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ABSTRACT

This paper describes the MSRA experiments for TRECVID
2008. We performed the experiments in high-level feature ex-
traction and automatic search tasks. For high-level feature ex-
traction, we representatively investigated the benefit of global
and local low-level features by a variety of learning-based
methods, including supervised and semi-supervised learning
algorithms. For automatic search, we focused on text and vi-
sual baseline, query-independent learning, and various rerank-
ing methods.

Index Terms— support vector machines, bag of words,
semi-supervised learning, optimal multi-graph learning, trans-
ductive multi-label learning, video annotation, video search,
query-independent learning, search reranking.

1. INTRODUCTION

MSRA took part in two tasks and submitted six runs for high-
level feature extraction and five runs for automatic search task
in TRECVID 2008.

In high-level feature extraction, we focused on exploring
the benefit of both the global and local low-level features. We
leveraged nine types of global feature and two kinds of local
feature. We also studied the effectiveness of various learning-
based methods, such as semi-supervised learning methods:
optimal multi-graph semi-supervised learning (OMGSSL) [1]
and transductive multi-label learning (TML) [2], and super-
vised learning methods: bag of words (BoW) [3] and the
baseline method support vector machine (SVM) [4]. As a
result, there are four classifiers adopted in high-level extrac-
tion. For each classifier, we trained different models on a
variety of low-level visual modalities (i.e., global and local
visual modalities), as well as different data splitting manners.
In total, we trained 58 different models. Then, based on dif-
ferent fusion strategies (i.e., linear, max, and average fusion)
of these models, we had 10 methods. Finally, we fused the
models and methods according to different fusion strategies
and submitted the following six runs. The pipeline of high-
level feature extraction is shown in Figure 1, including data

Table 1. The performances of six runs for feature extraction.
RUN ID MAP

A MSRA HLF 1 0.1103
A MSRA HLF 2 0.1101
A MSRA HLF 3 0.1089
A MSRA HLF 4 0.1008
A MSRA HLF 5 0.1021
A MSRA HLF 6 0.1101

preparation, modalities (i.e., low-level features), classifiers,
models, methods, and runs.

• A MSRA HLF 1: linear weighted fusion of all the 10
methods and 58 models.

• A MSRA HLF 2: linear weighted fusion of all the 15
methods.

• A MSRA HLF 3: linear weighted fusion of SVM re-
lated runs.

• A MSRA HLF 4: linear weighted fusion of the top 5
methods for each concept. The principle for selecting
methods is based on the performance over selection set.

• A MSRA HLF 5: linear weighted fusion of all the 58
models.

• A MSRA HLF 6: re-ranked results of A MSRA HLF 1
1.

The corresponding performances of high-level feature ex-
traction are listed in Table 1, in which we found that A MSRA
HLF 1 achieved the best MAP among the submitted six runs.

In automatic search, we focused on text and visual base-
line, query-independent learning and various reranking meth-
ods. The pipeline of automatic search is shown in Figure 2.
Finally, we submitted the following five runs:

1 We exploit GRF-based [5] reranking over the results of
A MSRA HLF 1.
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Fig. 1. The MSRA TRECVID 2008 high-level feature extraction pipeline. 2008—2008 data set, 2005—2005 data set, T—
training set, V—validation set, F—fusion set, S—selection set, C—only tuning parameter C in SVM, C+ and C−—tuning both
of two parameters for SVM.

Table 2. The performances of five runs for automatic search.
RUN ID MAP

F A 2 MSRA.TV8 1 (SEARCH 1) 0.0407
F A 2 MSRA.TV8 2 (SEARCH 2) 0.0407
F A 2 MSRA.TV8 3 (SEARCH 3) 0.0330
F A 1 MSRA.TV8 4 (SEARCH 4) 0.0180
F A 1 MSRA.TV8 5 (SEARCH 5) 0.0338

• F A 2 MSRA.TV8 1: linear weighted fusion of text
baseline and visual baseline, then temporal expansion
over the fusion results.

• F A 2 MSRA.TV8 2: linear weighted fusion of text
baseline and visual baseline.

• F A 2 MSRA.TV8 3: averaging fusion of Bayesian
reranking and MIIL reranking results over the text base-
line; then temporal expansion over the fusion results.

• F A 1 MSRA.TV8 4: text baseline. Averaging fusion
of results based on Okapi BM25 ranking function and
vector space models.

• F A 1 MSRA.TV8 5: visual baseline. Averaging fu-
sion of results based on query-dependent learning and
query-independent learning.
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Fig. 2. MSRA SEARCH automatic search pipeline.

The corresponding performances of automatic search are
listed in Table 2.

2. HIGH-LEVEL FEATURE EXTRACTION

2.1. Modalities (Low-level features)

For each key-frame, we extracted 11 types of low-level fea-
tures (referred to as “modality” in this notepaper), including
nine types of global feature and two kinds of local feature.

2.1.1. Global Feature

We extracted nine types of global feature, which characterize
the different properties of the key-frames, such as color, tex-
ture, and shape. Table 3 lists the detailed information of these
modalities.

2.1.2. Local Feature

We extracted two kinds of local feature, including Local Bi-
nary Patterns (LBP) [7] and Scale-Invariant Feature Trans-
form (SIFT) [8] feature. For LBP feature, we separated each
key-frame to 49 non-overlapped rectangles of size around 50×
40. For each rectangle, we extracted a 10-bin histogram of
LBP feature. These histograms were then concatenated to
form the feature vector. As a result, 490-D LBP features were
obtained for each sample. For SIFT feature, local patches are
extracted densely from the key-frames and translated to SIFT
descriptors. We extracted the patches centering on a regular
grid with spacing 10 pixels and calculated the descriptor of
each local patch. As a result, each key-frame is translated to
a set of local features. Since the main orientation of the sam-
pled local patches is unknown, for each sampled patch, we
used two orthogonal orientations as the main orientation and

concatenated the calculated descriptors, resulting in a vector
of 256 dimensions. Then the Principle Component Analysis
(PCA) was applied to transform the features to 80 dimensions
to reduce the computation and storage cost.

2.2. Classifiers on Global Feature

2.2.1. Support Vector Machine (SVM)

Implementation: SVM [4] was adopted as the baseline. Here
we adopt the late fusion strategy. Specifically, SVM was
trained in each of the eight global features described in Ta-
ble 3 except for “co-occurrence texture” modality. Then we
fused these eight models by linear weights. As a result, we
applied the following five methods: (1) SVM-C, (2) SVM-
C+C−, (3) SVM-C+10C−, (4) SVM-TVS-C+C−, and (5)
SVM-0805-C+C−.

We separated both TRECVID 2005 and 2008 develop-
ment set into four partitions including “Training,” “Valida-
tion,” “Fusion,” and “Selection” set. The detailed information
of data splitting, models and methods is described in Figure
8. We used RBF kernels in SVM, which have two primary
parameters: C (the cost parameter in soft-margin SVMs) and
γ (the width of the RBF function). The effectiveness of SVM
classifiers is highly subject to the selection of model parame-
ters. To address the unbalance problem, we set different cost
parameters for positive and negative samples, respectively.
Therefore, we considered three model parameters: C+ (the
cost parameter for the positive examples), C− (the cost pa-
rameter for the negative examples), and γ. In our method,
we assign the ratio C+

C− = N−
N+ or C+

C− = 10 × N−
N+ , where N+

and N− are the numbers of positive and negative training ex-
amples, respectively. Based on the “Validation” set shown in
Figure 1, we selected the best choice of these parameters.

2.2.2. Optimizing Multi-Graph Learning (OMGSSL)

Formulation: OMGSSL is a semi-supervised method to learn
from multiple graphs [1]. Suppose we have G graphs W1,W2,
· · · ,WG, the regularization framework is formulated as

Q(f, α)=
G∑

g=1

∑

i,j

αr
g


Wg,ij

∣∣∣∣∣
fi√
Dg,ii

− fj√
Dg,jj

∣∣∣∣∣

2

+µ
∑

i

|fi−Yi|2



[f, α] = arg minf,αQ(f, α), s.t.

G∑
g=1

αg = 1 (1)

Note that we have proposed to adopt multiple distance metrics
in [1]. However, in TRECVID 2008 experiments, we have
only used L1 for simplicity. We generate M graphs from M
modalities and generate a graph to indicate temporal consis-
tency, i.e., G = M + 1.

Implementation: Eq. (1) can be solved in an EM-style
iterative way. But in [1], we have mentioned that when l is
not extremely small, we can derive an approximate solution



Table 3. Low-level feature (modalities)
Level Feature Dim Description
Global Auto-correlogram 144 36-bin color histogram based on 4 different distance k, i.e., k = 1,3,5,7.

ColorMoment3-by-3 81 Based on 3 by 3 division of images in Lab space
ColorMoment5-by-5 225 Based on 5 by 5 division of images in Lab space
ColorMoment7-by-7 441 Based on 7 by 7 division of images in Lab space
Co-occurrence Texture 16 The same feature as in [6]
Edge Distribution Histogram 75 The same feature as in [6]
Face 7 Face number, face area ratio, the position of the largest face
HSV Color Histogram 64 The same feature as in [6]
Wavelet PWT&TWT Texture 128 The same feature as in [6]

Local Local Binary Pattern 490 The feature proposed in [7]
Scale-Invariant Feature Transform 80 The feature proposed in [8]

which can reduce computational costs. Specifically, we first
compute αg

αg =

(
1

Y T LgY

) 1
r−1

G∑
g=1

(
1

Y T LgY

) 1
r−1

(2)

Then we compute f

f =




I +
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gµg

G∑
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αr
gLg
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g


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−1
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Analogous to that described in manifold-ranking, Eq. (3) can
be solved in an iterative way as follows.

1: Initialize f (t) where t = 0.
2: Update f by

f (t+1) =
1

1 +
∑G

g=1 αr
gµg

(
I−

G∑
g=1

αr
gLg

G∑
g=1

αr
g

)
f (t) +

µ

1 + µ
Y

3: Let t = t + 1, and then jump to step 2 until convergence.

Similar to the experiments described in [6], we constructed
experiments TRECVID 2008 data set. There are four parame-
ters should be tuned in this algorithm, including σg , µg , γ, and
A. The optimal parameter configuration was selected based
on “Validation” subset.

2.2.3. Transductive Multi-Label Learning (TML)

Formulation: TML [2] is a semi-supervised multi-label clas-
sification approach based on the discrete hidden Markov ran-
dom field model, which simultaneously models the labeling

consistency between the visually similar videos and the multi-
label interdependence for each video in an integrated frame-
work. It aims to find a labeling such that the multi-label in-
terdependence over the unlabeled data points is coherent with
that over the labeled ones. TML formulates the multi-label
interdependence as a pairwise Markov random field model,
in which all the combinations of relations, including the co-
positive, co-negative, and cross-positive relations, are explored.
In [2], the potential function over all the edges on the dHMRF
is defined as:

Pr(Y) = 1
Z Pr0(Yl) Prλ

s (Y) Pr1−λ
d (Yu)

= 1
Z

∏
i∈L,c∈C Pr(yic)

∏
c∈C,(i,j)∈εc

s
ϕλ(yic, yjc)∏

i∈U,α,β∈C φ1−λ(yiα, yiβ)
(4)

Such potential faction simultaneously captures the compati-
bility with pre-labeling, consistency over local labeling, and
independence among multiple labels.

Implementation: The solution to transductive multi-label
classification is found as the joint maximum,

Y∗ = arg max
Y

Pr(Y) (5)

The optimization of Eq. (5) is performed by combining two
optimization methods for discrete hidden Markov random field:
tree-reweighted message passing and graph cuts.

2.3. Classifiers on Local Feature

We learned SVM classifiers based on the LBP features ac-
cording to the experiment setting described in Sectionr̃efsec:svm
For SIFT feature, we adopted the Bag of Words method [3].
For each key-frame, we transformed the bag of sift features to
a 400-bin histogram. These histograms were regarded as the
visual features and were fed into SVM to learn the classifiers.
The algorithmic parameters were tuned on the “Validation”
subset.



2.4. Experimental Results

Figure 3 shows the AP performance of MSRA HLF six runs
submitted to TRECVID 2008 for each concept. Figure 4
shows the overview of top 70 high-level feature extraction
runs submitted to TRECVID 2008, ranked according to MAP.
The black bars correspond to the performances of MSRA HLF.

3. AUTOMATIC SEARCH

MSRA team continued its effort on automatic search and sub-
mitted five automatic runs, including text baseline (only us-
ing the text information), visual baseline (using no text infor-
mation) and three reranking or fusion runs. The automatic
search system again consists of several main components, in-
cluding query pre-processing and query analysis, uni-modal
search, multimodal fusion and re-ranking. The framework
of the search system is shown as Figure 2. By analyzing
and pre-processing the query, the multimodal query (i.e., text,
key-frames and shot) are input to individual search models,
such as text-based and visual example-based model. More-
over, the related concepts to the given query are detected and
the concept-based model can be built. Then several search
re-ranking and fusion approaches are applied.

All runs were done at the shot level based on the master
shot boundary reference [9]. For the text baseline (SEARCH 4),
we only use the common ASR/MT without any reranking
methods. For the visual baseline (SEARCH 5), we use query
examples to build both query-dependent and query-independent
models [10], and combine the results predicted by the two
types of models in averaging way. We got the MAP score
of 0.0338 and 0.0180 for the text baseline and visual base-
line, respectively. After fusing the text baseline and visual
baseline in weighted averaging way, we achieved the MAP
score of 0.0407 (SEARCH 2). Furthermore, we tried sev-
eral reranking methods over the text baseline, including the
temporal expansion [6], Bayesian reranking [11] and MIIL
reranking [12]. We simply averaging of these reranking re-
sults and got the MAP score of 0.0330 (SEARCH 3), which
improves the text baseline 23.7%. We also apply the tempo-
ral expansion on the fusion results of text and visual baseline
(SEARCH 2), the final MAP score is 0.0407 (SEARCH 1) -
the same as the initial MAP score.

3.1. Ranking/ reranking for video search

This year we emphasized various video search and reranking
methods, including query-dependent learning, query-independent
learning [10], Bayesian reranking [11] and MIIL reranking
[12].

3.1.1. Query-dependent learning

Formulation: The learning-based video search aims to use
machine learning techniques to explicitly model the query se-

“Find shots in which a boat moves past.”Query ASRASRASRVideosQuery-Dependent Model“positive” “negative”sampling VideoSearch Results
Query-Document Pairs“Find shots in which a boat moves past.” ASRASRASRQuery-Independent Features“Find ...”Ground Truth:Query-Document Pairs“Find ...” ASRASR VideoSearch Results

Query-Dependent Learning
Query-Independent Learning

Query-Independent Model
Query-Independent Features

Fig. 5. The diagrams of query-dependent and query-
independent learning.

mantics. The search is posed as a classification problem, tar-
geting identifying a video shot relevant (i.e., “positive”) or
irrelevant (i.e., “negative”) to the given query. The query-
dependent learning aims to learn a model for each query. The
features used in the learning often represent the visual or tex-
tual attributes of video shots. The upside of Figure 5 illus-
trates the diagram of the query-dependent learning.

Implementation: We used the query examples as pseudo
positives and randomly sampled the shots as pseudo negative,
and then built 10 models for each query and then average the
predicted scores as the final results. We use SVM to train
the query models with RBF kernels. Due to the low number
of training samples, we had no validation dataset to choose
the optimal kernel parameters, i.e., C (the cost parameter in
soft-margin SVM) and γ (the width of the RBF function);
thus we selected global kernel parameters. The low-level fea-
tures we used are: color moments on a 5-by-5 fixed grid (225-
D), wavelet based textures (128-D) and edge distribution his-
togram (75-D).

3.1.2. Query-independent learning

Formulation: Query-independent learning [10] takes each
query-shot pair as a sample, as shown in the downside of
Figure 5. The aim is to learn the relevance relation (relevant
or irrelevant) from these pairs. The features used in query-
independent learning should indicate the relevance relation
between query-shot pairs. In other word, the features mea-
suring such relevance relation are extracted from each query-
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shot pair, rather than from each query or shot. The common
relational features are as follows:

a)Visual term frequency (VTF): The more often query terms
occur in a shot; the more likely the shot is to be relevant to the
query. Visual term frequency is such a measure to relate query
and shot, it is given by:

V TF (i, j) =
∑Hj

k=1
vtf(i, j, k) (6)

where vtf(i, j, k) denotes the score of visual term tkj in shot
di. If the visual term is not the related concept of the shot, the
score is zero.

To produce other more effective features, we introduce
VIDF (Inverse visual document frequency). It was developed
based on the intuition that a query term which occurs in many
shot, like people is not a good discriminator.

V IDF (j) =
∑Hj

k=1 vidf(j, k)
=

∑Hj

k=1 log M+0.5
m(j,k)+0.5

(7)

where m(j, k) is the number of shots which visual term tkj
occurs in, 0.5 is a smoothing correction used to avoid denom-
inator equaling to 0. Note that VIDF is a constant value to the
same query.

b)Visual TFIDF, BM25 (VTFIDF,VBM25): Some features
obtained by combining VTF and VIDF, as well as the visual
document length dl(i) (i.e., the sum scores of all the related
concepts in shot di). For example, VTFIDF and VBM25 are
such kind of features, which are defined as:

V TFIDF (i, j) =
∑Hj

k=1
vtf(i, j, k)× vidf(j, k) (8)

V BM25(i, j) =
∑Hj

k=1

vtf(i, j, k)× vidf(j, k)× (a + 1)

a× (1− b + b× ndl(i)) + vtf(i, j, k)
(9)

where ndl(i) is normalized visual document length, defined
with the average length of visual documents d̄l: ndl(i) =
dl(i)/d̄l. a and b are tuning constants.

c)Visual query term distribution (VQD): For a query con-
tains multiple visual terms, the more different terms occur in



a shot, the more likely it is relevant to the query. VQD is de-
fined as the number of different query terms occurrences in a
shot.

V QD(i, j) =
∑Hj

k=1
q(i, j, k) (10)

where q(i, j, k) is a binary function to indicate whether visual
term tkj occurs in visual document di.

Implementation: We took log(x + 1.0) function on all
the relational feature values in order to reduce the effects of
large numbers, where x is the original feature values. Then,
we also exploited SVM with RBF kernels to train the mod-
els. TRECVID 2007 test set were used for validation, while
TRECVID 2005 and TRECVID 2006 were used for training.
The models were built upon training set while the parame-
ters (C and γ) were tuned in validation set. Thus we had two
results, and then fused them in average.

3.1.3. Bayesian reranking

Formulation: In Bayesian reranking method [11], with the
visual consistency assumption, reranking is explicitly formu-
lated into a global optimization problem. For a query q, when
given its top-N relevant samples (video shots){x1, x1, . . . , xN}
returned by the search engine and their initial text search re-
sult represented by the ranking score list r = [r1, r2, . . . , rN ]T

where ri is the ranking score of sample xi, 1 ≤ i ≤ N , the
optimal reranked score list r∗ is obtained by minimizing the
following energy function:

E(r) = Reg(G, r) + c ∗Dist(r, r) (11)

The first term in Eq.(11) is the regularization term which
penalizes the ranking score inconsistency between the visu-
ally similar samples while the second term is the ranking dis-
tance term which penalizes the derivation of the reranked re-
sult from the initial ranking. c is a trade-off parameter which
balances the influence of the two terms.

For the regularization term, a local kernel regularizer is
adopted to model multiple-wise visual consistency, Reg(G, r)
= rT RLr , RL is the local kernel regularization matrix.

In local kernel regularizer, for each sample xi, a local
learner oi(·) is trained locally with the data {(xj , rj)}xj∈Nei(xi)

,
where Nei(xi) denotes the set of xi’s neighboring samples.
xi’s ranking score can be predicted by this local learner. Then
the regularization term can be modeled by aggregating the lo-
cal learner’s prediction loss on each sample:

Reg(G, r) =
∑

i

(ri − oi(xi))
2 (12)

The kernel ridge regression is adopted to model the depen-
dencies between Nei(xi) and its score vector ri = [rj ]Txj∈Neg(xi)

, i.e., oi(x) = wT φ(x) . By solving this problem, we can get
w = Φi(ΦT

i Φi + λI)−1ri where Φi denotes matrix [φ(xj)]T

for xj ∈ Neg(xi). Then, for xj , the score predicted by its lo-
cal learner oi(·) is: oi(xi) = wT φ(xi) = kT (λI+K)−1ri =

βT
i ri. k is a vector with kj = φ(xi)T φ(xtj ) = k(xi, xtj ) and

K is a matrix with kmn = φ(xtm)T φ(xtn) = k(xtm , xtn) ,
j, m, n = 1, 2, . . . , |Nei(xi)| and xtj

, xtm
, xtn

∈ Nei(xi)
with tp is the subscript of the p-th sample in Nei(xi). Then,
the local kernel learning regularizer is formulated as:

Reg(G, r) =
∑
i

(ri − oi(xi))
2

=
∑
i

(
ri − βT

i ri

)2 = rT RLr
(13)

where βT
i = kT (λI + K)−1, RL = (I − B)T (I − B) and

B = [bij ]N×N , bij equals the corresponding element of βi if
xj ∈ Nei(xi), otherwise bij = 0.

For the distance term, a point-wise distance is adopted for
the ranking distance Dist(r, r) = (r− r)T (r− r).

With these two terms, a closed-form solution for r is de-
rived as:

r = (RL + C)−1Cr (14)

where C = diag(c1, c2, . . . , CN ) with ci = c for all samples.
Implementation: For each query, we only reranked the

top 1,400 video shots returned by the text search engines. The
initial text search ranking score list r is set according to the
Normalized Rank strategy given in [11]. Then, the reranked
score list r can be calculated as r = (RL+C)−1Cr. The final
ranking list is obtained by sorting r with descending order.

3.1.4. MIIL reranking

Formulation: Conventional supervised reranking approaches
empirically convert the reranking as a classification problem
in which each document is determined relevant or not, fol-
lowed by reordering the documents according to the confi-
dence scores of classification. In fact, reranking can be also
viewed as an optimization problem in which the ranked list is
globally optimal if any two arbitrary documents from the list
are correctly ranked in terms of relevance.

MIIL reranking [12] directly optimize video search rerank-
ing from a viewpoint of information theory, that is, to iden-
tify an optimal set of correctly-ranked document pairs which
maximally preserves the relevant information Y + and simul-
taneously carries the irrelevant information Y − as little as
possible. Let t be an element of the pair set T̃ , the mutual
information between t and Y ( Y + or Y − ), I(t, Y ) is de-
fined as:

I(t, Y ) = p(t, Y ) log p(t,Y )
p(t)×p(Y )

=
∑

y∈Y p(t, y) log p(t,y)
p(t)×p(y)

= p(t)
∑

y∈Y p(y|t) log p(y|t)
p(y)

(15)

The dual optimization task can be approached by maxi-
mizing the weighted difference:

L(T̃ ) =
∑

t∈T̃ L(t)
=

∑
t∈T̃ I(t, Y +)− λI(t, Y −)

(16)



where L(t) = I(t, Y +)− λI(t, Y −), λ determines the trade-
off between preservation of the relevant information Y + and
loss of the irrelevant information Y −. Thus the reranking cri-
terion is given by:

T̃ ∗ = arg max
T̃⊂T

L(T̃ ) (17)

When the optimal pair set T̃ ∗ is obtained, a round robin
criterion is introduced to obtain the final reranked list Z =
F (T ∗). Specifically, if tij (i.e., xi Â xj) is an element of
the optimal pair set T̃ ∗, we assign a vote to xi. Conversely,
the prediction xj Â xi would be considered as a vote for
xj . Then add all the votes assigned to each sample, and the
samples are finally ranked in descending order of the sum of
the votes they are assigned.

To solve the above optimization problem defined in Equa-
tion (17), we represent the relevant/irrelevant information as a
set of concept detections. The prior distribution of concept y,
p(y), is estimated by the distribution of training data of con-
cept detection, and the posterior probability of pair samples
p(y|tij) and the prior distribution of pair samples p(tij) are
defined as:

p(y|tij) =
1

1 + e−m×[f(xi,y)−f(xj ,y)]
(18)

p(tij) =
1

1 + e−n×[g(xi)−g(xj)]
(19)

where m and n determine the confidence of information learned
from query examples and the confidence of initial search re-
sults, respectively.

The mapping function f : X, Y → < and the initial
model g : X → < are defined as follows:

f(x, y) = detection score of sample x for concept y (20)

g(x) = order of sample x in initial ranked list (21)

Implementation: Inspired by the lossy information com-
pression theory, we can view reranking as “denoising” prob-
lem, such that “noise” is defined as the incompressible part
in the data while the compressible part defines the meaning-
ful information bearing signal [13]. Thus we select “the best
possible pair” at each round, and “the best possible pair” is
viewed as the compressed data which preserves the most rel-
evant information while excludes the most irrelevant informa-
tion. Let t(i) be the selected “the best possible pair” at the ith

round, T (i) be the current pair sample set and T (i+1) denote
the new pair sample set after the minus of several pairs in
T (i). The reranking can be formulated as:

t(i+1) = arg max
t∈T (i)

{I(t, Y +)− λI(t, Y −)} (22)

After pair selecting at each round, we map the selected
pair into the new ranked list. At the ith round, the two samples

of the selected pair are located at the rank i and rank N (0) −
i + 1 in the new ranked list Z.

The criterion presented in Equation (22) is equivalent to
finding the pair which has least information loss:

t(i+1) = arg min
t∈T (i)

{I(T (i), Y )− [I(t, Y +)− λI(t, Y −)]}
(23)

where I(T (i), Y ) = I(T (i), Y +)− λI(T (i), Y −), it is a con-
stant for each t ∈ T (i). Obviously, the information loss is
incremental with rounds increasing. Thus the reranking is
formulated as finding most confidential pairs via minimum in-
cremental information loss (MIIL).

3.2. Fusion method

The fusion methods used in this year include simple averag-
ing and weighted averaging fusion. For weighted averaging
fusion, we simply classified all the queries to four classes, i.e.,
“object,” “people-object,” “object-event” and “people-event,”
and then the weight for each class is validated using TRECVID
2007 test dataset and queries. The four classes are defined as
follows:

Object: queries for a certain type of objects, such as
“0225: a bridge” and “0250: an airplane exterior.”

People-object: queries for finding both objects and per-
sons, such as “0223: one or more people with one or more
horses” and “0229: one or more people where a body of wa-
ter can be seen.”

Object-event: queries for finding a scene, which contains
an event with one or more objects, such as “0236: waves
breaking onto rocks” and “0244: a vehicle approaching the
camera.”

People-event: queries for finding a scene, which contains
an event with one or more persons, such as “0221: a person
opening a door” and “0252: one or more people, each riding
a bicycle.”

We performed POS (Part-of-speech tagging) on the queries
with Tree-tagger [14][6]. POS represents the syntactic prop-
erty of a term, e.g., noun, verb, adjective, and so on. On the
other hand, we built a person-related terms lexicon, which
contains “people,” “person,” “man,” “woman,” “baby” and so
on.

By labeling each term of a query with POS tags and person-
related tag, we classified the queries only containing noun
tags but no person-related tags into “object,” queries contain-
ing noun and person-related tags into “people-object,” queries
containing noun and verb tags into “object-event,” queries
containing person-related and verb tags into “people-event.”

3.3. Experiments and Results

We submitted five automatic type A runs for search task. Fig-
ure 6 shows the performances of five submitted runs for au-
tomatic search. Our two baseline runs had the MAP scores
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Fig. 6. The AP performance of MSRA SEARCH five runs submitted to TRECVID 2008.
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Fig. 7. Overview of top 54 automatic runs of type A submitted to TRECVID 2008, ranked according to MAP. The black bars
correspond to the performances of MSRA SEARCH.

of 0.0338 and 0.0180, ranked in the top 12 and 27 among all
the type A automatic runs as shown in Figure 7, respectively.
When we introduced some reranking methods over the text
baseline (MAP:0.0180), we gain the MAP score of 0.0330.
When we fused text and visual baseline, we gain the MAP
score of 0.0407. Then we exploited temporal expansion over
the fused results, we found some topics have improved AP
and some topics have lower AP, the MAP score had no im-
provement.

4. CONCLUSIONS

We participated high-level feature extraction and automatic
search tasks in TRECVID 2008. In this paper, we have pre-
sented preliminary results and methods for these two tasks.
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Method 

ID 

Method 

Name 
Classifier 

Training 

Data 

 

Weights Model ID 
Model 

Name 

Modality 

(Low-level feature) 

Method 01 SVM-C SVM 

70% of 2008 
devel set (T);  

all the positive 
samples and 

about 30% 
negative samples 

are used for 

training. 

 

 

 

 

C+=C-=C 

Model 01-1 SVM-CM33 Color Moment 3-by-3 

Model 01-2 SVM-CM55 Color Moment 5-by-5 

Model 01-3 SVM-CM77 Color Moment 7-by-7 

Model 01-4 SVM-Auto Auto-correlogram 

Model 01-5 SVM-HSV HSV Color Histogram 

Model 01-6 SVM-EDH Edge Distribution 

Histogram Model 01-7 SVM-Wave Wavelet PWT-TWT 

Texture Model 01-8 SVM-Face Face 

Method 02 SVM-C+C- SVM 
70% of 2008 

devel set (T)  

 

 

 

 

C+/C- = N-/N+ 

Model 02-1 SVM-C+C--CM33 Color Moment 3-by-3 

Model 02-2 SVM-C+C--CM55 Color Moment 5-by-5 

Model 02-3 SVM-C+C--CM77 Color Moment 7-by-7 

Model 02-4 SVM-C+C--Auto Auto-correlogram 

Model 02-5 SVM-C+C--HSV HSV Color Histogram 

Model 02-6 SVM-C+C--EDH Edge Distribution 

Histogram Model 02-7 SVM-C+C--Wave Wavelet PWT-TWT 

Texture Model 02-8 SVM-C+C--Face Face 

Method 03 
SVM-

C+10C- SVM 
70% of 2008 

devel set (T)  

 

 

 

 

C+/C- = 10*N-

/N+ 

Model 03-1 SVM-C+10C--CM33 Color Moment 3-by-3 

Model 03-2 SVM- C+10C--CM55 Color Moment 5-by-5 

Model 03-3 SVM- C+10C--CM77 Color Moment 7-by-7 

Model 03-4 SVM- C+10C--Auto Auto-correlogram 

Model 03-5 SVM- C+10C--HSV HSV Color Histogram 

Model 03-6 SVM- C+10C--EDH Edge Distribution 

Histogram Model 03-7 SVM- C+10C--Wave Wavelet PWT-TWT 

Texture Model 03-8 SVM- C+10C--Face Face 

Method 04 
SVM-TVS- 

C+C- SVM 
90% of 2008 
devel set 

(T+V+S)  

 

 

 

 

C+/C- = N-/N+ 

Model 04-1 SVM-TVS -CM33 Color Moment 3-by-3 

Model 04-2 SVM-TVS -CM55 Color Moment 5-by-5 

Model 04-3 SVM-TVS -CM77 Color Moment 7-by-7 

Model 04-4 SVM-TVS -Auto Auto-correlogram 

Model 04-5 SVM-TVS -HSV HSV Color Histogram 

Model 04-6 SVM-TVS -EDH Edge Distribution 

Histogram Model 04-7 SVM-TVS -Wave Wavelet PWT-TWT 

Texture Model 04-8 SVM-TVS -Face Face 

Method 05 
SVM-0805- 

C+C- SVM 

70% of 2008 

devel set (T) and 
the positive 

samples over 

2005 devel set. 

 

 

 

 

C+/C- = N-/N+ 

Model 05-1 SVM-0805-CM33 Color Moment 3-by-3 

Model 05-2 SVM-0805-CM55 Color Moment 5-by-5 

Model 05-3 SVM-0805-CM77 Color Moment 7-by-7 

Model 05-4 SVM-0805-Auto Auto-correlogram 

Model 05-5 SVM-0805-HSV HSV Color Histogram 

Model 05-6 SVM-0805-EDH Edge Distribution 

Histogram Model 05-7 SVM-0805-Wave Wavelet PWT-TWT 

Texture Model 05-8 SVM-0805-Face Face 

Method 06 OMGSSL 

Optimal 

Multi-Graph 

Semi-

Surprised 

Learning 

(OMGSSL) 

70% of 2008 

devel set (T) 
C+/C- = N-/N+ 

Model 06-1 OMGSSL-CM33 Color Moment 3-by-3 

Model 06-2 OMGSSL-CM55 Color Moment 5-by-5 

Model 06-3 OMGSSL-CM77 Color Moment 7-by-7 

Model 06-4 OMGSSL-Auto Auto-correlogram 

Model 06-5 OMGSSL-HSV HSV Color Histogram 

Model 06-6 OMGSSL-EDH Edge Distribution 

Histogram Model 06-7 OMGSSL-Wave Wavelet PWT-TWT 

Texture 

Model 06-8 OMGSSL-CTF 

Concatenated feature, 

including Co-occurrence 

Texture and Face 

Method 07 TML 

Transductive 

Multi-Label 

Learning 

70% of 2008 

devel set (T)  

 

 

 

 

C+=C-=C 

Model 07-1 TML-CM33 Color Moment 3-by-3 

Model 07-2 TML -CM55 Color Moment 5-by-5 

Model 07-3 TML -CM77 Color Moment 7-by-7 

Model 07-4 TML -Auto Auto-correlogram 

Model 07-5 TML -HSV HSV Color Histogram 

Model 07-6 TML -EDH Edge Distribution 

Histogram Model 07-7 TML -Wave Wavelet PWT-TWT 

Texture 
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Method 08 SVM-LBP SVM 

70% of 2008 

devel set (T); all 

the positive 
samples and 

about 30% 

negative samples 

are used for 
training. 

 

 

 

 

C+=C-=C 
 

Model 08-1 SVM-LBP 
Local Binary Pattern 

Method 09 
SVM-TVS-

LBP 
SVM 

90% of 2008 
devel set (T + V 

+ S); all the 
positive samples 

and about 30% 

negative samples 

are used for 
training. 

 

 

 

 

C+=C-=C 
 

Model 09-1 SVM-TVS-LBP 
Local Binary Pattern 

Method 10 BoW-SIFT Bag of Words 

70% of 2008 
devel set (T); all 

the positive 

samples and 
about 30% 

negative samples 
are used for 

training. 
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Model 10-1 
BoW-SIFT Scale-Invariant Feature 

Transform 
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