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cross-domain learning
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Definition:

® Domain: set of content with same production/capture
method and content quality
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Problem:

® Not all data sets are created equal; classifiers trained on one
domain often do not work well on others

Goal:

® Achieve robust detection in new domain with minimal
additional complexity
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Cross-Domain Problem:
What is it?

Approach:

® | everage pre-trained existing models

® Optimal weighted combination of data from both domains

Data:
e TRECVID2005 (broadcast news @ 100 hours),
e TRECVID2007 (documentaries @ 60 hours)
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Cross-Domain Problem:
Common approaches

old domain very

use old model o :
similar to new domain
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Case 1: old model works best
StUdiO B . top 5 detection results
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learn old domain, test new domaln
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Cross-Domain Problem:
Common approaches

old domain very

use old model - o :
similar to new domain

train new new and old domains
domain model very dissimilar
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Case 2: new model works best
Wate FSCa pe top 5 detection results

learn old domain, test oId domaln

V8w SN

learn old domain, test new domaln
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Cross-Domain Problem:
Common approaches

old domain very

use old model - o :
similar to new domain

train new new and old domains
model very dissimilar

adapt old new and old domains
model slightly dissimilar
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Case 3: old model adaptation works best

top 5 detection results
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Cross-Domain Problem:
Common approaches

use old model

old domain very
similar to new domain

train new
model

new and old domains
very dissimilar

adapt old
model

new and old domains
slightly dissimilar

train combined
new+old model

old and new domains
similar; sparse new domain
or strong old model
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Case 4: combined model works best

top 5 detection results

Iearn oId doma|n+new domaln test hew domaln
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Cross-Domain Problem:
Common approaches

old domain very
use old model o .
similar to new domain
train new new domain and old
model domains very dissimilar

adapt old I new and old domains
model Smd 2 slightly dissimilar

old and new domains
all all similar; sparse new domain
or strong old model

train combined
new+old model
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Topic Review:
Support Vector Machine (SVM)

New Feature Space

N

ignored
support vector
from old domain old

support
vectors

new samples

helpful
support vector
from old domain

old New
samples [l samples
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Combined model:
Uniform sample importance

® |dea:includes all data (new and old) in training of new
domain models

® Kernel matrix: equal weights for all samples

features

old

samples
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Replication model:
Kernel matrix replication

® |dea: augment feature vector to learn intra-domain weights
across many dimensions

® Cross-domain training may be quite dissimilar
® Trust intra-domain similarity more

® |Intelligent method for feature expansion

features

.
old
- old

samples

| x

X
new | Ix | 2x

H. Daume Ill,“Frustratingly easy domain adaptation”, Proc. the 45th Annual Meeting of the Association of Computational Linguistics, 2007
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Replication model:
Kernel matrix replication

® |dea:augment feature vector to learn intra-domain
weights across many dimensions

D features —

M samples | N samples I |
v v | I
old

new

D*3 features
M+ N : )
samples old
, ‘ features

H. Daume Ill,“Frustratingly easy domain adaptation”, Proc. the 45th Annual Meeting of the Association of Computational Linguistics, 2007
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Adaptive SVM (A-SVM):
Constrained model adaptation

® |dea: trust old domain model more than new domain

® Perturb old model within some tolerance with
weighted new samples and a constant offset

f(x) = f"x) + Af(x)

extract
— optimize choice

support Of new samples

vectors . ‘
and old support
VECLOI'S

J.Yang, et al.,“Cross-domain video concept detection using adaptive svms”,ACM Multimedia, 2007.

old

v _
models
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Adaptive SVM (A-SVM):
Constrained model adaptation

Old Feature Space

decision boundary
(hyperplane)

New Feature Space

margin distance —]
1

wll constrained —
/

old support vectors adjustment

(evidence for decision
boundary)

margin distance —
1

Iw

new samples

old
support
vectors

J.Yang, et al.,“Cross-domain video concept detection using adaptive svms”,ACM Multimedia, 2007.
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Cross-domain SVM (CD-SVM):
Adapting prior models

® |dea: trust support vectors from trained old domain
model as best observations in old domain

® Weigh SVs then combine with new data and retrain

old extract
support BvVectors
vectors

compute weighted
features similarity samples

models

samples

Submitted: W. Jiang, E. Zavesky, S.F. Chang, A. Loui, “Cross-domain learning methods for high-level concept classification,” ICASSP 2008.
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Cross-domain SVM (CD-SVM):
Adapting prior models

Old Feature Space New Feature Space

decision boundary _|

(hyperplane) ignored

support vector — |

margin distance — from old domain old
1 support
Nwll vectors

/
old support vectors helpful

(evidence for decision | support vector
boundary) from old domain

new samples

new |

mm—HwH2 +CZ

1
(VD) = o D e S LBV~ 3)

€ +C ZJ 1 old Dnew) €

Submitted: W. Jiang, E. Zavesky, S.F. Chang, A. Loui,“Cross-domain learning methods for high-level concept classification,” ICASSP 2008.
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Cross-domain methods:
Observed speed trends

old model - (0)%

combined all 3x

new model - all | x

replication all all 9x

CDSVM small all |.25x

\4
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Theoretical training cost with 40k samples in old domain,
20k in new domain (similar to TRECVID problem)
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Choosing an approach...

® No single approach is always optimal, but
predictions can be found in a piece-wise manner

® Based on available statistics

® Positive new domain samples strongly relates to
ideal training conditions for each approach...
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Performance comparison:
High positive frequency

® No clear winners

B target combined replication [ CDSVM [l A-SVM
Concept AP (Positive freq > 0.05)
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Performance comparison:
Mid positive frequency

® (lear differentiation seen

combined replication B CDSVM B A-SVM
Concept AP (0.05 <= Positive freq <= 0.01)

&
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shaded regions best per concept (5% relative improvement over all others)
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Performance comparison:
Low positive frequency

® More differentiation, but less reliable in for low performance

B target M combined replicaton [ CDSVM [l A-SVM
Concept AP (Positive freq. < 0.01)

Observed differences but
performance too low
for significant conclusions?

shaded regions best per concept (5% relative improvement over all others)
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Which approach to choose to obtain
good new domain performance

® Decision based on frequency of positive samples
and performance of old model...

® High frequency (old or new more than 5%)
select CDSVM (adapts old to well-defined new domain)

® person, sky, road, ...
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Which approach to choose to obtain
good new domain performance

® Decision based on frequency of positive samples
and performance of old model...

® High frequency (old or new more than 5%)
® Mid-frequency (new < 5%, new > |%)

® |f performance (AP) of old model was high,
select replication (learn combined trends)

® truck, car, people-marching

® |f AP was too low,
select new domain only (not enough evidence)
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Which approach to choose to obtain
good new domain performance

® Decision based on frequency of positive samples
and performance of old model...

® High frequency (old or new more than 5%)
® Mid-frequency (new < 5%, new > |%)
® | ow-frequency (new < |%)

® |f sparse old (old < %]1)
select new (sparsity risk too high)

® boats, computer-tv, map, explosion-fire
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Which approach to choose to obtain
good new domain performance

Decision based on frequency of positive samples
and performance of old model...

High frequency (old or new more than 5%)
Mid-frequency (new < 5%, new > |%)
Low-frequency (new < |%)

Otherwise, choose default model...
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Approach selection:
Empirical rule set

® Aggregating these intuitions, we can create a ruleset to
choose an approach that optimizes new domain
performance

if (freq(D%)>T7) U (freq(D3)>T?) then —

Selected model = CDSVM high frequency
else if AP(D®) > M AP(D?) then D Em—

Selected model = Feature Replication strong old model
else if (freq(D%) <T5) & (freq(D3) <T°) then —w and old

Selected model = SVM over Target Labeled Set D; too sparse

else «—
Selected model = CDSVM default choice

end if
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Approach selection:
Rule-based benefits

high frequency | mid frequency | low frequency

Observed MAP improvement over new model alone

B target combined replication B CDSVM B A-SVM
Concept AP (Positive freq > 0.05) Concept AP (0.05 <= Positive freq <= 0.01) Concept AP (Positive freq. < 0.01)
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TRECVID 2007

high level features
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Empirical Results:
TRECVID2007

® 4 of 6 runs in top 20

® |ess than 0.005 MIAP difference between new models and
replicated models

® Only replication model
was submitted "oos

(development)

Cross-domain fusion Caumoin
improved performance
Concept fusion

1
(explore concept relations)
for most concepts T
— 2 TRECVID

Color moment,
edge direction histogram o on beeeire o
Gabor texture

3

Model .
oce Cross domain

adaptation
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Empirical performance:
Method comparisons; new vs. replication

B R5: replicate R6: new R4: berf+new
B R3: berf+replicate+new [ R2: berf+replicate+new+old R1: adaptive selection

replication replication

\
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conclusions

&
next steps
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Conclusions

® Cross-domain helps to cope with domain change

® When new domain model is weak, good to use old domain
data and models

® Move models into new domain with minimal complexity
increase and maintain performance

® Explore different different model approaches
® No universally superior approach

® Performance predictors: frequency of new and old
domain and domain similarity

® Prediction using domain properties works reasonably well
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Next Steps:
Technical questions for adaptation

® When to adapt vs. training new model

® Rules are first step, but deeper data
distribution analysis is underway

® Next problem: few or no labels on new domain
® | everaging large concept ontology (LSCOM)

® Adaptation needed for concept-based
approaches on new data
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Thanks for your time.
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