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Abstract

The Oxford/IIIT team participated in the high-level feature

extraction and interactive search tasks. A vision only ap-

proach was used for both tasks, with no use of the text or

audio information.

For the high-level feature extraction task, we used two

different approaches, both based on a combination of visual

features. One used a SVM classifier using a linear combina-

tion of kernels, the other used a random forest classifier. For

both methods, we trained all high-level features using pub-

licly available annotations [3]. The advantage of the random

forest classifier is the speed of training and testing.

In addition, for the people feature, we took a more targeted

approach. We used a real-time face detector and an upper

body detector, in both cases running on every frame.

Our best performing submission, C OXVGG 1 1, which

used a rank fusion of our random forest and SVM approach,

achieved an mAP of 0.101 and was above the median for all

but one feature.

In the interactive search task, our team came third overall

with an mAP of 0.158. The system used was identical to last

year with the only change being a source of accurate upper

body detections.

1 High-level Feature Extraction

For the high-level feature task, we used two generic methods

which were run for all topics, and also used more special-

ized methods for the people features. These results were then

fused to create the final submission.

1.1 Generic Approaches

For the following approaches, we used a reduced subset of

MPEG i-frames from each shot, found by clustering i-frames

within a shot. Our approach here was to train a classifier

for the concept in question, then score all frames in the test

set using their distance from the discriminating hyper-plane.

We then subsequently ranked the test shots by the maximum

score over the reduced i-frames. We have developed two dif-

ferent methods for this task, each differing only in their clas-

sifier, but using the same features. The first uses a SVM clas-

sifier with a linear combination of kernels, with the weights

of the linear combination learnt for each class. The second

uses a multi-way classifier based on a random forest.

1.2 Feature descriptors

We have used different features to capture appearance, shape

and color. They are described in the following subsections.

1.2.1 Appearance

These descriptors consist of visual words which are com-

puted on a dense grid [7]. Here visual words are vector quan-

tized SIFT descriptors [20] which capture the local spatial

distribution of gradients.

Local appearance is captured by the visual words distri-

bution. SIFT descriptors are computed at points on a regular

grid with spacing M pixels. We have used gray level repre-

sentations for each image. At each grid point the descriptors

are computed over circular support patches with radii r. So,

each point is represented by four SIFT descriptors. These

dense features are vector quantized into visual words using

K-means clustering. Here, we have used a vocabulary of 300

words. Each images is now represented by a histogram of

these visual word occurrences.

Here we have used M = 5, K = 300 and radii r =
10, 15, 20, 25. In order to cope with empty patches, we zero

all SIFT descriptors with L2 norm below a threshold (200).

For the spatial layout representation which is inspired by

the pyramid representation of Lazebnik et.al. [18] , an image

is tiled into regions at multiple resolutions. A histogram of

visual words is computed for each image sub-region at each

resolution level.

Finally, the representation of an appearance descriptor

consists of a concatenation of these histograms into a single

vector which are referred to as Pyramid Histogram of Visual

Words (PHOW). Here, we have used 3 levels for the pyra-

mid representation. The distance between the two PHOW

descriptors reflects the extent to which the images contain



similar appearance and the extent to which the appearances

correspond in their spatial layout.

1.2.2 Shape

Local shape is represented by a histogram of edge orienta-

tions computed for each image sub-region, quantized into K
bins. Each bin in the histogram represents the number of

edges that have orientations within a certain angular range.

This kind of representation is similar to the bag of (visual)

words, where here each visual word is a quantization on edge

orientation.

Initially, edge contours are extracted using the Canny edge

detector. The oriented gradients are then computed using a

3×3 Sobel mask without Gaussian smoothing. We have used

K = 8 bins for an angular range of [0, 180]. The vote from

each contour point depends on its gradient magnitude, and is

distributed across neighboring oriented bins according to the

difference between the measured and actual bin orientation.

Finally the representation of Shape descriptor consists of

concatenation of these histograms in a single vector. This de-

scriptor is referred to as Pyramid Histogram of Oriented Gra-

dients (PHOG) [6, 10, 12]. Four pyramid levels were used

for this feature. Each level of PHOG is normalized to sum to

unity taking into account all the pyramid levels.

1.2.3 Color histogram

Another feature used is a colour histogram combined with a

spatial pyramid over the image to jointly encode global and

local information. This is similar to the descriptor proposed

in [9], except that we quantize colors more coarsely for all

the levels. We used 10, 8, 4 and 2 bins for a cell in levels from

0 to 3 respectively. These are appended to create the final

feature vector. We also used feature vector created without

decreasing the number of bins with levels.

1.3 Multiple Kernel SVM

To predict whether a key-frame from the test data belongs to

a category, we have used SVM classifiers which use a linear

combination of multiple kernels for merging different levels

of PHOW descriptor. Multiple kernels have been previously

used in [4, 28], and we follow the approach of [5]. The ker-

nels of different levels for two image regions i and j are com-

bined using the following formulation

K(i, j) =
∑

l∈L

γle−µlχ2(Hl(i),Hl(j)) (1)

where H l(i) is the histogram at level l, γl is the weight

for level l, and is constrained to be positive(γl ≥ 0).

The parameter µl is set to be 1/(2∗mean) value of the χ2

distances between the level l histograms over all the training

images.

Here the χ2 distance used is defined as follows:

χ2(p, q) =

N∑

i=1

(pi − qi)
2

pi + qi

(2)

The weights for descriptors at each level γl are learnt from

a training set for each high level feature (e.g. bridge, airplane)

by using the method presented in [28]. So, this leads to giv-

ing more weight to the more discriminative features, and also

includes not selecting the level of the feature if γl = 0. We

have used libSVM package for classification [11].

We have also used bootstrapped version of the above for

some of the runs using the following procedure:

Algorithm 1 Bootstrapped Multiple Kernel SVM

1) Prepare an initial classifier C0 by training on an ini-

tial training set Train0 consisting of all the positive key-

frames, and a subset of the negative key-frames.

2) Divide the set of positive key-frames in the training set

into subsets Pi’s where i = 1 to m, the set of negative

key-frames in the training set into subsets Ni’s where i =
1 to n.

for i = 1 to max(m, n) do

Classify the subsets Pi and Ni with the classifier Ci−1.

Add the incorrect samples to Traini−1 to get the up-

dated training set, Traini.

Compute the kernel matrix for the updated training set,

Traini.

Train a classifier Ci using an SVM with Multiple Ker-

nels.

end for

Here Pi is empty when i > m and Ni is empty when i > n.

Example results are shown in figures 2 and 3.

1.4 Random Forests

Random Forests were introduced in the machine learning

community by [1, 8]. They became popular in the computer

vision community from the work of Lepetit et al. [19, 23].

Many papers have applied them to various classification and

segmentation tasks [5, 21, 22, 25, 26, 31].

A random forest multi-way classifier consists of a number

of trees, with each tree grown using some form of random-

ization. The leaf nodes of each tree are labeled by estimates

of the posterior distribution over the image classes. Each in-

ternal node contains a test that splits the space of data to be

classified. An image is classified by sending it down every

tree and aggregating the reached leaf distributions. Figure 1

shows a Random Forest which consists of T trees.

Decision tree classifiers have shown problems related to

over-fitting and lack of generalization. Random Forests are



trained to alleviate such problems by: (i) injecting random-

ness into the training of the trees, and (ii) combining the out-

put of multiple randomized trees into a single classifier. Ran-

domness can be injected at two points during training: in sub-

sampling the training data so that each tree is grown using a

different subset; and in selecting the node tests. Two other

appealing features of Random forests which we require here

are: (i) probabilistic output and (ii) the seamless handling of

a large variety of visual features (e.g. color, texture, shape,

depth etc.). We use a combination of features for example,

PHOW + PHOG, PHOW + Color etc to train the classifier.

1.4.1 Training

One versus rest classifiers are trained for all the 20 concepts.

The trees we train here are binary and are constructed in a

top-down manner. For node test we have a node function

(difference of two components or single component of the

feature vector) and a threshold. During training of the tree

each node has available only a randomly chosen subset of

the entire pool of possible node functions (100 such functions

were chosen). Training is achieved by finding for each non-

terminal node a node function and a threshold which yields

maximum information gain within such restricted, random-

ized search space [5, 31]. We train 100 trees with maximum

allowed depth 10 and choose an optimal threshold from 10

randomly selected thresholds for each chosen node function.

To further inject randomness each tree is trained using 15000

randomly selected samples from the training data. Empirical

posterior distribution for the class is stored in the leaf nodes

as done in [5].

To combine the features, for each node test one type of

feature is randomly selected from the combination of fea-

tures. Similarly a pyramid level is selected randomly and the

node function is then chosen from the indices corresponding

to selected level of the selected feature.

Random Forest binary classifiers were trained for all the

classes using different combinations of features (PHOW or

PHOW + PHOG or PHOW + Color), pyramid levels and

node tests. The best combinations were obtained for each

concept by testing on TRECVID 2007 data.

1.4.2 Classification

The test image is passed down each random tree until it

reaches a leaf node. All the posterior probabilities are then

averaged and the arg max is taken as the classification of the

input image. Example results are shown in figures 4 and 5.

1.5 People

For the people feature two approaches that used every frame,

rather than only I-frames or key-frames, were employed.

Both are targeted on detecting people, one by their frontal

faces, the other by their upper bodies. In both cases the de-

tected person is “tracked” throughout a shot so that all the de-

tected instances are associated with a common identity. The

output is a count of the number of people in each shot, and

shots are ranked by their confidence for single people, two

people, etc.

1.5.1 Upper body detection

We describe here the approach used to detect upper bodies

and track them over time.

We start by detecting frontal upper bodies in every frame

separately, by using the method of Ferrari et al. [16] which

is based on the detector of Dalal and Triggs [12]. This ap-

proach slides a window over the image at various locations

and scales and classifies each as either an upper body or not.

The classifier is based on the spatial distributions of oriented

gradients.

At this point, the system is not aware how many people are

in the shot, and doesn’t know yet how they evolve over time.

For this purpose, we associate detections over time using a

graph clustering algorithm [17] to maximize the temporal

continuity of the detected bounding-boxes. Each of the re-

sulting tracks links detections of a different person, as shown

in figure 6. In this manner the number of (near frontal) people

in each can be determined quite reliably.

1.5.2 Face Detection

This section describes our face detection approach (for de-

tails see [2] which presents a real-time version of the method

described below). The aim here is to find video footage of

people where their face is visible with a low false positive

rate. The same processing pipeline is applied to all frames

of the training data and test data. In the training data, a very

high precision (99%) was achieved for low recalls (first 2000

shots).

Face detection and tracking. The first stage of process-

ing is frontal face detection which is done using the Viola-

Jones cascaded face detector [29]. When a new individual

has been detected, a kernel-based regressor is trained to track

that individual such that the tracking performance is both fast

and more robust to non-frontal faces in comparison to cas-

caded face detection [30]. Face detection is used to collect

several exemplars of an individual’s face which may vary

in pose and expression. A training set consisting of image

patches that are offset from the face center and at a slightly

different scale, and the respective transformations back to

the original face location and scale, are artificially gener-

ated from the face detections. This dataset is used to train

a kernel-based regressor to estimate the position (x, y) and

scale (w) of a face.

Feature localization. The output of the face tracker gives

an approximate location and scale of the face, but does not



Figure 1: Random Forest with T trees, leaf nodes are shown in green. Training samples are traversed from root to leaf nodes

and posterior distributions (blue) are computed. An Image is classified by descending each tree and then aggregating the

distributions at each reached leaf. The paths formed while descending are shown in yellow.

Figure 2: Top 10 results (distinct scenes) of Cityscape using Multiple Kernel SVM

Figure 3: Top 10 results (distinct scenes) of Mountain using Multiple Kernel SVM



Figure 4: Top 10 results (distinct scenes) of Hand using Random Forests

Figure 5: Top 10 results (distinct scenes) of Street using Random Forests

Figure 6: Upper body detections linked throughout a shot – the superimposed rectangle on each frame indicates the region

detected. The top row is an example containing a single person, and the lower row an example of two people. Using the

temporal continuity of the detections allows false positive detections to be rejected.



provide a confidence in this measure. To achieve a low false

positive rate, features at the corners of the eyes, nose and

mouth are located to verify the existence of a face. Where

multiple successive frames achieve a poor localization confi-

dence, the track is terminated.

To locate the features, a model combining a generative

model of the feature positions with a discriminative model of

the feature appearance is applied. The probability distribu-

tion over the joint position of the features is modelled using

a mixture of Gaussian trees, a Gaussian mixture model in

which the covariance of each component is restricted to form

a tree structure with each variable dependent on a single “par-

ent” variable. This model is an extension of the single tree

proposed in [15], and further details can be found in [13, 14].

Ranking face shots. The output of the face tracking sys-

tem is a set of face tracks for each shot that include the lo-

cation (x, y), scale (w) and confidence (c) of the face at each

frame in the track. This information is combined to get a

score (s) for each shot

si =
1

NT

∑

t∈T

∑

f∈Ft

cfwf . (3)

where T is the set of tracks in shot i which have had all faces

with a low confidence cf removed and are at least 15 frames

long, Ft is the set of faces in track t, wf is the width of the

face f and NT is the number of tracks in shot i. The final

confidence depends on the facial feature localization confi-

dence, and the size and position of the detected face. The

weights in the confidence measure are learnt from training

data.

2 Interactive Search

Our system for the interactive search was essentially the same

as last year. Unfortunately, due to a change in the rules that

was missed by the authors we took 15mins to answer each

query instead of 10mins (which is the new maximum). Our

results should be taken with this caveat in mind.

For interactive search, we use the ranked results obtained

from the high-level feature detection task coupled with some

external images, such as those supplied by NIST for each

query or images found from Google Image Search. These

external images are indexed in real-time and this allows us to

use a number of different expansion-search algorithms to har-

vest new shots similar to any i-frame in the database or an ex-

ternal image. Taken together with an extremely high-speed,

efficient interface, this allows us to answer queries quickly

and with high precision.

This year we came third with an mAP score of 0.158. This

was behind two entries from the University of Amsterdam.

We won/drew in 5 categories which were: “Find shots of

a person opening a door”, “Find shots of one or more ve-

hicles passing the camera”, “Find shots of waves breaking

onto rocks”, “Find shots of food and/or drinks on a table”

and “Find shots of one or more people, each in the process of

sitting down in a chair”.

Our expansion-search algorithms allow us to search for

images with similar textural layout (bag-of-words, image-

SIFT), similar colour layout (spatial colour histograms) or

which are nearly identical (near-duplicates). We also used the

output from the upper-body detector previously described.

The results of these detections were combined to give “N-

people” rankings, where a shot contained exactly N people.

This proved very useful for some queries.

2.1 (Spatial) texture and colour search

Texture-like search expansion was performed by pre-

computing the 20 most similar i-frames to each reduced i-

frame in the corpus using the bag-of-words representation

from the concept task with a χ2 distance measure. The user

also had access to a spatial texture expansion method, which

used a spatial pyramid based bag-of-words representation to

return images with similar structure [18].

We also implemented a global gradient orientation de-

scriptor similar to SIFT [20] to give more varied texture re-

sults for images.

For our colour expansion method we used a very fast

spatial colour histogram, used with success in our 2006 en-

try [24], with an L2 distance for measuring similarity.

2.2 Near duplicate detection

We also allowed the user to find near-duplicate scenes to

any i-frame in the corpus using a method described in [9].

This used a bag-of-words representation coupled with a min-

hash search algorithm to quickly compute an approximate set

overlap score.

2.3 User Interface

In designing a successful user-interface for TRECVid it is

important to specify which goals such an interface should

meet. The system must make it easy for a user to combine

the many different streams of data in an efficient and intuitive

manner. In our case, the main data sources were:

1. Bag-of-words concept rankings.

2. Face detections.

3. Upper body detections.

4. “N-people” detections. E.g. “exactly 2 people”, “ex-

actly 3 people”, etc.



Figure 7: BOW expansion on “text”. The query image is labelled 1, with the top 14 results shown.

Figure 8: Colour expansion on “mountain”.

Figure 9: Texture expansion on “crowd”.



5. Texture expansions.

6. Colour expansions.

7. Near-duplicate detections.

Inspired by the CrossBrowser approach [27], the main in-

terface view contains two axes (see figure 10). The x-axis

represents the temporal ordering of the shots in the corpus

and enables the user to move backwards and forwards in

time. The y-axis displays the rank ordering for the currently

loaded list. There is often a high level of temporal coherency

between subsequent shots and exploiting this is crucial to

good interactive performance. Frequently, in searching for-

wards and backwards from one relevant shot, the user would

find more shots relevant to the query.

As with last year we used a “temporal zoom” function fa-

cility which allowed the user to specify the temporal granu-

larity. Set to the finest level, the interface allowed the user to

do video “scrubbing” with the mouse, which is important for

answering the action queries in this year’s competition. Ad-

ditionally, every shot on the screen could be played at high

speed simultaneously. Surprisingly, it seems quite easy to

spot particular actions whilst viewing multiple videos.

The interface allows for rapid access to the data sources

mentioned in the following ways. Any of the pre-generated

results can be loaded into one of ten “live” lists in the system.

Lists can then be appended, trimmed or fused at will to give

the user a list which can be labelled (as correct or not for the

topic). Once some good examples have been found, the user

can then use any of the expansion methods to “grow” the pos-

itive examples. New external images could be dragged and

dropped onto the interface and then run through the various

expansion methods to generate extra results. We found that

using the external images provided by NIST for each query

gave some good initial results.
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