NHK STRL at TRECVID 2008: High-Level Feature
Extraction and Surveillance Event Detection

Yoshihiko Kawai *
Masahiro Shibata

Masaki Takahashi
Nobuyuki Yagi

Masanori Sano Mabhito Fujii '
Noboru Babaguchi *

fScience and Technical Research Laboratories, NHK
1-10-11 Kinuta, Setagaya—ku, Tokyo, Japan
tOsaka University 2-1 Yamadaoka, Suita—shi, Osaka, Japan

1 Introduction
NHK Science and Technical Research Laboratories par-
ticipated in three tasks at TRECVID 2008: the high-level
feature extraction task, surveillance event detection task
and rushes summarization task. For the high-level fea-
ture extraction task, we used a method based on texture
features within blocks of the key frames. The method
attempts to reduce the effect of differences in the size or
position of objects by using several block sizes. We used
an ensemble learning algorithm called random forests to
classify the key frames. For surveillance event detection
tasks, we targeted three events: “Person Runs,” “Op-
posing Flow,” and “Elevator No Entry”. The proposed
method detected person regions based on differences in
the direction and length of motion vectors and com-
puted several features for each of the detected person
regions. The random forests method was used to deter-
mine whether the event occurred or not. For the rushes
summarization task, we used a novel method for select-
ing representative frames to remove redundancy. From
a broadcaster’s point of view, removing redundancy and
attaining a pleasant tempo/rhythm, as well as a good
recall ratio, are important. The method extracted rep-
resentative frames from each shot based on the motion
vectors and compared the extracted frames to remove
shots which contain duplicate scenes such as retakes.
This paper is organized as follows. Section 2 gives a
detailed description of the high-level feature extraction
method and the experimental results for it. Section 3
describes the surveillance event detection method and
the experimental results for it. We conclude in Section
4. The rushes summarization method was described in
detail at the ACM multimedia workshop [1]; thus, this
paper has no section about it.

2 High-level feature extraction

Figure 1 shows an overview of the method. First, the
method detects shot boundaries in the input video and
extracts frames at mid-point of each shot as key frames.
Then, each key frame is divided into blocks, and four

Color
moment Rendom | HLF#1
classifier | Restltlist
Edge direction
histogram r‘;g'r‘g? HLE #2
_| Keyframe| |Divisioniinto classifier | Resultlist
extraction | “|block regions
Gabor feature
Random | HLF#in
i Result list
Local binary classifier
pattern

Figure 1: Overview of high-level feature extraction.

Keyframe

Divede into block regio(N

/ / f
/ |
/] /’

/ | | ,
AR

(V11, V21, V22, ... V24, V31, ... V39, V41, ... V416, V51, ... V5.25)

Figure 2: Feature vector calculation for a frame.

different texture features are computed for each block.
The random forests method [2] based on the texture fea-
tures is used to determine whether the frame image has
a specific high-level feature or not. The random forests
classifier is trained for each type of high-level feature.
The output results list ranks frames in order of the index
value from the decision trees of random forests.

2.1 Texture features

The method divides a key frame into block regions, and
calculates texture features for each block to get a feature
vector. To decrease the effect of differences in size or po-

sition of objects in the frame, a combination of block sizes
from 1 x 1 to 5 x 5 are used. Figure 2 shows the method
for calculating feature vector for a frame. The sign v
represents the texture feature vector for each block, and
all of them are concatenated to form the feature vector
for the entire frame. Four types of texture feature that
have been demonstrated to be effective in earlier research
on TRECVID [3] were used: the color-moment feature,
the edge-direction histogram, the Gabor feature and the
local binary patterns [4].

2.1.1 Color moment feature

The color moment feature expresses the distribution of
color within the region. The method transforms the in-
put frame into the HSV color space and the Lab color
space and computes the mean pu, standard deviation o,
and the cube-root of skewness s, of pixel values for each
color component. Equations for these computations are
given below.

i S0 fely) (1)
1/2

{le SOS {elony) - uc}"’} (2)
. s 1/3

50 = {HW SN {fuley) - uc}?’} (3)

Here, f.(z,y) represents the pixel value of the color com-
ponent ¢ (¢ € {h,s,v,l,a,b}) at the coordinate position
(z,y), and H and W are the height and width of the
block. The values p., o¢, s. are calculated for each com-
ponent and concatenated to form the feature value.

He

Oc

2.1.2 Edge-direction histogram

The edge-direction histogram represents the distribution
of the edge orientation in the block. Our method creates
a frequency histogram with 37 bins: 36 bins for edge
direction quantized at five degrees in the range of -90
to +90 degrees and one bin for non-edge points. Each
element in the histogram is normalized to the number of
pixels in the block. A Sobel filter is used to detect edges.

2.1.3 Gabor feature

The Gabor feature expresses the frequency and direction
of gray-scale values in a small region. A Gabor filter g, »,
with resolution m and direction n is given by Equation

(4).
k(@ +y?) }

_ Ky
Imn(2,y) = —5 exp 572

| T | I

k., and 6,, are defined as follows.

M 0<n<K-1) (5)

{kmam 0<m<S-1)
K is the number of directions, S is the number of reso-
lutions, and a is the magnification. The Gabor filter in
Equation (4) is convolved with the block region, and the
mean and standard deviation of these values is taken as
the feature value. The convolution for the pixel at (z,y)
is shown in Equation (6).

wm,n(xvy):Zz.fg(i?j)'gm,n(i_mvj_y) (6)

Here, fy(z,y) represents the monochrome value for the
pixel at (z,y). The feature value based on the convolu-
tion result is computed using Equations (7) and (8).

1

g9
,um,n

1/2

We use S = 4, K = 6 for a total of 24 Gabor filters as
in [5], and create a feature vector by concatenating the
values, p, ,, and of, ,, for each filter.

2.1.4 Local binary patterns

The local binary patterns [4] express the patterns in rela-
tive brightness of surrounding pixels, relative to a target
pixel. Equation (9) shows how the local binary pattern
Lp r is computed from P pixels on a circumference of
radius R around the pixel (z,y).

LP,R(‘rv y)
P-1
— 26P7R(‘Tp7yp)7 Zf UP,R('T’ay)SQ (9)
p=0
P+1, otherwise

Here, 0p r expresses the relative brightness between the
target pixel (x,y) and a neighboring pixel (x+x,, ¥y +yp)
and is calculated according to Equation (10).

5P,R(Ip7 yp)
_]-7 f(z+xp7y+yp)7f(xay)20 (10)
0, otherwise

zp and y, are calculated as in Equation (11).

2mp
xszcos?
yp:Rsm?

Upr in Equation (9) gives the number of times dp g
changes from 0 to 1 or vice-versa; it is computed using
Equation (12).

UP,R(33>?J) = \5P,R($P—1,yp—1)|
P—1
+ Y 10pr(@p, yp) = 5pR(Tp1, Ypr)| (12)
p=1
Lpr(0 < Lpr < P+1) from Equation (9) is computed
for all pixels in the block region, and a frequency his-
togram of these values is used as the feature value. Our
method computes Lp r frequency histograms for three
parameter sets [4], (P,R) = (8,1), (16,2), and (24,3)
for scale invariance and concatenates the histograms to
obtain the feature value.

2.2 Random forests method

The random forests method [2] is used to determine
whether an input key frame has a specific high-level fea-
ture. Random forests is a kind of ensemble learning, and
it gives highly accurate classifications by using a com-
bination of decision trees (CART) [6]. Some researchers
assert that random forests is superior to methods such as
bagging or boosting in certain cases. In addition, random
forests can complete the learning process in a short time
even for high-dimension feature vectors by searching for
the best feature for the branching node in a subset of
vector elements.

The random forests algorithm works well when the
training data for two classes (having and not-having the
high-level feature) are roughly the same in number, but
the classification error is rather unbalanced when one
class is much larger than the other. The conventional
method [2] attempts to resolve the problem by apply-
ing a higher weight to the smaller class. However, the
bootstrap samples generated by the conventional method
contain few data with high weights and many data with
low weights, and this situation could cause over-training.
Thus, we devise a new sampling method for creating the
bootstrap samples; it ensures that each class is selected
with equal probability. The data is selected with replace-
ment and is not weighted. If the number of bootstrap
samples is small relative to the amount of training data,
various data are also selected from the minority class,
making it possible to generate a classifier capable of a
high level of generalization.

2.3 Experiments
2.3.1 Video data

The training data was about 100 hours of video data
from TRECVID 2007. It was supplied by the Nether-
lands Institute for Sound and Vision [7]. The content is
mainly documentary and educational programs and in-
cludes both color and black-and-white video. The frame
size is 352 x 288 pixels, the frame rate is 25 fps, and the
video is in MPEG-1 format.

Table 1: Settings of each run.
Run ID

[Trees [Frame division

1 NHKSTRL1 500 | 1 x 105 x 5 blocks
2 NHKSTRL2 | 250 | 1 x 105 x 5 blocks
3 NHKSTRL3 | 1000 | 1 x 105 x 5 blocks
4 NHKSTRL4 | 500 | 1 x 1 block
5 NHKSTRLS5 | 500 | 3 x 3 blocks
6 NHKSTRL6 | 500 | 5 x 5 blocks

Table 2: Experimental result of each run.

Run [Recall [Precision [F-value
1 14.4% 3.2% 0.052

2 14.1% 3.2% 0.051
3 14.5% 3.3% 0.053
4 12.4% 2.9% 0.046
5 13.8% 3.0% 0.049
6 11.3% 2.7% 0.044

Table 3: Mean infAP of each run.
Run [mean InfAP

1 1.3%
1.2%
1.3%
0.7%
1.2%
1.1%

| OY x| W

We manually assigned annotation data to the key
frames. The system training type is classified into cate-
gory B (only on the common dev. collection, not on the
common annotation). We also assigned an annotation to
all key frames extracted from TRECVID 2008 test data
to evaluate recall. The training data consisted of approx-
imately 33,000 key frames, while the test data was about
36,000 frames. The method from [8] was used to detect
shot boundaries for extracting key frames.

2.3.2 Experimental results

The six different parameter settings shown in Table 1
were used for the experiment. The total number of deci-
sion trees used in the random forests classifier was varied
in runs 1 to 3, and a single block size was used in runs
4 to 6. We evaluated the average recall and precision for
the 20 types of high-level features. Table 2 lists the re-
sults. Recall was in the range of 10 to 15%, and precision
was around 3%. Runs 1 to 3, which used five different
block sizes, resulted in higher values for recall and preci-
sion than did runs 4 to 6. These results indicate that the
effect of changes such as camera size can be reduced by
using several block sizes. Runs 1 to 3 did not show any
conclusive difference because of the number of decision
trees, but the F-value for run 3 was slightly higher than
for runs 1 and 2. The average recall in runs 4 to 6, where
only a single block size was used, were 1 to 2% lower than
those of runs 1 to 3.

Table 4: Results of high-level feature extraction (Run 3).

HLF | Recall [Precision
01 | 8% (23/207) | 1% (23/2000)
02 | 7% (20/ 267) | 1% (20/2000)
03 | 6% (5/ 80) | 0% (5/2000)
04 | 18% (18/ 99) | 1% (18/2000)
05 | 8% (21/252) | 1% (21/2000)
06 | 13% (10/ 75) | 1% (10/2000)
07 | 6% (196/3045) | 10% (196,/2000)
08 | 10% (7/ 70) | 0% (7/2000)
09 | 25% (60/ 241) | 3% (60,/2000)
10 | 17% (12/ 72) | 1% (12/2000)
11 | 29% (24/ 83) | 1% (24/2000)
12 | 7% (37/509) | 2% (37/2000)
13 | 11% (264/2460) | 13% (264/2000)
14 | 14% (23/ 164) | 1% (23/2000)
15 | 8% (113/1345) | 6% (113/2000)
16 | 20% (79/ 390) | 4% (79/2000)
17 | 20% (1417 487) | 7% (141,2000)
18 | 24% (84/351) | 4% (84/2000)
19 | 14% (86/ 600) | 4% (86/2000)
20 | 15% (71/ 486) | 4% (71/2000)

Table 3 shows evaluation results for the mean infAP
(inferred average precision) [9]. The evaluation was per-
formed by NIST. The mean infAP values were in the
range from 0.7 to 1.3%. The resulting precisions were
lower than our results in Table 2, because our system
was trained using the original annotation data, which
were different from the annotation data used in the eval-
uation by NIST.

We investigated the precision and recall for 20 types
of high-level features obtained in run 3, which had the
largest F-value. The results are shown in Table 4, and
examples of detected frames are shown in Figure 3.
The recall for features “9. Driver,” “l11. Harbor,” and
“17. Nighttime” were over 25%, which was high relative
to the other features. Factors contributing to the high re-
call could be the texture of the water surface for “11. Har-
bor,” and the brightness for “17. Nighttime”. Regarding
“9. Driver,” most of the frames in both the training data
and the test data have similar camera angles, which could
have increased the recall. Features “16. Mountain,” and
“18. Boat ship” also achieved recalls over 20%. Con-
versely, “1. Classroom,” “2. Bridge,” “3. Emergency ve-
hicle,” “5. Kitchen,” “7. Two People,” “12. Telephone,”
and “15. Hand,” all had low recalls (under 10%). These
high-level features encompass a variety of camera angles,
object sizes and types, and the texture features used in
our method are not adequate to identify them. It is nec-
essary to add other features such as physical shape or
feature points. Temporal features also may be useful.
Another reason for the low recall is that there were too
few positive examples in the training data. Note that
for “7. Two people” it may be useful to consider body

0.05

200 400

600
0.04¢ 1
800
1000
1200 1400 15y, 1800,

Precision

0 002 004 0.06 0.08 0.1 012 014
Recall

Figure 4: Recall-precision graph (Run 3).

or face detection algorithms, but this would involve fea-
ture values tailored to a specific high-level feature, which
would need to be studied in light of the generality of the
algorithm.

We also studied the relationship between recall and
precision. We examined the average recall and precision
for all 20 high-level features while changing the number
of selected top-ranked frames from 200 to 2000 frames,
in increments of 200 frames. Figure 4 shows the recall-
precision graph for run 3. The x-axis and the y-axis
represent recall and precision respectively, and each axis
is scaled to the range of the values. The recall was in the
range from 1 to 14%, while the precision ranged between
3 and 4%. This confirms that increasing the number of
selected frames results in an increase in recall.

3 Surveillance event detection

3.1 Overview

The surveillance event detection task involved automat-
ically extracting sequences containing specific types of
motion events within video from five surveillance cam-
eras set in an airport.

In analyzing video for certain motions, we isolated re-
gions containing people and then analyzed each of these
regions. It can be very difficult to correctly differentiate
between people within an airport because the traffic can
be very busy and people frequently cross in front of one
another. Color characteristics could be used to differen-
tiate people, but people wear clothes with various colors,
and two people wearing the same color would still be diffi-
cult to differentiate. Thus, we focus on differences in the
direction of motion and speed of persons, by computing
a motion vector from the optical flow and using it to seg-
ment the video image into regions for each person. We
focus on “Person Runs”, “Opposing Flow,” and “Eleva-
tor No Entry,” three events which seemed clearly related
to a person’s motion vector from the required events.

13. Street

10. Cityscape

16. Mountain

17. Nighttime

18. Boat ship

Figure 3: Example of extracted frames (Run 3).

Figure 5 shows the flowchart for our detection pro-
cess. The optical flow for the development video is first
computed, and this distribution is used to detect person
regions. Several image features are computed for each of
the detected person regions, and these feature values are
used by the random forests machine learning algorithm
to train classifiers for each event. To detect events, the
evaluation video is first processed in the same way as
the development video to extract feature values, and the
results are input to each classifier to determine whether
the event is present or not. If a given event is detected in
more than a threshold number of frames within a fixed
period of time, the event is determined to have occurred.

The details of each processing step are discussed in the
following sections.

3.2 Event recognition
3.2.1 Optical flow computation

The optical flow is a method for analyzing the motion
of objects; it uses brightness information in the video
and expresses the motion of objects as motion vectors.

tEvent #1

Person
regions
detection ||

_,[Optical flow
computaiton

tEvent #2

]

forests Event #n
classifier

Ratio of speed to area ‘

Figure 5: Overview of surveillance event detection.

Optical flows appear in any region in the image contain-
ing a moving object. Methods for computing the optical
flow can be broadly classified into gradient and block-
matching methods. For this study, we used the gradient
method of Lucas and Kanade [10], which has excellent
computational efficiency.

The gradient method derives the relationship between

Figure 6: Video containing the “Person Runs” action.

the time-space differential and the optical flow, under
the assumption that the brightness of an object does not
change as it moves, and it uses this relationship to esti-
mate the motion of objects in the video.

Let the brightness at a point (x,y) on the image at
time ¢ be I(z,y,t). After a small amount of time At,
the object will have moved by (Az, Ay). Assuming the
brightness has not changed, we can write:

I(z,y,t) = I(x + Az,y + Ay, t + At) (13)
A Taylor expansion of the right side gives:
ol ol oI
1 t)y=1 t)+Ar—+Ay—+At— 14

Here, e represents the higher-order terms due to
Ax, Ay, At, but if we ignore these, divide both sides by
At and let At — 0, we obtain the following relationship:

(VD) Tu+1, =0 (15)
Note that VI = (9£,91), u= (4%, 5¢) and I, = 4.

If we can assume that the optical flow u, is the same
for all points in a local region, we can estimate the u
which best fits the above relationship in terms of the
least-square error. That is, we minimize the least-square
error in a local region R:

E= > (VD u+1,)° (16)

(z,y)ER

and this can be done by multiple linear regression.

The above process is carried out for the whole screen in
order to obtain the optical flow for each frame. Figures
6 and 7 show a video sequence containing the “Person
Runs” event and the optical flow computed from the se-
quence. The lengths of the lines in Figure 7 represent the
motion vectors in the human region. It is clear that many
motion vectors having the same direction and magnitude
are generated in the region where the person is.

Regions containing people are extracted from fixed-
camera video using differential processing against the
background, but, depending on the camera, this extrac-
tion may be unreliable because changes in sunlight can
create significant changes in the brightness of the back-
ground. The optical flow uses differences between adja-
cent frames, so changes in brightness or color over longer

Figure 7: Optical flow.

= m T —;

2

Figure 9: Samples of features in person regions.

periods of time have no effect, and this allows person
regions to be extracted more reliably.

3.2.2 Detecting person regions and computing
feature values

Person regions are detected using the optical flow distri-
bution. Neighboring pixels with similar motion vectors
are aggregated and repeated to build up regions. Motion
vectors tend to be different for each person, so it is pos-
sible to extract separate regions for each person in the
video by using this method. The results of identifying
the person regions from the optical flow in Figure 7 are
shown in Figure 8. Different regions have been created
for each person, and regions moving in different direc-
tions are shown in different colors.

As shown in Figure 9, feature values with the following
13 dimensions are computed for each segmented region
on the basis of the image coordinates.

e Velocity [pizel/frame] (horizontal v,, vertical v,
horizontal speed |v,|, vertical speed |v,|, overall

speed |vgy| = /02 + v2)

e The position of the centroid of the region [pixel]
(horizontal p,, vertical p,)

e The area [pizel] (total number of pixels S in the
region)
e Width and height of the extracted region [pixel]

e Circularity, e = 4l7r25 (I is the length of the perimeter

of the region)

e Direction of motion [degree], § = tan

e Ratio of speed to area, v, = UT

3.2.3 Creating classifiers using machine learning

The random forests classifiers were created to identify
the specific actions using the 13-dimensional feature val-
ues computed as described above. The random forests
method is resistant to training-data noise, and it can
be used to compare feature values in terms of their sig-
nificance. There are many other possible learning algo-
rithms, such as a support vector machines (SVM) and
AdaBoost, but we use the random forests method for
this study because of its accuracy, speed, and significance
capability.

When classifying video, each of the decision trees de-
cides whether the event is present, and the event with
the most votes, including “no event,” is output. This
determination is done for each frame, and if an event is
detected in more than a certain number of frames within
a set time period, it is determined that the event has
occurred. For example, if the “Person Runs” event is
detected in more than 50 frames within a ten-second pe-
riod (250 frames), it is determined that a “Person Runs”
event has occurred.

3.3 Results and Discussion

Each of the classifiers was applied to the evaluation video
to detect each type of event. The results are listed in
Table 5. There were no references to the “Elevator No
Entry” event, so it could not be evaluated and is not
included in the table.

The recalls were higher than the precisions for both the
“Person Runs” and “Opposing Flow” events. The preci-
sion of the results were low, and this may be due to the
fact that we trained with the wide range of correct data,
and this resulted in more false alarms. In this study, we
created a single classifier for each type of event, but we
hope to reduce the incidence of false alarm in the future,
by creating some classifiers for each type of event, such
as for people in the foreground, the background, and for
children.

Schemes for improving the recalls are also needed.
Upon examination of the scenes not detected by the clas-
sifiers, we found that many of these scenes contained
large numbers of people, with individuals frequently be-
ing obstructed by others. This may have resulted in

Table 6: Comparison of classifier with single threshold
detection.

[Recall [Precision

78.6% 69.0%
60.2% 53.4%

Training-based classifier
Single threshold detection

incorrect feature values such as area, width, height, or
circularity. In this study, we computed the optical flow
image regions by using neighboring frames and then per-
formed event-detection independently on these image re-
gions, but in the future, we will need to consider analysis
along the time dimension as well, computing transitions
in parameters such as the area and shape and detecting
whether an obstruction occurs.

To verify the effect of training, we performed experi-
ments comparing the learning-algorithm classifiers with
single threshold decisions based on a speed feature value.
Examining only video sequences containing the “Person
Runs” events, we tested whether the regions containing
the “Person Runs” event could be detected in sequences
also containing many other people. Table 6 lists the re-
sults, with the classifiers yielding better results for both
precision and recall. This confirms that the learning al-
gorithm produced some positive effect.

Figures 10 and 11 compare the significances of the fea-
ture values, as computed by the random forests learn-
ing algorithm. For the “Person Runs” event, the feature
values related to absolute speed were most important,
followed by those related to area and position. This is
because the speed for “Person Runs” is faster than for
normal walking, but there is very little relation to the di-
rection of motion. On the other hand, the feature values
related to direction of motion and position were more im-
portant for the “Opposing Flow” events. This may have
been because there were a limited number of positions
and directions of motion for the applicable events.

The framework used here for extracting feature values
and detecting specific events through learning can be ex-
panded to include events besides those examined here.
In the future, we plan to study this framework further
with other event types.

4 Conclusion

This paper proposed a high-level feature extraction
method and surveillance event detection method. For
the high-level feature extraction, we calculated various
texture features in block regions of key frames and clas-
sified the frames with the random forests algorithm. To
reduce the effect of differences in the size or position of
the object, we used several block sizes for computing the
texture features. In experiments, the high-level feature
extraction method was more accurate than a method us-
ing a single block size. In the future, we will attempt
to increase the detection accuracy and study the use of
other features such as feature points, physical shape and

Table 5: Detection results using the evaluation video.

[Reference [Correct [False [Miss [Recall [Precision

“Person Runs” 314 81 1382 | 233 | 25.80% 5.86%
“Opposing Flow” 12 54 11 8.33% 1.85%
60 future.
50
40 References

30 -

20
10 -+

Widht
Height
Area

X Speed
Y Speed

X Position

Y Position
Circularity
Direction of motion
Speed/Area
Overall speed

X Speed(abs. val)

Y Speed(abs. val)

Figure 10: Significance of feature values for the “Person
Runs” action.

30
25

20
15

0 -

X Position

Y Position
Widht
Height
Circularity
Area
Speed/Area
Overall speed
X Speed

Y Speed

Direction of motion
X Speed(abs. val)
Y Speed(abs. val)

Figure 11: Significance of feature values for the “Oppos-
ing Flow” action.

positional relationships. We also plan to analyze tempo-
ral video features, such as motion vectors.

Regarding the surveillance event detection, we devised
a method for automatically detecting specific events
(“Person Runs,” “Opposing Flow,” and “Elevator No
Entry”) within video from fixed cameras set in an air-
port. We obtained motion vectors through the optical
flow computations and aggregate pixels having the same
vector into regions. We then decided whether these re-
gions represent specific actions on the basis of feature
values taken from the regions by using classifiers that
had been trained to detect the actions. In this study, we
developed classifiers for the above three actions, but our
framework, consisting of the feature value extraction and
learning methods, is applicable to other actions as well.
We plan to expand the range of actions detected in the

[1] M. Sano, Y. Kawai, N, Yagi and S. Satoh, “Video
rush summarization utilizing retake characteristics,”
TRECVID BBC Rushes Summarization Workshop at
ACM Multimedia, 2008.

[2] L. Breiman, “Random forests,”
vol.45, pp.5—32, 2001.

[3] TREC video retrieval evaluation,
http://wwwnlpir.nist.gov/projects/trecvid /

[4] T. Ojala M. Pietikaninen and T. Maenpaa, “Multireso-
lution gray-scale and rotation invariant texture classifi-
cation with local binary patterns,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol.24, no.7, pp.971—
987, 2002.

[5] B.S. Manjunath and W.Y. Ma, “Texture features for
browsing and retrieval of image data,” IEEE Trans. Pat-
tern Analysis and Machine Intelligence, vol.18, no.8,
pp-837-842, 1996.

[6] L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone,
“Classification and regression trees,” Wadsworth and
Brooks, 1984.

[7] http://portal.beeldengeluid.nl/

[8] Y. Kawai, H. Sumiyoshi, N. Yagi, “Shot boundary detec-
tion at TRECVID 2007,” In Proc. TRECVID Workshop,

2007.
9] E. Yilmaz and J.A. Aslam,“Estimating average pre-

cision with incomplete and imperfect judgments,” In

Proc. ACM International Conference on Information and
Knowledge Management,

[10] J-B. Shim, Y. Takeuchi, T. Mukai and N. Ohnishi, “Im-
proving the point correspondence accuracy of Kanade-
Lucas Method,” ITE Technical Report, vol.26, no.30, pp
67-72, 2002 (Japanese).

Machine Learning,

