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Abstract
Run No. Run ID | Run Description | infMAP (%)
training on TV08 data

1 IUPR-TV-M | SIFT visual words with maximum entropy 6.1
2 IUPR-TV-MF | SIFT with maximum entropy, fused with 5.9

color+texture and motion (NN matching)
3 IUPR-TV-S | SIFT visual words with SVMs 5.3
4 IUPR-TV-SF | SIFT with SVMs, fused with 6.3

color+texture and motion (NN matching)

training on YouTube data (no use of standard training sets)

5 | IUPR-YOUTUBE-S | SIFT visual words with SVMs 2.2
6 | IUPR-YOUTUBE-M | SIFT visual words with maximum entropy 2.1

We participated in TRECVID’s High-level Features task [17] to investigate online video as an alternative
data source for concept detector training. Such video material is publicly available in large quantities from
portals like YouTube. In our setup, tags provided by users during video upload serve as weak ground truth
labels, such that thousands of concepts can be learned without manual annotation effort. On the downside,
online video as a domain is complex, and the labels associated with it are coarse and unreliable, such that
performance loss can be expected compared to high-quality standard training sets.

To find out if it is possible to train concept detectors on web video, our TRECVID experiments compare
state-of-the-art (visual only) concept detection systems when (1) training on the standard TRECVID
development data and (2) training on clips downloaded from YouTube. Our key observation is that
YouTube-based detectors work well for some concepts, but are overall significantly outperformed by
the “specialized” systems trained on standard TRECVID’08 data (giving a infMAP of 2.2% and 2.1%
compared to 5.3% and 6.1%). An in-depth analysis shows that a major reason for this seems to be
redundancy in the TV08 dataset.



1. Introduction

While the automatic detection of semantic con-
cepts (or “high-level features”) in video streams is a
key component of research prototypes for content-
based video search, a critical burden for its prac-
tical application is that the underlying machine
learning techniques require annotated training sets.
Since target concepts can be visually complex, hun-
dreds of sample shots per concepts may be needed.
Also, the number of concepts required to cover
users’ information needs is high.

For standard training sets, annotations are ac-
quired manually and explicitly for the purpose of
concept detector training. Since this is a time-
consuming (and thus cost-intensive) process, re-
searchers share annotations [13, 18] or organize col-
laborative labelling efforts [2]. This has made it
possible to train detectors for several hundred con-
cepts (e.g., [24]). Yet, several problems remain
with the explicit acquisition of ground truth:

1. One obvious problem is that — to cover users’
information needs — the number of concepts
must be increased by a further magnitude com-
pared to the state-of-the-art (current estimates
for a sufficient number of concepts are in the
range of 3.000 — 5.000 [8]).

2. Current detectors are mostly trained on a
single annotated video collection (often the
TRECVID’05 dataset). The resulting detec-
tors work well on this dataset (or very sim-
ilar ones) but generalize poorly, as has been
demonstrated in [25].

3. Manual annotations are static, and so are the
concept detectors trained on them. In con-
trast to this, the world around us — and with
it its videos and users’ information needs — is
constantly evolving. New concepts of interest
emerge, like “9-117, “secondlife”, or “Barak
Obama”. Similarly, concept detection systems
should adapt to dynamic user interest, which
is infeasible using explicit manual annotations.

To overcome these problems to some extent, we
propose to investigate an alternative data source,
namely online video that is publicly available at a
large scale from portals like YouTube, blinkx, and
many others. These web video clips are enriched
with textual descriptions that can serve as annota-
tions in a machine learning framework for training
concept detectors. This way, manual annotation
effort is shifted to the YouTube community, and a

concept detection system can learn autonomously
by acquiring its readily annotated training set from
the web. This setup offers the advantages of scala-
bility (it is possible to scale concept detectors up to
several thousands of concepts) and flexibility (web
video content is kept up-to-date by the community,
such that concept detectors trained on it can keep
track of concepts that change or emerge).

On the downside, the labeling information
that comes with web video clips is of a signifi-
cantly lower quality than that of current standard
datasets. This is due to several reasons: first,
while in TRECVID videos are labeled on shot level,
YouTube tags are given on video level (and not all
shots in a clip might be visually related to a tag).
Second, shots in TRECVID are usually annotated
according to clear visual criteria, like “shots that
take place outdoors at night, but no sporting events
under lights” (LSCOM concept no. 352). In con-
trast, tags at web video portals are often given with
an intention that links the tag only indirectly to the
visual content. Consequently, the training sets ac-
quired from YouTube contain relevant material as
well as “junk” frames not visually related to the tar-
get concept. The key question arising from this fact
is: Can concept detectors successfully be trained on
online video?

To give an answer, we participated in
TRECVID’s High-level Features task and present
our experiences with training a concept detec-
tion system for TRECVID’08 on YouTube. Our
strategy is to train a state-of-the-art concept de-
tection approach (namely discriminative training
over bag-of-visual-words features) on two differ-
ent data sources: (1) the standard training set of
TRECVID’08 (referred to as TRECVID in the fol-
lowing), and (2) a set of tagged videos downloaded
from YouTube (called YOUTUBE). We first de-
scribe both datasets (particularly, the acquisition
of the YOUTUBE dataset). After this, the concept
detection approach is briefly discussed, and exper-
imental results are provided. Finally, a discussion
of our results is given.

2. Datasets

To investigate how well a state-of-the-art con-
cept detector performs when trained on online
videos, we compare the same approach for two
sources of training data: first, the standard
TRECVID’08 development data with annotations
provided by the Chinese Academy of Sciences (re-
ferred to as TRECVID in the following). Sec-



Table 1. Queries for Training Set Acquisi-
tion from YouTube.

concept YouTube query YouTube
category
Classroom classroom &  school | -
-secret
Bridge bridge -crossing -ship Travel&Places
Em._Vehicle emergency & vehicle | Autos&Vehicles
-driver -ride
Dog dog Pets& Animals
Kitchen kitchen -knife -remodel | Howto&Style
Airplane flying airplane &  flying | Autos& Vehicles
-jefferson -indoor
-school -kids
Two_people two & people -sleepy | People&Blogs
-questions
Bus bus -van -suv -vw -ride | Autos& Vehicles
Driver car & vehicle & driver | Autos& Vehicles
-simulator
Cityscape cityscape  -slideshow | Travel&Places
-emakina
Harbor harbor & industry | -
& ship
Telephone phone & device -
Street street & paved -
Dem._Or_Prot| protesting -
Hand hand & daft -
Mountain mountain & panorama | Travel&Places
Nighttime by & night Travel&Places
Boat_Ship ship & (queen | free- | Autos& Vehicles
dom | royal)
Flower flower & (bouquet | | -
bloom )
Singing singing & (gospel | | -
choire)

ond, a dataset of video clips that was down-
loaded from YouTube, whereas video-level annota-
tions for training are taken from video descriptions
provided by YouTube users during upload (called
YOUTUBE).

A first interesting question is whether a suf-
ficient quantity of training data can be obtained
from YouTube. While the portal offers a tremen-
dous overall amount of video data (83.4 Mio. clips
by April 2008 [26]), it is not clear a priori how
much training material is actually available for typ-
ical target concepts, since the distribution of con-
cepts is highly biased towards popular tags (like
“funny”, “love”, or “girl”). To investigate how
much material is available for standard concepts,
we downloaded meta-data for up to 1000 video
clips per concept (this upper limit is imposed by
YouTube). From these clips, the number of shots
obtained per concept was estimated by assuming
4.8 shots per minute. Figure 1 plots the result for
the 20 concepts used in the TRECVID’08 evalua-
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Figure 1. Estimated quantity of training
shots obtainable from YouTube for the 20
TRECVID’08 concepts.

tion. It can be seen that a fair number of shots can
be obtained for most concepts (9146 on average).
This quantity is significantly higher than for the
TRECVID’08 standard set (avg. 481 annotations
per concept). Two outliers can be observed: for
the concept “emergency._vehicle”, only 2654 shots
are estimated. For the concept “two_people”, 21337
shots are obtained.

Video data from YouTube was acquired by simu-
lating queries to the YouTube API'. To improve the
quality of downloaded material, two refinements
were done manually (the exact list of final queries
is given in Table 1):

1. Videos at YouTube are organized in categories
like “Pets&Animals” or “Autos&Vehicles”.
For some concepts, a canonical category was
picked, and the download was restricted to
this category. For example, by restricting
the download for “bridge” to “Travel&Places”,
music videos like “Bridge over troubled Water”
by Simon& Garfunkel are filtered out.

2. Queries were refined according to a brief in-
spection of YouTube search results. For ex-
ample, for “mountain” the term “panorama”
was added, or for “kitchen” the term “knife”
was excluded, which was found to improve the
downloaded material.

To reduce the data load for training, we only
downloaded 100 videos per concept of up to 3 min-

Thttp:/ /www.youtube.com/dev



Figure 2. An illustration of randomly selected key frames from the TRECVID (top) and
YOUTUBE (bottom) training sets. The concepts are “mountain”, “cityscape”, “singing”, and
“telephone”. While the TRECVID dataset shows high annotation quality, the material down-
loaded from YouTube contains a significant amount of junk.

utes length. This gave a training set of about 42
hours length.

Sample keyframes for both training sets
(YOUTUBE and TRECVID) are illustrated in Fig-
ure 2. Generally, it can be seen that the YOUTUBE
data contains relevant material together with sig-
nificant amounts of junk. Also, a difference be-
tween concepts can be observed: our impression
is that training from YouTube works best for con-
cepts that YouTube users find interesting enough to
film, edit, and upload. For example, for the concept
“mountain” the YOUTUBE dataset contains lots of
panoramic views that make good training samples,
while for other concepts like “cityscape” many junk
frames can be found. For the concept “telephone”,
YouTube videos tagged with the concept tend to
show close-ups of phones, whereas TRECVID shots
show people telephoning. Here, though the concept
is represented well in both training sets, the appear-
ance differs due to a domain change between both
sets. Overall, however, it seems reasonable to as-
sume that at least some concepts can successfully
be learned from YouTube material.

3. Approach

The purpose of our TRECVID experiments is
to evaluate the same state-of-the-art concept de-
tection system when training on the standard
TRECVID development data and training on clips
downloaded from YouTube. Thereby, the concept

detection system uses a standard approach (SIFT
visual words + discriminative training). This ap-
proach has been demonstrated to work well in sev-
eral visual recognition tasks [7, 15, 9, 6], including
concept detection [22]. Further, in Runs 2 and 4,
a weighted sum fusion with other feature modal-
ities (color+texture and motion) is used. Details
are outlined in the following.

3.1 Keyframe Extraction

Instead of using only a single keyframe per shot,
we capture intra-shot diversity due to scene changes
and camera motion using an adaptive two-step ap-
proach (for further information, see [3]):

1. For the YOUTUBE data, shot boundary de-
tection is performed using an adaptive thresh-
olding over color descriptor differences [10].
For the TRECVID data, the standard shot
boundary reference was used.

2. Within each shot, a K-Means clustering is per-
formed over MPEG7 Color Layout Descrip-
tors [12] extracted from all frames. For each
cluster, the frame closest to the center is ex-
tracted as a keyframe. The number of clusters
is determined using the Bayesian Information
Criterion [16], which balances the number of
keyframes explaining the shot versus the fit-
ting error.



Using this method, we obtain ca. 3 keyframes on
average per shot, which corresponds to an overall
of 35,943 keyframes for the YOUTUBE training

set,
112

112,867 for the TRECVID training set, and
,301 for the TRECVID’08 test set.

3.2 Features

From all keyframes the following visual features

are

1.

extracted:

Visual Words (SIFT): Visual words are ex-
tracted by performing a dense regular sam-
pling of SIFT features [11] at several scales, ob-
taining ca. 3,600 features per keyframe. Fea-
tures are clustered to 2,000 visual words using
K-Means. The resulting “bag-of-visual-words”
descriptors are used with discriminative SVM
and maximum entropy classifiers (see Section
3.3), forming the core of all submitted runs.

Color+Texture: Optionally, a combination
with other feature modalities can be included.
For this purposes, simple descriptors for color
(8 x 8 x 8 RGB histograms) and texture (his-
tograms over Tamura features [19]) were ex-
tracted and concatenated in an early fusion.
These features are used with nearest neighbor
matching (see Section 3.3)

Motion: To capture discriminative motion
patterns, tiled histograms over MPEG-4 mo-
tion are extracted using the codec XViD?. Like
color+texture descriptors, these features are
combined with nearest neighbor matching (see
Section 3.3). For more details, please refer to
previous publications [20, 21].

3.3 Statistical Models

Three different statistical models are used:

Support Vector Machines: Support vector
machines (SVMs) are a standard approach for
concept detection and form the core of numer-
ous concept detection systems [23, 24]. We
used the LIBSVM [4] implementation with a
X2 kernel, which has empirically been demon-
strated to be a good choice for histogram fea-
tures [27]:

d 2 (=)?

K(z,y)=e 7 (1)

2

www.xvid.org

where d,2(.,.) is the x? distance. v and the
SVM cost of misclassifications C were esti-
mated separately for each concept using a grid
search over the 3-fold cross-validated average
precision. A problem is that training sets
are imbalanced, i.e. the number of negative
samples outnumbers the number of positive
ones. Those setups cause problems for many
classifiers, including SVMs [1]. To overcome
this problem, the dominant class is subsam-
pled to obtain roughly balanced training sets.
For the TRECVID based runs, 5 SVMs were
trained on small-scale training sets with 400
negative samples randomly sampled from the
TRECYVID set, and the results were fused us-
ing a simple averaging. For the YouTube-based
runs (where significantly more positive train-
ing samples were available), we used 3000 pos-
itive and 6000 negative training examples from
the YOUTUBE data set.

In all cases, SVM scores were mapped to prob-
ability estimates using the LIBSVM standard
implementation.

Maximum Entropy: As an alternative to
SVMs, we also test a different discriminative
approach based on the maximum entropy prin-
ciple, which has successfully been applied to
object recognition before [5]. The posterior is
modeled in a log-linear fashion:

500
P(t|£L') X exp (at + Z Atchc(x)> ’ (2)
c=1
where h¢(x) is entry number ¢ in the visual
word histogram for frame x. The parameters
{at, Ate} are estimated from a training set of
labeled frames using an iterative scaling algo-
rithm [5].

Nearest Neighbor Matching: For the
color+texture and motion features, a near-
est neighbor matching is used: given a
training set of features representing labeled
keyframes Y, we find the nearest neighbor
2’ = argminycy ||y — z||2 for keyframe z, and
the score for a tag t equals a vote for the tag
of this neighbor (to realize fast nearest neigh-
bor matching, an approximate search using a
kd-tree is used [14]):

P(t|z) := (L, t(z")) (3)
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Figure 3. Quantitative results for all IUPR runs (the first four runs are trained on the TRECVID’08
standard data, the last two on YouTube). Left: per-concept results. Right: the mean inferred

average precision per run.

3.4 Late Fusion

Finally, scores obtained from several keyframes
for each shot and feature scores for each keyframe
(in Runs 2 and 4) are fused (no inter-concept fusion
is done):

e Having several keyframes for each shot, the
corresponding scores are simply averaged, pro-
viding a single score for each shot and feature.

e For fusing different features, we perform a
weighted sum fusion whereas concept-specific
weights are learned using a grid search max-
imizing average precision on the TRECVID
2007 test set, using the TRECVID 2007 de-
vel set as training set. After re-training on the
TRECVID 2008 devel data, these weights are
used to fuse the different features into a final
concept score.

Results

We submitted a total of 6 runs: 4 runs trained
on the TRECVID data, 2 runs trained on data ob-
tained from YouTube:

1. A TUPR-TV-M In this run, we used the
maximum entropy approach in combination
with SIFT visual word features.

2. A_TUPR-TV-MF For this run, we fused the
scores from Run 1 with results of nearest neigh-

bor matching on color+texture and motion
features.

3. A TUPR-TV-S In contrast to Run 1, the
maximum entropy model was replaced with
SVMs.

4. A_TUPR-TV-SF The scores from Run 3 are
fused with the results of NN matching on the
color+texture and motion features.

5. c.IUPR-YOUTUBE-S Same as in Run 3
but using YOUTUBE data as a training
source.

6. c. IUPR-YOUTUBE-M Same as in Run 1
but using YOUTUBE data as training source.

Quantitative results are illustrated in Figure 3.
The YouTube-based detectors perform comparable
to standard detectors for a few concepts like “air-
plane” or “mountain”, but are overall outperformed
by the “specialized” systems trained on the stan-
dard training set, giving infMAPs of 2.1% (Max-
Ent) and 2.2% (SVMs) as opposed to 6.1% and
5.3% given by the standard training sets. An in-
depth inspection of TRECVID detection results re-
veals a major reason for this: for “dog”, the con-
cept for which the difference between YouTube and
standard detectors is the most significant, detection
results of a standard detector are illustrated in Fig-
ure 4. It can be seen that the TV08-based detector
uses redundant material appearing in both training
and testing and thus significantly outperforms the



Figure 4. Top: Detection results for the
concept “dog” for a TV08-based detec-
tor. Bottom: “Dog” training samples in
TV08. Obviously, the detector makes use
of redundant material appearing in both
training and testing, which is why it sig-
nificantly outperforms the YouTube-based
detector.

YouTube-based detector. Obviously, for the TV08
data similar findings hold as for the TVO05 data,
where 20% of the shots in are claimed to have du-
plicates in the training set [23]. This reveals that
a major reason for the higher performance of the
specialized detector is redundancy in the underly-
ing video dataset.

Figure 5 illustrates top detection results of the
YouTube-based detector. For all concepts, it can
be seen that the detectors are attracted by ma-
terial similar to the training samples in Figure 2.
For example, for “mountain” panoramic scenes are
detected and detection performance can be consid-
ered satisfying (quantitative results for this concept
are comparable to the TV08 detector). For “tele-
phone”, the system is attracted by close-ups of de-
vices and computer screens, which is similar to the
training content but gives poor quantitative scores.

5 Discussion

Our key result from our participation in
TRECVID’08’s High-level Features task is that
YouTube-based detectors give reasonable detection

Figure 5. Top detections of the YouTube-
based detector for the concepts “moun-
tain”, “cityscape”, “singing”, and “tele-
phone”.

results for some concepts, but are significantly out-
performed by the “specialized” systems trained on
the standard training set. We also demonstrate
that a major reason for this is that standard detec-
tors trained on TV08 make use of annotations in
the target domain and exploit redundancy in the
dataset.

This raises the question how YouTube videos
compare to standard training sets if applying con-
cept detectors to novel target domains unseen in
training. We currently investigate this question
in further experiments, as well as another issue,
namely whether the generalization capabilities of
detectors can be improved by combining current
standard training sets with material from YouTube.

6 Acknowledgements

This work was supported in part by the Deutsche
Forschungsgemeinschaft (DFG), project MOON-
VID (BR 2517/1-1).

References

[1] R. Akbani, S. Kwek, and N. Japkowicz. Apply-
ing Support Vector Machines to Imbalanced
Datasets. In Proc. Furop. Conf. Machine
Learning, pages 39-50, September 2004.

[2] S. Ayache and G. Quenot. Video Corpus An-
notation Using Active Learning. In FEurop.
Conf. on Information Retrieval, pages 187—
198, March 2008.



3]

Damian Borth, Adrian Ulges, Christian
Schulze, and Thomas M. Breuel. Keyframe
Extraction for Video Tagging and Summariza-
tion. In Proc. Informatiktage 2008, pages 45—
48, 2008.

C.-C. Chang and C.-J. Lin. LIBSVM: A Li-
brary for Support Vector Machines, 2001. Soft-
ware available at http://www.csie.ntu.edu.
tw/~cjlin/libsvm.

T. Deselaers, D. Keysers, and H. Ney. Discrim-
inative Training for Object Recognition Using
Image Patches. In Proc. Int. Conf. Computer
Viston and Pattern Recognition, pages 157—
162, June 2005.

T. Deselaers, L. Pimenidis, and H. Ney. Bag-
of-Visual-Words Models for Adult Image Clas-
sification and Filtering. In Proc. Int. Conf.
Pattern Recognition (accepted for publication),
December 2008.

M. Everingham, L. Van Gool,
Williams, J. Winn, and A. Zisser-
man. The PASCAL Visual Object
Classes Challenge 2007 (VOC2007) Re-
sults. Technical report, PASCAL Chal-
lenge Workshop. available from: http:
//www.pascal-network.org/challenges/

C. K. L

VOC/voc2007/workshop/index.html, Octo-
ber 2007.
A. Hauptmann, R. Yan, and W. Lin. How

many High-Level Concepts will Fill the Se-
mantic Gap in News Video Retrieval? In Proc.
Int. Conf. Image and Video Retrieval, pages
627-634, Jul 2007.

S. Lazebnik, C. Schmid, and J. Ponce. Beyond
Bags of Features: Spatial Pyramid Matching
for Recognizing Natural Scene Categories. In
Proc. Int. Conf. Computer Vision and Pattern
Recognition, pages 2169-2178, June 2006.

R. Lienhart. Reliable Transition Detection in
Videos: A Survey and Practitioner’s Guide.
Int. J. of Img. and Graph., 1(3):469-286, 2001.

D. Lowe. Distinctive Image Features from
Scale-Invariant Keypoints. Int. J. Comput.
Vis., 60(2):91-110, 2004.

B. Manjunath, J.-R. Ohm, V. Vasuvedan, and
A. Yamada. Color and Texture Descriptors.
IEEFE Trans. Circuits Systems for Video Tech-
nology, 11(6):703-715, 2001.

[13]

[20]

23]

M. Naphade, J. Smith, J. Tesic, S. Chang,
W. Hsu, L. Kennedy, A. Hauptmann, and
J. Curtis. Large-Scale Concept Ontology for
Multimedia. IEEE MultiMedia, 13(3):86-91,
2006.

R. Paredes and A. Perez-Cortes. Local Rep-
resentations and a Direct Voting Scheme for
Face Recognition. In Proc. Workshop on Pat-
tern Rec. and Inf. Systems, pages 71-79, July
2001.

P. Quelhas, F. Monay, J. Odobez, D. Gatica-
Perez, and T. Tuytelaars. A Thousand Words
in a Scene. IEEFE Trans. Pattern Analysis and
Machine Intelligence, 29(9):1575-1589, 2007.

G. Schwarz. Estimating the Dimension of a
Model. Ann. of Stat., 2(6):461-464, 1978.

A. Smeaton, P. Over, and W. Kraaij. Evalua-
tion Campaigns and TRECVid. In Int. Work-
shop Multimedia Information Retrieval, pages
321-330, New York, NY, USA, October 2006.

C. G. M. Snoek, M. Worring, J. C. van
Gemert, J. M. Geusebroek, and A. W. M.
Smeulders. The Challenge Problem for Auto-
mated Detection of 101 Semantic Concepts in
Multimedia. In Proc. Int. Conf. Multimedia,
pages 225—-226, October 2006.

H. Tamura, S. Mori, and T. Yamawaki. Textu-
ral Features Corresponding to Visual Percep-
tion. IEEE Trans. System, Man, Cybernetics,
8(6):460-472, 1978.

Adrian Ulges, Christian Schulze, Daniel Key-
sers, and Thomas M. Breuel. Content-
Based Video Tagging for Online Video Por-
tals. In Proc. MUSCLE/ImageCLEF Work-
shop, September 2007.

Adrian Ulges, Christian Schulze, Daniel Key-
sers, and Thomas M. Breuel. A System that
Learns to Tag Videos by Watching Youtube.
In Proc. Int. Conf. on Vision Systems, pages
415-424, May 2008.

K. van de Sande, T. Gevers, and C. Snoek. A
Comparison of Color Features for Visual Con-
cept Classification. In Proc. Int. Conf. Image
and Video Retrieval, pages 141-150, July 2008.

D. Wang, X. Liu, L. Luo, J. Li, and B. Zhang.
Video Diver: Generic Video Indexing with Di-
verse Features. In Proc. Int. Workshop Mul-



[25]

[26]

[27]

timedia Information Retrieval, pages 61-70,
September 2007.

A. Yanagawa, S.-F. Chang, L. Kennedy, and
W. Hsu. Columbia University’s Baseline De-
tectors for 374 LSCOM Semantic Visual Con-
cepts. Technical report, Columbia University,
March 2007.

Jun Yang and Alexander G. Hauptmann.
(Un)Reliability of video concept detection. In
Proc. Int. Conf. Image and Video Retrieval,
pages 85-94, July 2008.

”"Youtube”. in Wikipedia: The Free Ency-
clopedia; (Wikimedia Foundation Inc.) [en-
cyclopedia on-line]; available from http://

en.wikipedia.org/wiki/YouTube (retrieved:
Sep’08).

J. Zhang, M. Marszalek, S. Lazebnik, and
C. Schmid. Local Features and Kernels for
Classification of Texture and Object Cate-
gories: A Comprehensive Study. Int. J. Com-
put. Vis., 73(2):213-238, 2007.



