted 6 runs.

2. HIGH-LEVEL FEATURE EXTRACTION

2.1. Modalities (Low-level features)

We extracted three types of low-level feature (referred to as
“modality” in this notepaper) for each shot or key-frame, in-
cluding shot, frame, and region levels. As a result, there are
42 dimensional shot-level feature, 1181 dimensional frame-
level feature, and 48 dimensional region-level feature in total.
Table 3 lists the detailed information of these modalities.

2.2. Classifiers

2.2.1. Support Vector Machine (SVM)

Implementation: SVM [7] was adopted as the baseline. Here
we adopt two fusion strategies, i.e., late fusion and early fu-
sion. In late fusion, SVM was trained in each of the seven
frame-level features described in Table 3 except for “co-occurrence
texture” and “face” modalities. Then we fused these seven
models by linear weights. In early fusion, all the nine frame-
level features are concatenated into an 1181-dimentional fea-
ture vector to train SVM models. As a result, we applied the
following five methods: (1) SVM-LF, (2) SVM-TVS-LF, (3)
SVM-TV-EF-CV3, (4) SVM-TVS-EF-CV3, and (5) SVM-
TVS-LF-CV3.

We separated both TRECVID 2005 and 2007 develop-
ment set into four partitions including “Training,” “Valida-
tion,” “Fusion,” and “Selection” set, respectively. The de-
tailed information of data splitting, models and methods is
described in Figure 3. We used RBF kernels in SVM, which
have two primary parameters: C (the cost parameter in soft-
margin SVMs) and γ (the width of the RBF function). The
effectiveness of SVM classifiers is highly subject to the se-
lection of model parameters. To address the unbalance prob-
lem, we set different cost parameters for positive and negative
samples, respectively. Therefore, we considered three model
parameters: C+ (the cost parameter for the positive exam-
ples), C− (the cost parameter for the negative examples), and
γ. In our method, we assign the ratio C+

C− = N+

N− , where N+

and N− are the numbers of positive and negative training ex-
amples, respectively. Based on the “Validation” set shown in
Figure 1, we selected the best choice of these parameters. For
more details we used SVM for feature extraction, please refer
to [9].

2.2.2. Correlative Multi-Label Video Annotation (CML)

Formulation: We have proposed a kernel-based multi-label
classification algorithm for video annotation [6]. This algo-
rithm simultaneously classifies concepts and models correla-
tion between them in a single step. Let x = (x1, x2, · · · , xD)T

∈ X denote the input pattern representing feature vectors
extracted from video clips; Let y ∈ Y = {+1,−1}K de-
note the K dimensional concept label vector of an example,
where each entry yi ∈ {+1,−1} of y indicates the mem-
bership of this example in the ith concept. X and Y repre-
sent the input feature space and label space of the data set,
respectively. CML aims at learning a linear discriminative
function F (x, y; w) = 〈w, θ(x, y)〉, where θ(x, y) is a vector
function mapping from X × Y to a new feature vector and
w is the linear combination weight vector. With such a dis-
criminative function, for an input pattern x, the label vector
y∗ can be predicted by maximizing over the argument y as
y∗ = maxy∈Y F (x, y; w). The constructed feature θ(x, y) is a
high-dimensional feature vector, whose elements can be par-



Table 3. Low-level feature (modalities)
Level Feature Dim Description
Shot Global motion 42 Extract frames per one second for each shot, for each

frame, extract motion features [5]
Frame Auto-correlogram 144 36-bincolor histogram based on 4 different distance k, i.e., k = 1,3,5,7.

ColorMoment3-by-3 81 Based on 3 by 3 division of images in Lab space
ColorMoment5-by-5 225 Based on 5 by 5 division of images in Lab space
ColorMoment7-by-7 441 Based on 7 by 7 division of images in Lab space
Co-occurrence Texture 16 The same feature as in [1]
Edge Distribution Histogram 75 The same feature as in [1]
Face 7 Face number, face area ratio, the position of the largest face
HSV Color Histogram 64 The same feature as in [1]
Wavelet PWTTWT Texture 128 The same feature as in [1]

Region Color correlogram, color 48 Based on image segmentation by JSEG [8]
moment, shape descriptor

titioned into two types as follows.

Type I The elements for individual concept modeling:

θl
d,p(x, y) = xd · δ [[yp = l]] ,

l ∈ {+1,−1}, 1 ≤ d ≤ D, 1 ≤ p ≤ K
(1)

where δ [[yp = l]] is an indicator; D and K are the di-
mensions of low level feature vector space X and the
number of the concepts respectively. These entries of
θ(x, y) serve to model the connection between the low
level feature x and the labels yk(1 ≤ k ≤ K) of the
concepts.

Type II The elements for concept correlations:

θm,n
p,q (x, y) = δ [[yp = m]] · δ [[yq = n]]

m,n ∈ {+1,−1}, 1 ≤ p < q ≤ K
(2)

where the superscripts m and n are the binary labels
(positive and negative label), and subscripts p and q are
the concept indices. These elements serve to capture all
the possible pairs of concepts and labels.

We concatenate the above two types of elements to form
the feature vector θ(x, y). The kernel function (i.e. the dot
product) between the two vectors, θ(x, y) and θ(x̃, ỹ), can be
represented in a very compact form as

〈θ(x, y), θ(x̃, ỹ)〉 = 〈x, x̃〉∑1≤k≤K δ [[yk = ỹk]]
+

∑
1≤p<q≤K δ [[yp = ỹp]] δ [[yq = ỹq]]

(3)

Using the feature vector we constructed above and its ker-
nel representation in Eq. (3), the learning procedure trains
a classification model by solving an optimization problem.
Please refer to [6] for more details.

Implementation: We used all the key-frames in “Train-
ing” subset as training samples and validated the RBF kernel
radium σ and trading-off parameter λ based on the “Valida-
tion” subset. For more information we used CML, please re-
fer to Figure 3.

shot-layer

frame-layer

region-layer

Fig. 4. MLMI setting for video annotation. A video shot
is represented as three layers (i.e., shot, frame, and region
layers), where each layer have different granularities of visual
descriptors. The ”bag-instance” correspondence is embedded
in the three layers.

2.2.3. Multi-Layer Multi-Instance Kernel (MLMIK)

Formulation: In MLMIK, we consider video is essentially
a structured media with multi-layer representation. For ex-
ample, a video can be represented by a hierarchical structure
including, from large to small, shot, key-frame, and region.
Moreover, it fits the typical Multi-Instance setting in which
the “bag-instance” correspondence is embedded among con-
tiguous layers. We call such multi-layer structure and the
“bag-instance” relation embedded in the structure as Multi-
Layer Multi-Instance (MLMI) setting [5]. We formulate con-
cept detection as an MLMI learning problem, in which a rooted
tree with MLMI nature embedded is devised to represent a
video shot. Furthermore, by fusing the information from dif-
ferent layers, we construct a novel MLMI Kernel (MLMIK) to
measure the similarities between the instances in the same and
different layers. In MLMI setting, each sample can be viewed
as an L-layer rooted tree. Each node in the tree denotes a pat-
tern of certain granularity. As shown in Figure 4, it is a three
layer tree consisting of, from root to leaf, shot, key-frame, and
region, where the granularity of descriptors of each layer in-



creases with more detailed information of the samples. Given
an L-layer rooted tree T, denote N = {ni}|N |i=1 be the node
set in T, |N | is the number of nodes. Let S be the sub-
tree set, we denote si be the sub-trees whose parent is ni,
si = {s|s ∈ S ∧ parent(s) = ni} ∈ pow(S), pow(S) refers
to the power set of S; besides, we have the bijection map-
ping ni → si. For each node ni ∈ N , define “node pat-
tern” of ni to be all the information associated with ni, which
is composed of three elements: layer info `i, descriptor fi

and sub-trees rooted at ni (or si), denoted in the triplet form
n̂i =< `i, fi, si >. Hence, T is expanded to the node pattern
set N̂ = {n̂i}|N |i=1. We construct the kernel of trees by the
expanded node pattern set according to convolution kernel as
follows,

kMLMI(T, T ′) =
∑

n̂∈N̂,n̂′∈N̂ ′

kN̂ (n̂, n̂′) (4)

in which kN̂ is a kernel on the triplet space, since n̂ is com-
posed of three elements, we construct the kernel by tensor
product operation (K1 ⊗ K2((x, u), (y, v)) = K1(x, y) ×
K2(u, v)).

kN̂ (n̂, n̂′) = kδ(`n, `′n)× kf (fn, f ′n)× kst(sn, s′n) (5)

where kδ(x, y) = δx,y is the matching kernel, kf is a kernel
on the feature space. kst is kernel of sub-tree sets,

kst(sn, s′n) =
∑

c∈sn,c′∈s′n

kN̂ (ĉ, ĉ′) (6)

For leaf nodes, kst set to be 1.
Given l training samples and the labels (x1, y1), . . . , (xl,

yl) ∈ X × Y, Y = {−1, 1}, once the kernel function is de-
termined, learning from structured data is then transformed
to the standard SVM problem where the kernel function is
replaced by MLMIK.

Implementation: We used three layer features, includ-
ing 42-dimentional shot-level feature, nine frame-level fea-
tures, and 48-dimensional region-level feature. For more de-
tails, please refer to [5]. We applied the following methods
in MLMIK: (1) MLMIK-EF, (2) MLMIK-EF-C+C-, and (3)
MLMIK-LF. We chose RBF kernel for kf . The optimal pa-
rameters σ and C are determined by grid search based on the
“Validation” subset. In MLMIK-EF-C+C-, we set C+

C− = N+

N− ,
which is similar to the settings in SVM.

2.2.4. Manifold Ranking (MR)

Formulation: Manifold Ranking is a graph-based semi-supervised
learning method. The original description of this algorithm
can be found in [10]. We consider a binary classification prob-
lem. Denote by W an affinity matrix with Wij indicates the
similarity between the i-th and j-th sample. Given two sam-
ples xi and xj , their similarity is often estimated based on a

distance measure d(xi, xj) and a positive radius parameter σ

Wij =





exp
(
−d(xi, xj)

σ

)
if i 6= j

0 else
(7)

Here we choose L1 distance, i.e., d(xi, xj) = ||xi−xj ||. Then
the regularization framework is formulated as follows

f∗ = arg minf

(X
i,j

Wij

�����
fi√
Dii

− fjp
Djj

�����

2

+ µ
X

i

|fi − Yi|2
)

(8)
where Dii =

∑
j Wij , and fi can be regarded as relevance

score. We can classify xi according to the sign of fi (positive
if fi > 0 and negative otherwise). A noteworthy issue here
it how to set Yi. For general classification task, Yi is set to
1 if xi is labeled as positive, −1 if xi is labeled as negative,
and 0 if xi is unlabeled. Here we decide Yi for positive sam-
ples by validation. Usually, positive samples are expected to
contribute more in video concept learning. In fact this set-
ting is equivalent to duplicating (1/frequency − 1) copies
for each positive training sample, so that they are balanced
with negative ones, where frequency is the percentage of
positive samples in training set. But here we further tune the
value around (1/frequency − 1). It modulates the effect of
positive samples and can yield better results.

Implementation: Let L = D−1/2(D−W)D−1/2, which
is usually named as normalized graph Laplacian. Thus, f∗ in
Eq. (8) can be solved in an iterative way as follows

1: Initialize f (t) where t = 0.
2: Update f by

f (t+1) =
1

1 + µ
(I− L)f (t) +

µ

1 + µ
Y

3: Let t = t + 1, and then jump to step 2 until convergence.

We make matrices W sparse by only keeping N (in our
experiment, N=80) largest values in each row. This is a fre-
quently used strategy in graph-based learning methods, which
significantly reduces the computational costs while retaining
comparable performance. We constructed the following ex-
periments for MR: (1) MR-LF, and (2) MR-0705-LF.

2.2.5. Optimizing Multi-Graph Learning (OMGSSL)

Formulation: OMGSSL is a semi-supervised method to learn
from multiple graphs [2]. Suppose we have G graphs W1,W2,
· · · ,WG, the regularization framework is formulated as

Q(f, α)=
G∑

g=1

∑

i,j

αr
g


Wg,ij

∣∣∣∣∣
fi√
Dg,ii

− fj√
Dg,jj

∣∣∣∣∣

2

+µ
∑

i

|fi−Yi|2





[f, α] = arg minf,αQ(f, α), s.t.

GX
g=1

αg = 1 (9)

Note that we have proposed to adopt multiple distance metrics
in [2]. However, in TRECVID 2007 experiments, we have
only used L1 for simplicity. We generate M graphs from M
modalities and generate a graph to indicate temporal consis-
tency, i.e., G = M + 1.

Implementation: Eq. (9) can be solved in an EM-style
iterative way. But in [2], we have mentioned that when l is
not extremely small, we can derive an approximate solution
which can reduce computational costs. Specifically, we first
compute αg [2]. Then we compute f

f =




I +
1∑G

g=1 αr
gµg

G∑
g=1

αr
gLg

G∑
g=1

αr
g




−1

Y (10)

Analogous to that described in manifold-ranking, Eq. (10)
can be solved in an iterative way as follows

1: Initialize f (t) where t = 0.
2: Update f by

f (t+1) =
1

1 +
PG

g=1 αr
gµg

(I−

GX
g=1

αr
gLg

GX
g=1

αr
g

)f (t) +
µ

1 + µ
Y

3: Let t = t + 1, and then jump to step 2 until convergence.

Similar to the experiments described in section 2.2.4, we
also constructed two experiments including OMGSSL-LF and
OMGSSL-0705-LF. In OMGSSL-0705-LF, we utilized both
the samples in TRECVID 2005 devel set and those in TRECVID
2007 “Training” subset, while we only used the TRECVID
2007 “Training” subset in OMGSSL-LF. There are four pa-
rameters should be tuned in this algorithm, including σg , µg ,
γ, and A. The optimal parameter configuration was selected
based on “Validation” subset.

2.2.6. Temporally Consistent Gaussian Random Field (TC-
GRF)

Formulation: We adapted the temporal consistency assump-
tion into graph-based semi-supervised learning and proposed
a novel method called temporally consistent Gaussian random
field (TCGRF) for video annotation [3]. Let X = {x1, x2,
. . . , xn} be a set of n samples. The first l points are labeled
as y = [y1, y2, . . . , yl]T with yi ∈ {0, 1} (1 ≤ i ≤ l) and the

remaining points xu (l + 1 ≤ u ≤ n) are unlabeled. Con-
sider a connected undirected graph G = (V, E) with node set
V = L

⋃
U corresponding to the n data points, where the

node set L = 1, . . . , l contains labeled points and node set
U = l + 1, . . . , l + u are unlabeled ones. The edges E are
weighted by the n × n affinity matrix W with entry wij =
exp{−‖xi−xj‖2

2σ2 } when j 6= i and wii = 0. Denote the pre-
dicted labels of X with vector f = [f1, f2, . . . , fl, fl+1, . . . , fn]T

= [fTL, fTU ]T . We believe that temporal consistency provides
valuable contextual clues to video semantic annotation. From
the intuition that the label of one shot may be similar to the
adjacent ones, we define a measurement of the probability
that two samples have the same label in temporal order index
i and j hij = exp{− (i−j)2

2σ2
t
} where σt is a scale parameter

over the temporal order. Then the following energy function
can be defined

R(f) =
∑

1≤i,j≤n

hij(fi − fj)2.

So, the low energy corresponds to a slowly varying function
over the temporal order. Minimizing R(f) subject to fL = y
results in fi = 1

d
′
i

∑n
j=1 hijfj , i ∈ U and d

′
i =

∑n
j=1 hij .

Combine temporal order adjacency and feature space similar-
ity, we have

f = ((1− α)D−1W + αD′−1H)f = P f (11)

subject to fL = y, where P = (1−α)D−1W +αD′−1H ,D =
diag(di), D′ = diag(d

′
i). Split the matrix P after the l-th row

and l-th column, we will obtain the solution in matrix form as
follows

f∗U = (I − PUU )−1PULfL, (12)

From Eq. (12), each sample will be assigned a real-value
score indicating the degree belonging to a specific concept.

Implementation: We give the implementation of TCGRF
as follows

1: Form affinity matrix W and H over feature space and temporal
order respectively.

2: Construct matrix P = (1− α)D−1W + αD′−1H in which D
is a diagonal matrix with its (i, i)-element equals to the sum of
the i-th row of W , and D′ is a diagonal matrix with its (i, i)-
element equals to the sum of the i-th row of H .

3: Split the matrix P .
4: Predict the real-value labels for unlabeled samples by f∗U = (I−

PUU )−1PULfL.

We conducted experiments on TRECVID 2007 set. We
used “Training” subset as the training data and learned seven
models, including “TCGRF-CM33,” “TCGRF-CM55,” “TCGRF-
CM77,” “TCGRF-Auto,” “TCGRF-HSV,” “TCGRF-EDH,” and
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Fig. 5. The AP performances of MSRA USTC SJTU HLF
six runs.

“TCGRF-Wave.” Based on the “validation” partition, we se-
lected the parameters σt and α. The model fusion was per-
formed over the “Fusion” subset.

2.2.7. Label Propagation through Linear Neighborhoods (LNP)

Formulation: We applied Linear Neighborhood Propagation
(LNP) which propagates the labels from the labeled points to
the whole dataset using the linear neighborhoods with suf-
ficient smoothness. The original description of the algorithm
can be found in [4]. We use X = {x1, x2, . . . , xl, xl+1, . . . , xn}
to represent a set of n data objects in Rd, and L = {+1,−1}
represent the label set. The first l(1 ≤ i ≤ l) points are
labeled and the remaining points xu(l + 1 ≤ u ≤ n) are un-
labeled. The goal of LNP is to predict the labels of xu, which
can be achieved by two steps.

Step1: Construct the graph G = (V, E) with node set V
corresponding to the n data points. E is the edge set associ-
ated with each edge eij representing the relationship between
data xi and xj . The edges E are weighted by the n× n affin-
ity matrix W . Here we obtain the reconstruction weight of
each data object through the following n standard quadratic
programming problems.

minwij

∑
j,K:xj ,xk∈N(xi)

wijG
i
jkwjk

s.t.
∑

j wij = 1, wij ≥ 0
(13)

After all the reconstruction weights are computed, we will
construct a sparse matrix W by (W )ij = wij .

Step 2: Propagate the labels of the labeled data to the re-
maining unlabeled data xu(l + 1 ≤ u ≤ n) using the graph
constructed by the first step. We will use an iterative proce-
dure to achieve this goal.

Let F denote the set of classifying functions defined on
X , ∀f ∈ F can assign a real value fi to every point xi. The
label of the unlabeled data point xu is determined by the sign
of fu = f(xu).

Implementation: We conducted experiments on TRECVID
2007 set. We used “Training,” “Validation,” and “Fusion”
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Fig. 6. Overview of all high-level feature extraction
runs submitted to TRECVID 2007, ranked according to
MAP. The black bars correspond to the performances of
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subset as the training data and learned seven models, includ-
ing “LNP-TVF-CM33,” “LNP-TVF-CM55,” “LNP-TVF-CM77,”
“LNP-TVF-Auto,” “LNP-TVF-HSV,” “LNP-TVF-EDH,” and
“LNP-TVF-Wave.” Based on the “Selection” partition, we
performed the model fusion. It is worth notice that there is
no parameter need to be tuned in this algorithm. Please refer
to Figure 3 for more details.

2.3. Experimental Results

Figure 5 shows the AP performances of MSRA USTC SJTU
HLF six runs submitted to TRECVID 2007 for each con-
cept. Figure 6 shows the overview of all high-level feature
extraction runs submitted to TRECVID 2007, ranked accord-
ing to MAP. The black bars correspond to the performances
of MSRA USTC SJTU HLF.

3. AUTOMATIC SEARCH

Our video search system consists of several main compo-
nents, including query pre-processing and query analysis, uni-
modal search, multimodal fusion, re-ranking, and result re-
finement. The framework of the search system is shown as
Figure 2 . By analyzing and pre-processing the query, the
multimodal query (i.e., text, key-frames and shot) are input to
individual search models, such as text-based, visual example-
based and concept-based model. Then a fusion and re-ranking
model is applied to aggregate the search results. Finally, the
search results are refined based on face information.

Our text-based search included search at shot scene level.
For the required text baseline, we only used the common ASR/MT
at shot level without any re-ranking method. We got the MAP
of 0.0291 (SEARCH 6). After using re-ranking and result re-
finement to be discussed in the latter sections, we achieved
the MAP of 0.0409. When we fuse the text-based search
at both the scene and shot levels with re-ranking and result



refinement, the MAP reached 0.0659 (SEARCH 4), nearly
+126.5% improvement over text baseline.

The use of pre-trained concept detectors has been shown
to be a powerful tool in video search systems. We imple-
mented two methods to exploit our 36 concept detectors in
high-level feature extraction, including concept mapping and
concept vector. The main issue with concept mapping is dis-
covering relevant concepts and determining the weights of
each concept detector for fusion. The fusion of the two concept-
based methods got the MAP of 0.0375, i.e., without using any
textual information (SEARCH 5).

Another important component of our search system is mul-
timodal fusion, re-ranking and result refinement. We pro-
posed a re-ranking method by analyzing the features of the
whole video and selecting the seeds from the initial rank list.
When we only applied re-ranking and result refinement to
text baseline (SEARCH 6), we got the improvement of 40.5%
(i.e., MAP=0.0409). We exploited linear fusion by analyzing
the query text, and then got the best runs with MAP of 0.0873
(SEARCH 1).

3.1. Text-based search

3.1.1. Query pre-processing

The query pre-processing includes query expansion, stem-
ming, stop words removal, N-gram query segmentation, and
part-of-speech tagging.

Query expansion: We implemented query expansion pro-
posed in [11] which can suggest related terms to a given key-
word including etymons, synonyms, acronyms, related se-
mantic, etc. Specifically, we first extracted all the keywords
in each query using the method developed in [12], and then
chose all the synonyms and content-based suggestion of each
keyword to the original query for text-based search modal.

Stemming and stop words removal: After query expan-
sion, all the queries and ASR are stemmed using Porter’s al-
gorithm [13] and stop words are removed.

N-gram query segmentation: The query strings are seg-
mented into term sequences based on N-gram method [14] be-
fore being input to the search engine. Please refer to [12] for
more details. Given a query like “Topic 0202: Find shots of a
person talking on a telephone,” the keywords after stemming
are “person,” “talk,” “telephone,” this particular example has
three levels of N-gram, i.e., N is from 1 to 3. Therefore, seven
query segments will be generalized as: (1) unigram: person,
talk, telephone; (2) bigram: person talk, person telephone,
talk telephone; (3) trigram: person talk telephone. These seg-
ments were input to the search engine as different forms of
the query, and the relevance scores of video shots retrieved
by different query segments will be aggregated with differ-
ent weights which can be set empirically. The higher gram a
query segment has, the higher weight should be assigned.

Part-of-speech tagging (POS): We perform POS on the
query with Tree-tagger [15]. POS represents the syntactic

property of a term, e.g., noun, verb, adjective, and so on. By
labeling the query string with POS tags, we can extract the
terms with verb tags which are closely related to event for
query class.

3.1.2. Scene boundary information

We applied scene boundary detection algorithm over the search
set [16]. The scene boundary information was used in the
ASR expansion, i.e., the ASR of shots are expanded to the
shots in the same scene. Moreover, the ASR of the last shot
in the previous scene and the first shot in the current scene
should be overlapped.

3.2. Visual example-based search

Example video shot and key-frames are used in a query-by-
example (QBE) method. We extracted low-level visual fea-
tures used in high-level feature extraction task to form the
features vector, and ranked the test key-frames according to
the Euclidean distance from the query images. This process
was first performed at sub-shot level and then aggregated at
shot level by min operation across all sub-shots.

3.3. Concept-based search

The concept-based search consists of concept mapping and
concept vector methods.

Concept mapping: Concept mapping used the results
from 36 concept detectors and textual query analysis. There
are two basic methods. One used WordNet to compute the
lexical similarity between the query text and the textual de-
scription for each concept detector. The other possible solu-
tion is based on a manually-defined mapping directly, includ-
ing identifying which concepts are relevant to the query and
the extent. For example, given “Topic 0211: Find shots with
sheep or goats,” we triggered the “animal” detector with high
weight, trigger the “outdoor” and “vegetation” detectors with
low weights, as well as not triggered the “office”, “prisoner”,
“computer TV-screen” detectors. Once the most relevant con-
cept detectors and weights are determined, we linearly fused
the detection scores of the mapped concepts and ranked the
testing shots.

Concept vector: We first applied concept detection to
the query examples and each key-frame in the test set, and
generated feature vectors consisting of the score of each con-
cept detectors, that is, the feature vector is a 36-dimensional
vector. The succeeding processes are similar to QBE.

3.4. Fusion, re-ranking, and result refinement

3.4.1. Fusion

The fusion process is the most useful component in our search
system, consisting of average and linear fusion. In 2007 search



task, we set the weight either 0 or 1. The two basic linear fu-
sion methods are described as follows

Original ASR (OriASR) and ASR using scene bound-
ary information (SbASR): Generally, the scenes related to
event (usually the query contains verbs) have long duration.
Therefore, if verbs appeared in the query, we used the score
by scene boundary information as follows

Score
′
= ScoreOriASR × 0 + ScoreSbASR × 1 (14)

Otherwise,

Score
′
= ScoreOriASR × 1 + ScoreSbASR × 0 (15)

For example, “Topic 0198: Find shots of a door being opened”
and “Topic 0200: Find shots of hands at a keyboard typing or
using a mouse” have verbs.

Text-based search (Text) and concept-based search (Con-
cept): If 33 concept (36 concepts except for “people,” “face,”
and “outdoor”) appeared in the query sentences, the final score
will be decided as follows.

Score
′
= ScoreText × 0 + ScoreConcept × 1 (16)

Otherwise,

Score
′
= ScoreText × 1 + ScoreConcept × 0 (17)

For example, “Topic 0207: Find shots of waterfront (Water-
scape, Waterfront) with water (Waterscape, Waterfront) and
buildings (Building)” and “Topic 0211: Find shots with sheep
(Animal) or goats (Animal).”

3.4.2. Re-ranking

We give the steps of re-ranking as follows.

Step1: Given an initial rank list of shots, which can be ob-
tained by the text-based, QBE or other search meth-
ods, find the corresponding videos (which contain these
shots) with high confidence. The confidence is com-
puted as follows based on several kinds of features:

• Term frequency (TF ): The frequency of the query
keywords appear in the ASR of a video. The higher
the value is, the higher the confidence of this video
is.

• Term number (TN ): The number of words in the
query which appear in the ASR of a video, which
is an important parameter for determining the con-
fidence of a video.

• Query length (QL): The number of words in the
query. If the query have more keywords, it is more
likely to have ambiguous words.

Based on the analysis above, we compute the confi-
dence (Conf ) based on the three features as following

Conf = TF × TN2

QL
(18)

Step2: Select the shots belonging to the videos with high
confidences in the initial rank list as seed shots.

Step3: Take the seed shots as query examples, and find the
visually similar shots in the videos containing these seed
shots. Each seed shot brings a new rank list of similar
shots. We add the top shots by thresholding the con-
fidence (Conf > 30.0) in this new list into the initial
rank list. The ranking scores for these shots are com-
puted as follows.

Score
′
= Score +

Scoreseed

Distseed
× w (19)

where Score
′

and Score are the new score and old
score, respectively. If the new shots do not exist in the
initial rank list, Score = 0. Scoreseed is the score of
the selected seeds, Distseed is the distance between the
shot and seed, and w can be determined based on dif-
ferent queries and different seeds. In our experiment,
we fixed w as 1.0. Intuitively, we can observe that if
the new shots already exist in the initial rank list, this
procedure will increase their ranking scores.

Step4: When all the seed shots are processed, sort the up-
dated scores and get the final rank list.

3.4.3. Result refinement

The detection of face provides information of person-related
shots. The queries are classified into the following categories:

• Term “Normal face”: queries containing “people”, “per-
son” or “hands.” For example, “Topic 0197: Find shots
of one or more people walking up stairs,” and “Topic
0202: Find shots of a person talking on a telephone.”
Usually, these queries belong to the person and event
related shots. Intuitively, there are faces but no big
faces appearing in the shots. The error results in the
initial rank list may be introduced by ASR. We elimi-
nate the shots which have big face or no face, and refine
search results with the face detector in high-level fea-
ture extraction.

• Term “Big face”: queries containing “interview.” For
example, “Topic 0213: Find shots of a woman talking
toward the camera in an interview - no other people vis-
ible.” For this category, we only remain the shots con-
taining big faces.

• “Others”: the complement to the above two.
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3.5. Experiments and Results

We submitted 6 automatic type A runs for search task. Fig-
ure 7 shows the performances of six submitted runs for au-
tomatic search. Our two baseline run had our lowest MAP
of 0.0291 and 0.0375, ranked in the top 19 and 12 among all
the type A automatic runs as shown in Figure 6, respectively.
When we introduced the scene boundary information in the
text-based search, added re-ranking and result refinement, the
MAP score was significantly improved to 0.0659 and ranked
in the top 2. The best run is the fusion of text-based and con-
cept mapping methods with the MAP of 0.0873, ranked as the
No. 1 among all the runs.

4. CONCLUSIONS

We participated in high-level feature extraction and automatic
search tasks in TRECVID 2007. In this paper, we have pre-
sented preliminary results and methods for these two tasks.
We observed that by fusing MLMIK and CML with SVM,
the performances of high-level feature extraction are signifi-
cantly improved, and using scene information, reranking and
result refinement can also improve the performance of auto-
matic search.
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Method 
ID 

Method 
Name 

Classifier 
Training 

Data 
Fusion 

(Early or Late) 
Model ID 

Model 
Name 

Modality 
(Low-level feature) 

Method 01 SVM-LF SVM 

2007 devel set (T); 
and 7 concepts also 
use the additional 
2005 positive 
samples. 

Late Fusion 
(Linear weighted 
fusion of 7 
models) 

Model 01-1 SVM-CM33 Color Moment 3-by-3 

Model 01-2 SVM-CM55 Color Moment 5-by-5 

Model 01-3 SVM-CM77 Color Moment 7-by-7 

Model 01-4 SVM-Auto Auto-correlogram 

Model 01-5 SVM-HSV HSV Color Histogram 

Model 01-6 SVM-EDH Edge Distribution Histogram 

Model 01-7 SVM-Wave Wavelet PWT-TWT Texture 

Method 02 
SVM-TVS-

LF 
SVM 

90% of 2007 devel 
set (T+V+S); and 7 
concepts used the 
additional 2005 
positive samples 

Late Fusion 
(Linear weighted 
fusion of 7 
models) 

Model 02-1 SVM-TVS-CM33 Color Moment 3-by-3 

Model 02-2 SVM-TVS -CM55 Color Moment 5-by-5 

Model 02-3 SVM-TVS -CM77 Color Moment 7-by-7 

Model 02-4 SVM-TVS-Auto Auto-correlogram 

Model 02-5 SVM-TVS-HSV HSV Color Histogram 

Model 02-6 SVM-TVS-EDH Edge Distribution Histogram 

Model 02-7 SVM-TVS-Wave Wavelet PWT-TWT Texture 

Method 03 
SVM-TV-
EF-CV3 

SVM 
80% of 2007 devel 
set (T+V); 3 fold 
Cross Validation 

Early Fusion; 9 
frame-level 
features, 1181-D 

Model 03-1 
 
SVM-TV-EF-CV3 

Concatenated feature, 
including 9 frame-level 
features in Table 2. 

Method 04 
SVM-TVS-

EF-CV3 
SVM 

90% of 2007 devel 
set (T+V+S);  
3 fold Cross 
Validation 

Early Fusion; 9 
frame-level 
features 

Model 04-1 SVM-TVS-EF-CV3 
 
ditto 

Method 05 
SVM-TVS -

LF-CV3 
SVM 

90% of 2007 devel 
set (T+V+S);  
3 fold Cross 
Validation 

Late Fusion 
(Linear weighted 
fusion of three 
models) 

Model 05-1 SVM-TVS-CM55-CV3 
Color Moment 5-by-5 

Model 05-2 SVM-TVS-Auto-CV3 
Auto-correlogram 

Model 05-3 SVM-TV S-Wave-CV3 
Wavelet PWT-TWT Texture 

Method 06 MLMIK-EF 

Multi-layer 
Multi-instance 
Kernel 
(MLMIK) 

70% of 2007 devel 
set (T) 

Early Fusion; 
shot-level feature, 
frame-level 
feature, and 
region-level 
feature 

Model 06-1 MLMIK-EF 

Shot-level feature,  
Frame-level feature, and  
Region-level feature 

Method 07 
MLMIK-EF-

C+C- 

Multi-layer 
Multi-instance 
Kernel 
(MLMIK) 

70% of 2007 devel 
set (T); tune cost 
parameter for 
positive sample 
(C+) and negative 
sample (C-) 

Early Fusion; 
shot-level feature, 
frame-level 
feature, and 
region-level 
feature 

Model 07-1 MLMIK-EF-C+C- 

 
Shot-level feature, frame-level 
feature, and region-level 
feature 

Method 08 MLMIK-LF 

Multi-layer 
Multi-instance 
Kernel 
(MLMIK) 

70% of 2007 devel 
set (T) 

Late Fusion 
(Linear weighted 
fusion of three 
models); shot-
level feature, 
frame-level 
feature, and 
region-level 
feature 

Model 08-1 MLMIK-CM55 
Shot-level feature, Frame-level 
feature: Color Moment 5-by-5, 
and Region-level feature 

Model 08-2 MLMIK-Auto 
Shot-level feature; Frame-level 
feature: Auto-correlogram; 
Region-level feature 

Model 08-3 MLMIK-Wave 
Shot-level feature; Frame-level 
feature: Wavelet PWT&TWT 
Texture; Region-level feature 

Method 09 CML-LF 

Correlative 
Multi-Label 
Annotation 
(CML) 

70% of 2007 devel 
set (T) 

Late Fusion 
(Linear weighted 
fusion of three 
models) 

Model 09-1 CML-CM55 Color Moment 5-by-5 

Model 09-2 CML-Auto Auto-correlogram 

Model 09-3 CML -Wave Wavelet PWT-TWT Texture 

Method 10 MR-0705-LF 
Manifold 
Ranking (MR) 

70% of 2007 devel 
set (T); and most 
of the 36 concepts 
also use 2005 
development set 

 
Late Fusion 
(Linear weighted 
fusion of eight 
models) 

Model 10-1 MR-0705-CM33 Color Moment 3-by-3 

Model 10-2 MR-0705-CM55 Color Moment 5-by-5 

Model 10-3 MR-0705-CM77 Color Moment 7-by-7 

Model 10-4 MR-0705-Auto Auto-correlogram 

Model 10-5 MR-0705-HSV HSV Color Histogram 

Model 10-6 MR-0705-EDH Edge Distribution Histogram 

Model 10-7 MR-0705-Wave Wavelet PWT-TWT Texture 

Model 10-8 

 
MR-0705-CTF 

Concatenated feature including 
Co-occurrence Texture and 
Face. 

 



Method 11 MR-LF 
Manifold 
Ranking (MR) 

70% of 07 devel 
set (T)  

Late Fusion 
(Linear weighted 
fusion of eight 
models) 

Model 11-1 MR-CM33 Color Moment 3-by-3 

Model 11-2 MR-CM55 Color Moment 5-by-5 

Model 11-3 MR-CM77 Color Moment 7-by-7 

Model 11-4 MR-Auto Auto-correlogram 

Model 11-5 MR-HSV HSV Color Histogram 

Model 11-6 MR-EDH Edge Distribution Histogram 

Model 11-7 MR-Wave Wavelet PWT-TWT Texture 

Model 11-8 
 
MR-CTF 

Concatenated feature, 
including Co-occurrence 
Texture and Face. 

Method 12 
OMGSSL-
0705-LF 

Optimal Multi-
Graph Semi-
Surprised 
Learning 
(OMGSSL) 

70% of 2007 devel 
set (T); and most 
of the 36 concepts 
also use 2005 devel 
set 

Late Fusion 
(Linear weighted 
fusion of eight 
models) 

Model 12-1 OMGSSL -0705-CM33 Color Moment 3-by-3 

Model 12-2 OMGSSL -0705-CM55 Color Moment 5-by-5 

Model 12-3 OMGSSL -0705-CM77 Color Moment 7-by-7 

Model 12-4 OMGSSL -0705-Auto Auto-correlogram 

Model 12-5 OMGSSL -0705-HSV HSV Color Histogram 

Model 12-6 OMGSSL -0705-EDH Edge Distribution Histogram 

Model 12-7 OMGSSL -0705-Wave Wavelet PWT-TWT Texture 

Model 12-8 
 
OMGSSL -0705-CTF 

Concatenated feature, 
including Co-occurrence 
Texture and Face. 

Method 13 OMGSSL-LF 

Optimal Multi-
Graph Semi-
Surprised 
Learning 
(OMGSSL) 

70% of 2007 devel 
set (T) 

Late Fusion 
(Linear weighted 
fusion of eight 
models) 

Model 13-1 OMGSSL-CM33 Color Moment 3-by-3 

Model 13-2 OMGSSL-CM55 Color Moment 5-by-5 

Model 13-3 OMGSSL-CM77 Color Moment 7-by-7 

Model 13-4 OMGSSL-Auto Auto-correlogram 

Model 13-5 OMGSSL-HSV HSV Color Histogram 

Model 13-6 OMGSSL-EDH Edge Distribution Histogram 

Model 13-7 OMGSSL-Wave Wavelet PWT-TWT Texture 

Model 13-8 
 
OMGSSL-CTF 

Concatenated feature, 
including Co-occurrence 
Texture and Face. 

Method 14 TCGRF-LF 

Temporally 
Consistent 
Gaussian 
Random Field 
(TCGRF) 

70% of 2007 devel 
set (T) 

Late Fusion 
(Linear weighted 
fusion of seven 
models) 

Model 14-1 TCGRF -CM33 Color Moment 3-by-3 

Model 14-2 TCGRF -CM55 Color Moment 5-by-5 

Model 14-3 TCGRF -CM77 Color Moment 7-by-7 

Model 14-4 TCGRF -Auto Auto-correlogram 

Model 14-5 TCGRF -HSV HSV Color Histogram 

Model 14-6 TCGRF -EDH Edge Distribution Histogram 

Model 14-7 TCGRF -Wave Wavelet PWT-TWT Texture 

Method 15 LNP-TVF-LF

Linear 
Neighborhood 
Propagation 
(LNP) 

90% of 2007 
development 
(T+V+F) 

Late Fusion 
(Linear weighted 
fusion of seven 
models) 

Model 15-1 LNP-TVF -CM33 Color Moment 3-by-3 

Model 15-2 LNP-TVF -CM55 Color Moment 5-by-5 

Model 15-3 LNP-TVF -CM77 Color Moment 7-by-7 

Model 15-4 LNP-TVF -Auto Auto-correlogram 

Model 15-5 LNP-TVF -HSV HSV Color Histogram 

Model 15-6 LNP-TVF -EDH Edge Distribution Histogram 

Model 15-7 LNP-TVF -Wave Wavelet PWT-TWT Texture 

 
Fig. 3. The description of all the methods and models for high-level feature extraction.


