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Columbia HLF: TRECVID2007
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cross-domain learning
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Definition:

• Domain: set of content with same production/capture 
method and content quality

Problem:

• Not all data sets are created equal; classifiers trained on one 
domain often do not work well on others

Goal:

• Achieve robust detection in new domain with minimal 
additional complexity
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Cross-Domain Problem:
What is it?

Approach:

• Leverage pre-trained existing models 

• Optimal weighted combination of data from both domains

Data:

• TRECVID2005 (broadcast news @ 100 hours), 

• TRECVID2007 (documentaries @ 60 hours)

6
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Cross-Domain Problem:
Common approaches
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Case 1: old model works best 
Studio
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Cross-Domain Problem:
Common approaches
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Case 2: new model works best 
Waterscape
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Cross-Domain Problem:
Common approaches
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Case 3: old model adaptation works best 

Charts
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Cross-Domain Problem:
Common approaches
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Case 4: combined model works best 
Sports
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Cross-Domain Problem:
Common approaches
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Topic Review:
Support Vector Machine (SVM)
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• Idea: includes all data (new and old) in training of new 
domain models

• Kernel matrix: equal weights for all samples

Combined model:
Uniform sample importance
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old new

old
1x

new

• Idea: augment feature vector to learn intra-domain weights 
across many dimensions

• Cross-domain training may be quite dissimilar

• Trust intra-domain similarity more

• Intelligent method for feature expansion

Replication model:
Kernel matrix replication
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H. Daume III, “Frustratingly easy domain adaptation”, Proc. the 45th Annual Meeting of the Association of Computational Linguistics, 2007
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• Idea: augment feature vector to learn intra-domain 
weights across many dimensions

Replication model:
Kernel matrix replication
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H. Daume III, “Frustratingly easy domain adaptation”, Proc. the 45th Annual Meeting of the Association of Computational Linguistics, 2007
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• Idea: trust old domain model more than new domain

• Perturb old model within some tolerance with 
weighted new samples and a constant offset

Adaptive SVM (A-SVM):
Constrained model adaptation
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 J. Yang, et al., “Cross-domain video concept detection using adaptive svms”, ACM Multimedia, 2007.

f(x) = fold(x) + ∆f(x)
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Adaptive SVM (A-SVM):
Constrained model adaptation

21

 J. Yang, et al., “Cross-domain video concept detection using adaptive svms”, ACM Multimedia, 2007.
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• Idea: trust support vectors from trained old domain 
model as best observations in old domain

• Weigh SVs then combine with new data and retrain 

Cross-domain SVM (CD-SVM):
Adapting prior models
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Submitted: W. Jiang, E. Zavesky, S.F. Chang, A. Loui, “Cross-domain learning methods for high-level concept classification,” ICASSP 2008.
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Cross-domain SVM (CD-SVM):
Adapting prior models
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Submitted: W. Jiang, E. Zavesky, S.F. Chang,  A. Loui, “Cross-domain learning methods for high-level concept classification,” ICASSP 2008.
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Cross-domain methods:
Observed speed trends
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Choosing an approach...

• No single approach is always optimal, but 
predictions can be found in a piece-wise manner

• Based on available statistics

• Positive new domain samples strongly relates to 
ideal training conditions for each approach...

25
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Performance comparison:
High positive frequency
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Performance comparison:
Mid positive frequency
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Which approach to choose to obtain 
good new domain performance

• Decision based on frequency of positive samples 
and performance of old model...

• High frequency (old or new more than 5%)
select CDSVM (adapts old to well-defined new domain)

• person, sky, road, ...

29
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Which approach to choose to obtain 
good new domain performance

• Decision based on frequency of positive samples 
and performance of old model...

• High frequency (old or new more than 5%)

• Mid-frequency (new < 5%, new > 1%)

• If performance (AP) of old model was high, 
select replication (learn combined trends)

• truck, car, people-marching

• If AP was too low,
select new domain only (not enough evidence)

30
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Which approach to choose to obtain 
good new domain performance

• Decision based on frequency of positive samples 
and performance of old model...

• High frequency (old or new more than 5%)

• Mid-frequency (new < 5%, new > 1%)

• Low-frequency (new < 1%)

• If sparse old (old < %1)
select new (sparsity risk too high)

• boats, computer-tv, map, explosion-fire

31
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Which approach to choose to obtain 
good new domain performance

• Decision based on frequency of positive samples 
and performance of old model...

• High frequency (old or new more than 5%)

• Mid-frequency (new < 5%, new > 1%)

• Low-frequency (new < 1%)

• Otherwise, choose default model...

32
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Approach selection: 
Empirical rule set

• Aggregating these intuitions, we can create a ruleset to 
choose an approach that optimizes new domain 
performance 

33
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Approach selection: 
Rule-based benefits
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TRECVID 2007
high level features
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Columbia HLF: TRECVID2007
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Empirical Results: 
TRECVID2007
• 4 of 6 runs in top 20

• Less than 0.005 MIAP difference between new models and 
replicated models

• Only replication model 
was submitted

• Cross-domain fusion 
improved performance
for most concepts

• Color moment,
edge direction histogram
Gabor texture
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R5: replicate R6: new R4: bcrf+new
R3: bcrf+replicate+new R2: bcrf+replicate+new+old R1: adaptive selection

replication replication
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conclusions 
&

next steps
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Conclusions

• Cross-domain helps to cope with domain change

• When new domain model is weak, good to use old domain 
data and models

• Move models into new domain with minimal complexity 
increase and maintain performance

• Explore different different model approaches

• No universally superior approach

• Performance predictors: frequency of new and old 
domain and domain similarity 

• Prediction using domain properties works reasonably well 
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Next Steps: 
Technical questions for adaptation

• When to adapt vs. training new model

• Rules are first step, but deeper data 
distribution analysis is underway

• Next problem: few or no labels on new domain

• Leveraging large concept ontology (LSCOM)

• Adaptation needed for concept-based 
approaches on new data
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Thanks for your time.
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