

FXPAL at TRECvid 2007

Collaborative Exploratory Search

"Collaborative" search is overloaded

Synchronous	Collaborative Exploratory Search (FXPAL)	Real-time awareness and continual update context systems (e.g. Nokia, Imity)
Asynchronous	Chi et al "Search Trails" (Xerox PARC)	Web 2.0 Wisdom of Crowds Collaborative Filtering Personalization
	Explicit	Implicit

"Collaborative" search is overloaded

Synchronous

Collaborative Exploratory Search (FXPAL)

Collaborative Exploratory Search

Algorithmically-Mediated Intelligent Interfaces Only

Explicit

- •Fischlar-DiamondTouch:

 Collaborative Video Searching on a Table
 (Smeaton et al, 2005)
- Interfaces for Collaborative Exploratory Web Search: Motivations and Directions for Multi-User Designs (M. Morris, 2007)

Collaborative Exploratory Search

- Synchronous
 - Collaborating users use the system at the same time
- Explicitly Shared goals
 - Collaborating users share the information need
- Algorithmically-mediated
 - System combines users' inputs in various ways
 - Not just keyword pooling
 - System generates results based on users' roles
 - Terms, ranked lists, etc.

Finds shots with one or more emergency vehicles in motion (e.g., ambulance, police car, fire truck, etc.)

12:52 End Question

Time remaining: 12:48

System overview

6 November 2007 TRECvid 2007 workshop

RSVP Queue Priority

Weighted Borda Count fusion

$$rank_{doc} = \sum_{q} score_{doc,q} \cdot w_{seen,q} \cdot w_{rel,q}$$
 $score_{doc,q} = N_{retrieved,q} - ran$
 $w_{seen,q} = N_{seen,q} / N_{unseen,q}$
 $w_{rel,q} = N_{rel,q} / N_{nonrel,q}$

Shared Display Suggested Query Term

Weighted frequency fusion

$$rank_{term} = \sum_{q} score_{term,q} \cdot w_{seen,q} \cdot w_{rel,q}$$
 $score_{term,q} = TF_{retrieved,q}$
 $w_{seen,q} = N_{seen,q} / N_{unseen,q}$
 $w_{rel,q} = N_{rel,q} / N_{nonrel,q}$

Example

TRECvid Experiments

- 3 ½ Systems, 4 Users
 - a. MMA: Single MediaMagic user (full capabilities)
 - b. MMV: Single MediaMagic user (no text)
 - c. MMA+V: Post hoc simulated MMA+MMV combination
 - Duplicates (both rel and nonrel) removed
 - d. COLL: Collaborative search

TRECvid Experiments

- Problem: Learning effect?
 - All COLL runs done first
 - All MMA runs done second
 - All MMV runs done third

Results: Mean Average Precision

Additional Metrics

- Examine Recall and Precision separately
- Examine the manually-selected shot set
 - What actually happened during the run?

Precision

COLL is:

1.47% relative improvement over MMA

-3.42% relative improvement over MMV

15.4% relative improvement over MMA+V

Legend explaining MMA,etc

Recall

COLL is:

101.1% relative improvement over MMA

43.3% relative improvement over MMV

-10.7% relative improvement over MMA+V

- COLL outperforms MMA and MMV
- COLL is about the same against MMA+V
 - What does this suggest?
 - Why bother working collaboratively?
 - Let's examine closer

% improvement in precision

% improvement in recall

% improvement COLL over MMA+V

Tentative Conclusion:

Collaborative Search (at least in our current implementation) offers its best improvements when there are fewer relevant documents to be found

Normalizing by Shots Viewed

- Our RSVP system needed another design iteration (missed opportunity)
- Average number of shots viewed:

– MMA: 2,123

- MMV: 2,601

- MMA+V: 4,184

- COLL: 2,614

Work smarter not harder?

Precision

Precision, with counts normalized by the number of seen shots, does not change

$$\frac{TP}{\frac{\#seen}{TP} + \frac{FP}{\#seen}} = \frac{TP}{TP + FP}$$

$$\#seen \#seen$$

Recall

COLL is:

73.9% relative improvement over MMA (101.1%)

38.5% relative improvement over MMV (43.3%)

44.1% relative improvement over MMA+V (-10.7%)

% improvement in recall

% improvement in recall

Future Work

- Still like the idea of miner vs. prospector
 - But need to give the miner more ability to "steer"
 - And achieve higher throughput
- Also investigate other collaboration roles
- Also investigate types of queries in which different roles work better. Can we know this a priori?