

IBM Research TRECVID-2007 Video Retrieval System

Apostol (Paul) Natsev IBM T. J. Watson Research Center Hawthorne, NY 10532 USA

On Behalf Of: Murray Campbell, Alexander Haubold, John R. Smith, Jelena Tesic, Lexing Xie, Rong Yan

© 2007 IBM Corporation

Acknowledgement

IBM Research

- Murray Campbell
- Matthew Hill
- Apostol (Paul) Natsev
- Quoc-Bao Nguyen
- Christian Penz
- John R. Smith
- Jelena Tesic
- Lexing Xie
- Rong Yan

UIUC

- Ming Liu
- Xu Han
- Xun Xu
- Thomas Huang

Columbia Univ.

Alexander Haubold

Carnegie Mellon Univ.

Jun Yang

Part 1 of 2: Automatic Search

© 2007 IBM Corporation

Outline

→ Overall System

Summary

Review of Baseline Retrieval Experts

Performance Analysis

Summary (Repeated)

System Overview

Summary: What Worked and What Didn't?

Baseline retrieval experts	Grade
Speech/text-based	✓
 Concept-based (statistical mapping) 	x x x
 Concept-based (WordNet mapping, Brown corpus stats) 	✓
 Concept-based (WordNet mapping, web stats) 	✓ ✓
Concept-based (query examples modeling)	✓ ✓ ✓
Visual-based	√√√
Experiments	
Improving query-to-concept mapping: web-based stats	✓ ✓
 Leveraging external resources: type C runs 	✓
Query-dynamic multimodal fusion	×

Baseline Retrieval Experts: Review of Approaches

- Speech/Text-Based Retrieval
 - Auto-query expansion with JuruXML search engine (Volkmer et al., ICME'06)
- Visual-Based Retrieval
 - Bagged SVM modeling of query topic examples (Natsev et al., MM'05)
- Concept-Based Retrieval (G² Statistical Map)
 - Based on co-occurrence of ASR terms and concepts (Natsev et al., MM'07)
- Concept-Based Retrieval (WordNet Map, Brown Stats)
 - Based on JCN similarity, IC from Brown Corpus (Haubold et al., ICME'06)
- Concept-Based Retrieval (WordNet Map, Web Stats)
 - Based on JCN similarity, IC from WWW sample
- Concept-Based Retrieval (Content-Based Modeling)
 - Bagged SVM modeling of query topic examples (Tesic et al., CIVR'07)

Improving Query-to-Concept Mapping

- WordNet similarity measures
 - Frequently used for query-to-concept mapping
 - Frequently based on Information Content (IC) to model term saliency
 - Resnik: evaluates information content (IC) of common root
 - Jiang-Conrath: evaluates IC of common root and ICs of terms
 - IC typically estimated from 1961 Brown Corpus
 - IC from Brown Corpus outdated by >40 years
 - 76% of words in WordNet not in Brown Corpus (so IC = 0)
- Idea: create approximation using WWW
 - Perform frequency analysis over large sample of web pages
 - Google page count as indicator of frequency

IC from Large-Scale Web Sampling

- Sample of web pages:
 - 1,231,929 documents (~1M)
 - 1,169,368,161 WordNet terms (~1B)
 - Distribution similar to Brown Corpus
 - Therefore: potentially useful as IC

- Google page count:
 - As a proxy to term frequency counts
 - Term frequency ≈ Doc. Frequency?
 - Experiments show linear relationship
 - Therefore: Potentially useful as IC

Outline

Overall System

Summary

Review of Baseline Retrieval Experts

Summary (Repeated)

Evaluation Results: Baseline Retrieval Experts

- Statistical concept-based run did not generalize
- Web-based IC led to 20% improvement in WordNet runs
- Concept-based runs performed better than speech/text-based runs
- Content-based runs performed best

Baseline Retrieval Experts: JAWS Analysis

- For the adventurous:
 - Stacked chart showing contribution of each expert per topic

Summary of Submitted and Unsubmitted IBM Runs

Description	Code	Run ID	Туре	MAP
Text baseline	Т	Text	Α	0.0149
Concept baseline (stat)	M _S	-	Α	0.0045
Concept baseline (WordNet, Brown stats)	M _B	-	Α	0.0146
Concept baseline (WordNet, Web stats)	M_{W}	-	O	0.0177
Concept baseline (content-based, type A)	S	-	Α	0.0228
Concept baseline (content-based, type C)	S _C	-	O	0.0249
Visual baseline	V	-	Α	0.0302
Non-text baseline (M _S + S + V)	M_SSV_{avg}	MSV	Α	0.0213
Non-text baseline (M _B + S + V)	M_BSV_{avg}	-	Α	0.0301
Query-dynamic fusion, type A $(T + M_S + S + V)$	$TM_{S}SV_{qdyn}$	TMSV.qdyn	Α	0.0210
Query-dynamic fusion, type C (T + M_{SW} + S_C + V)	$TM_{SW}S_CV_{qdyn}$	TMSV-C.qdyn	С	0.0272
Multimodal AVG fusion, type A $(T + M_S + S + V)$	TM _S SV _{avg}	TMSV	Α	0.0231
Multimodal AVG fusion, type C $(T + M_{SW} + S_C + V)$	$TM_{SW}S_CV_{avg}$	-	С	0.0303
Multimodal AVG fusion, type C $(T + M_W + S_C + V)$	$TM_WS_CV_{avg}$	-	С	0.0372
Oracle fusion (pick best run for each topic)	Oracle	-	С	0.0638

Overall Performance Comparison

- Best run from each organization shown
- Submitted IBM runs in third tier, improve by dropping failed run
- IBM runs achieve highest AP scores on 5 of 24 topics

IBM Performance Relative to Best AP Per Topic

- Good (>90%): street night, street market, sheep/goat, road/vehicle, people telephone, canal/river
- So-so (40-60%): mountains, waterfront, boat, train, crowd, street protest, street buildings
- Bad (<25%): people table, people stairs, people dogs, people keyboard

Summary: What Worked and What Didn't?

Baseline retrieval experts	Grade
Speech/text-based	✓
 Concept-based (statistical mapping) 	x x x
 Concept-based (WordNet mapping, Brown corpus stats) 	✓
 Concept-based (WordNet mapping, web stats) 	✓ ✓
Concept-based (query examples modeling)	✓ ✓ ✓
Visual-based	√√√
Experiments	
Improving query-to-concept mapping: web-based stats	✓ ✓
 Leveraging external resources: type C runs 	✓
Query-dynamic multimodal fusion	×

Part 2 of 2: Interactive Search

Annotation-based Interactive Retrieval

- Model interactive search as a video annotation task
 - Consider each query topic as a keyword, annotate video keyframes
 - Extend from CMU's Extreme Video Retrieval system [Hauptmann et al., MM'06]
- Hybrid annotation system
 - Minimize annotation time by leveraging two annotation interfaces
 - Tagging: Flickr, ESP game [von Ahn et al., CHI'04]
 - Browsing: IBM's EVA [Volker et al., MM'05], CMU's EVR [Hauptmann et al., MM'06]
- Formal analysis by modeling the interactive retrieval process
 - Tagging-based annotation time per shot
 - Browsing-based annotation time per shot

Manual Annotation (I): Tagging

- Allow users to associate a single image at a time with one or more keywords (the most widely used manual annotation approaches)
- Advantages
 - Freely choose arbitrary keywords to annotate
 - Only need to annotate relevant keywords
- Disadvantages
 - "Vocabulary mismatch" problem
 - Inefficient to design and type keywords
- Suitable for annotating rare keywords

Formal Time Model for Tagging

- Key factors for tagging time model
 - Number of keywords K for image l
 - Annotation time for kth word t'_{fk}
 - Initial setup time for a new image t_s'
 - Noise term ε (zero-mean distribution)

Annotation time for one image

$$T = t'_{f1} + ... + t'_{fk} + t'_{s} + \mathcal{E} = \sum_{k} t'_{fk} + t'_{s} + \mathcal{E}$$

- Total expected annotation time for the entire collection containing L images
 - Assumption: the expected time to annotate the k^{th} word is constant t_f

$$E(T_{total}) = \sum_{l} \sum_{k_{l}} E(t'_{fk_{l}}) + E(t'_{s}) = \sum_{l} K_{l}t_{f} + t_{s}$$

Validation of Tagging Time Model

- User study on TRECVID'05 development data
 - A user to manually tag 100 images using 303 keywords
 - If the model is correct, a linear fit should be found in the results
 - The annotation results fit the model very well

Manual Annotation (II): Browsing

Allow users to associate multiple images with a single word at the same time

Advantages

- Efficient to annotate each pair of images and words
- No "vocabulary mismatch"
- Disadvantages
 - Need to spend time on judging both relevant and irrelevant pairs
 - Start with controlled vocabulary
 - Annotate one keyword at a time
- Suitable for annotating frequent keywords

Formal Time Model for Browsing

- Key factors for browsing time model
 - Number of relevant images L_k for a word k
 - Annotation time for a relevant image t_p'
 - Annotation time for an irrelevant image t'_n
 - Noise term ε (zero-mean distribution)

Annotation time for all images w.r.t. a keyword

$$T = \sum_{l=1}^{L_k} t'_{pl} + \sum_{l=1}^{L-L_k} t'_{nl} + \mathcal{E}$$

- Total expected annotation time for the entire collection containing L images
 - Assumption: the expected time to annotate a relevant (irrelevant) image is constant

$$E(T_{total}) = \sum_{k} \left(\sum_{l_k} E(t'_{pl_k}) + \sum_{l_k} E(t'_{nl_k}) \right) = \sum_{k} \left(L_k t_p + (L - L_k) t_n \right)$$

Validation of Browsing Time Model

- User study on TRECVID'05 development data
 - Three users to manually browse images in 15 minutes (for 25 keywords)
 - If the model is correct, a linear fit should be found in the results
 - The annotation results fit the model for all users

Video Retrieval as Hybrid Annotation

- Jointly annotates all topics at the same time
- Switches between tagging and browsing annotation interfaces in order to minimize the overall annotation time
 - Formally model the annotation time as functions of word frequency, time per word, and annotation interfaces
 - Online machine learning to select images, topics and interfaces based on the annotation models
- More details will be released in the final notebook paper
 - See related analysis in R. Yan et al. [ACM MM 2007 Workshop on Many Faces of Multimedia]

TRECVID-2007 Performance Analysis

- The proposed approach allows users to annotate 60% of the image-topic pairs, as compared with ~10% allowed by simple browsing
- Balance between tagging & browsing: 1529 retrieved shots from tagging, 797 retrieved shots from browsing
- Simple temporal expansion can improve MAP from 0.35 to 0.43

TRECVID-2007 Per-Query Performance Analysis

- Good: "telephone", "interview", "mountains"
- Not as good: "canal", "bicycle", "classroom", "dog"
- Highest AP scores on 10 out of 24 topics

Potential Improvement

Search beyond keyframe (look at the I-frame)

Finding Sheep/Goats

Search beyond I-frame (leverage text info or temporal context)

Finding Sheep/Goats

 Better online learning algorithms to search for more shots in the same amount of time (include temporal information)