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Abstract

Our experiments in TRECVID 2008 include participation in the high-level feature extraction, automatic search, video summariza-
tion, and video copy detection tasks, using a common system framework.

In the high-level feature extraction task, we extended our last year’s experiments, which were based on SOM-based semantic
concept modeling followed by a post-processing stage utilizing the concepts’ temporal and inter-concept co-occurrences. We also
studied the effects of a more comprehensive feature selection and the inclusion of audio features and face detection. We submitted
the following six runs:
• A_PicSOM_1_6: Visual features, baseline feature selection
• A_PicSOM_2_2: Visual features, baseline feature selection, temporal context
• A_PicSOM_3_5: Visual features, extended feature selection
• A_PicSOM_4_4: All features, extended feature selection
• A_PicSOM_5_3: All features, extended feature selection, PRF
• A_PicSOM_6_1: All features, extended feature selection, temporal context
The results show that a more comprehensive feature selection can be useful, and that the temporal and inter-concept co-occurrence
analysis has the potential to improve the performance if good concept-wise post-processors can be chosen. The use of audio features
and face detection resulted in minor improvements.

In the search task, we again concentrated on the fully-automatic runs. We combined ASR/MT text search and concept-based
retrieval. If none of the concept models could be matched with the query, we used content-based retrieval based on the video
and image examples instead. We also experimented with topic-wise feature selection and the addition of face detection and
motion-based features. We submitted the following six fully-automatic runs:
• F_A_1_PicSOM_1_6: Required text search baseline
• F_A_1_PicSOM_2_5: Alternative visual baseline, only examples
• F_A_1_PicSOM_3_4: Alternative visual baseline, examples or concepts
• F_A_2_PicSOM_4_3: Text search + visual examples or concepts
• F_A_2_PicSOM_5_2: Text search + visual examples or concepts with feature selection
• F_A_2_PicSOM_6_1: Text search + visual examples or concepts with feature selection + additional features
The results show that the combination of concept-based retrieval and text search performed better than any of the single modalities
in the baseline runs. Concept-based feature selection and additional features, however, degraded the average results.

In BBC rushes summarization, we submitted one run which extended our last year’s approach consisting of initial shot
boundary detection followed by shot content analysis and similarity assessment and pruning. We included new detectors for
frames containing clapper boards, three different motion detectors, and a speech detector. The results of our summarization run
are quite close to the median in the fraction of ground-truth inclusions found and in redundancy, with somewhat shorter average
duration than the median. Our run’s performance was above the median on the amount of junk present and on tempo/rhythm.

For video copy detection, we submitted some preliminary experiments based on our algorithm for shot similarity determination
in video summarization. We used only the video modality.

I. INTRODUCTION

In this paper, we describe our experiments for the
TRECVID 2008 [1] evaluations. This year we participated
in the high-level feature extraction, automatic search, video
summarization, and video copy detection pilot tasks. The basic
system and methodology used in these experiments remains
similar to our previous participations since 2005.

In the high-level feature extraction task, we studied the
effects of a more comprehensive feature selection and the in-
clusion of audio features and face detection. For our automatic
search runs, we combined concept-based retrieval with text
search and experimented with topic-wise feature selection and
the addition of face detection and motion-based features. In
video summarization, we included new detectors for clapper
boards, motion, and speech.

The rest of this notebook paper is organized as follows.
The PicSOM system framework and the used visual and
textual content descriptors are briefly described in Section II.
Our experiments for the high-level feature extraction and
fully automatic search tasks are described in Sections III
and IV, respectively. Our approach and results in the video
summarization task are described in Section V. The video
copy detection experiments are discussed in Section VI and
conclusions are presented in Section VII.

II. INDEXING VIDEO WITH PICSOM

The PicSOM system [2] is a general framework for research
on content-based indexing and retrieval of visual objects.
For video material, the indexing is based on a multimodal
hierarchy for each video shot, which is in the standard setup



considered as the main or parent object. The associated
keyframes, the audio track, and ASR/MT text are linked as
children of the parent object. For a more detailed description
of the basic setup, see [3], [4].

We extracted in total 15 video and 17 still image (keyframe)
features from the Sound and Vision (S&V) material. From the
BBC rushes, we extracted three image features. For the high-
level feature extraction and search tasks, the keyframes were
extracted from the video shots in the master shot reference [5]
using a heuristic algorithm (see [6]). For video summarization
and video copy detection, we sampled the BBC rushes and
the S&V videos, respectively, at one keyframe per second.

Separate Self-Organizing Maps (SOMs) were trained for
each of the video and image features. The size of the used
SOMs was 64×64 map units in the video copy detection task
and 256×256 map units in all other tasks.

All used features are briefly described in Sections II-A to
II-D.

A. Image features

For the keyframes, we extract a large set of different
features. The extracted features include five MPEG-7 descrip-
tors implemented in the XM1 reference software, our own
implementations of four of the MPEG-7 descriptors, and seven
other image features (Average Color, Color Moments, Texture
Neighborhood, Edge Histogram, Edge Co-occurrence, Edge
Fourier, and Interest Points). See [6] for details of these
features.

B. Video features

On the video shot level, we used temporal versions of both
our own implementations of the four MPEG-7 descriptors
and the six non-standard still image features described above.
See [6] for details.

In addition, we extracted a motion feature KLT Histogram
based on tracked feature points using a public domain imple-
mentation2 of the Kanade-Lucas-Tomasi feature tracker [7].
For each frame, each feature point is classified either as
missed, static, or moving. The moving feature points are then
mapped into eight principal directions similarly as in [8]. In
addition, we use two relative directions, one toward the center
of the frame and one away from it, for detection of zoom-in
and zoom-out. This results in a twelve bin motion histogram,
which is used both as a statistical motion feature and a basis
for detectors of different types of motion (camera motion,
camera zoom, object motion) present.

C. Audio features

As audio features we used two different implementations of
the popular mel-scaled cepstral coefficients feature (MFCC),
which is the discrete cosine transform (DCT) applied to the
logarithm of the mel-scaled filter bank energies. The first
implementation MFCC1 takes 12 coefficients and these are
organized as a vector. Finally the total power of the signal is

1http://www.lis.ei.tum.de/research/bv/topics/mmdb/e mpeg7.html
2http://www.ces.clemson.edu/˜stb/klt/

appended to the vector giving a feature vector of length 13.
The second implementation MFCC2 is by the Muvis group
at Tampere University of Technology [9] and produces a 24
dimensional vector.

D. Text features

The Dutch automatic speech recognition (ASR) output [10]
was machine-translated (MT) to English. We used only the
English documents on the shot level. The ASR/MT output
was indexed using the Apache Lucene3 text search engine.
The Snowball stemmer included in Lucene was used with its
included default stop word list.

E. Additional detectors

For face detection, we used the Viola-Jones [11] face
detector implementation in OpenCV4 combined with a simple
skin color detector [12] based on the keyframes. We detect
shots with either one face, two faces, and three or more faces
in them. The face detector was utilized in high-level feature
extraction, automatic search, and video summarization.

In addition, we utilized a set of specific frame and shot
level content detectors for various purposes in the video
summarization task. These are described in Section V-A.

III. HIGH-LEVEL FEATURE EXTRACTION

In our experiments this year in the high-level feature
extraction task, we studied the effect of more exhaustive
feature selection for each of the modeled concepts. In addition,
we incorporated a similar temporal and inter-concept co-
occurrence analysis step as in last year’s experiments. Finally,
we included optionally two audio features, face detection, and
pseudo relevance feedback in the experiments.

Based on the last year’s results, we did not include any
text search results in the experiments as the visual-only
baseline performed considerably better. Also, we always used
a separate validation set for the selection of the algorithm used
in post-processing based on the temporal and inter-concept
co-occurrences, since including a validation set resulted in
slightly better performance in last year’s experiments. This
post-processing analysis is described in detail in [13].

The basic method for detecting semantic concepts is based
on modeling probability densities of the concepts using kernel-
based estimation of discrete class densities over the (256×256
map unit) SOM grids. See [3], [14] for more details. In
previous experiments, it has been observed that using the
SOM-based approach is efficient and highly scalable to large
ontologies, but does not quite reach the level of computation-
ally more complex discriminative methods such as SVMs.

In all runs, we used a triangle-shaped kernel whose size
was fixed to 8 units. Last year we observed that the modeling
performance is not particularly sensitive to the size of the
kernel. While the results can be slightly improved by using
the optimal size parameter for each concept separately, it is

3http://lucene.apache.org/
4http://opencv.willowgarage.com/



TABLE I
AN OVERVIEW OF THE RUNS IN THE HIGH-LEVEL FEATURE EXTRACTION

TASK. SEE TEXT FOR DETAILS.

feat. sel. tem- addit.
# run id sfs all poral feat PRF MIAP
1 A_PicSOM_1_6 • 0.0499
2 A_PicSOM_2_2 • • 0.0567
3 A_PicSOM_3_5 • 0.0561
4 A_PicSOM_4_4 • • 0.0566
5 A_PicSOM_5_3 • • • 0.0567
6 A_PicSOM_6_1 • • • 0.0568

2a additional run • oracle 0.0627
6a additional run • oracle • 0.0730

difficult to obtain these optimal values for the test data using
cross-validation in the development set.

The concepts were detected using the same procedure based
on the concept-wise ground-truth annotations gathered by
the organized collaborative annotation effort [15]. All our
submitted runs were of type A.

A. Overview of the submitted and additional runs

Table I gives an overview of the high-level feature extraction
runs. The columns refer to the type of feature selection
used, whether the temporal and inter-concept co-occurrence
analysis was applied, the presence or absence of two additional
features (two audio features and face detection output), and
whether pseudo relevance feedback was used. The rightmost
column lists the corresponding mean inferred average preci-
sion (MIAP) [16] values.

The first run can be considered as a baseline in which 26
visual features (all image and video features except the motion
feature) are used and selected with standard greedy feature
selection for each concept separately. Run 3 is also based on
the visual features but contains an extended feature selection
scheme described in Section III-B below.

In runs 4 and 5, the pool of available features is expanded
with two audio features and the face detectors. The extended
feature selection scheme was used in both runs. Run 5 also
contains a pseudo relevance feedback step in which the 20
initially retrieved best-scoring shots are marked as additional
relevant objects.

Runs 2 and 6 include the post-processing step based on
the temporal and inter-concept co-occurrences of the concepts,
with runs 1 and 4, respectively, as the starting points for the
analysis. For each concept, the used post-processing algorithm
was selected from a set of 18 possible algorithms using a
separate validation set [13]. Afterwards, we examined the
algorithm selection and the performance of the different post-
processors. In runs 2a and 6a, we repeat the submitted runs 2
and 6 but select the optimal (oracle) post-processing algorithm.

B. Feature selection and weighting

In our previous TRECVID experiments, the set of features
(and associated SOM indices) has been selected for each
concept separately using greedy sequential forward selection
as the feature selection scheme (see e.g. [3]). This year, we

studied the effects of using more exhaustive feature selection
algorithms. As the total number of potential features, i.e. 26 or
28, is rather high, a full exhaustive search of all combinations
becomes computationally too costly. Therefore, we apply three
alternative feature selection algorithms: sequential forward
search (sfs), sequential backward search (sbs), and exhaustive
search on a feature subset.

The sfs and sbs search types use the complete set of 26
visual features. Sfs starts with an empty set and in each
step adds the feature that increases the average precision the
most in two-fold cross validation in the development set. The
process stops when adding a new feature would decrease the
result. As a result on average 4.9 features were selected per
concept. Sbs conversely starts with the full set and proceeds
to remove features one by one according to the performance.
Naturally, this resulted in more features selected, on average
12 features per concept. Furthermore, we also performed an
exhaustive search, which checks all possible combinations of a
smaller subset of 12 features. These features were selected as
those that were most often selected by the sfs algorithm. The
exhaustive search resulted in 4.4 features per concept being
selected.

Finally we picked the feature set from the three algorithms’
results that worked best for each concept. In this way sfs
contributed 3 feature sets, sbs 9 sets and exhaustive search
8 sets, resulting in a total of 7.9 or 8.3 features per con-
cept without and with the additional features, respectively.
The most frequently selected features were Interest Points,
the temporal versions of Color Layout and Color Moments,
and both the still image and temporal versions of the Edge
Histogram feature.

The face detection outputs were included as external fea-
tures into the feature fusion stage. However, as the inherent
feature weighting mechanism of the system is not able to
automatically weight such externally provided features, the
corresponding concept-wise weights for the face detection
features were optimized separately using the development set.
In the end, this resulted in a non-zero weight only for the
concept 007: Two people.

C. Results

Figure 1 illustrates the mean inferred average precision
(MIAP) [16] values of our runs in the high-level feature
extraction task. The highest MIAP score of our submitted runs
was 0.0568 obtained with run 6, with runs 2, 4, and 5 having
almost equal performance. The median and maximum over all
161 type A submissions were 0.0477 and 0.167, respectively.
In addition, the concept-wise IAP values for all our submitted
runs along with the median and maximum values over all
submissions are illustrated in Figure 2.

First of all, an improvement of 12% resulting from the
more exhaustive feature selection scheme can be observed by
comparing runs 1 and 3.

Next, the temporal and inter-concept co-occurrences anal-
ysis notably improved the results when using only the sfs
feature selection (run 2 compared to run 1), but had little
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Fig. 2. The concept-wise IAP results of our submitted runs for each evaluated concept. The runs including the temporal co-occurrence analysis are drawn
as darker bars. The median and maximum values over all submissions are illustrated as horizontal lines.
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Fig. 1. MIAP values for our runs in the high-level feature extraction task;
the submitted runs shown as darker bars. The median of all submitted type
A runs in also shown for comparison.

effect when using the more exhaustive feature selection (run
6 compared to run 4). The latter result can be attributed to the
known problem of selecting a good post-processor for each
concept. This is illustrated by the relatively large differences
in MIAP values between the submitted runs 2 and 6 and the
additional runs 2a and 6a where the optimal post-processors
are used.

Of the additional features included in run 4, the MFCC1
audio feature was selected for six concepts, the MFCC2 feature
once, and the face detection feature once. However, the addi-
tional features noticeably improved the retrieval results only
with the concept 020: Singing where the two audio features
were employed and 007: Two people where face detection was
used.

In run 5, we also experimented with the inclusion of pseudo
relevance feedback, but its effect was rather negligible with all
concepts.

IV. AUTOMATIC SEARCH

For the search task, we submitted six automatic runs sum-
marized in Table II. All runs were trained only on common
TRECVID development data, thus qualifying them as type A
runs. The retrieval technique combines content-based retrieval
based on the image and video SOM indices with external text-
based search and semantic concept models [3], [4].

Runs 1–3 constitute the baseline runs using only either text-
based search (run 1) or the visual features (runs 2 and 3). Run
2 is based solely on content-based search with the provided
image and video examples whereas run 3 replaces the visual
examples with semantic concepts whenever one or more of
the concept models can be mapped to the query. Overall, of
the 48 topics defined for the automatic search task, 37 had
at least one mapped concept model. For the remaining 11
topics5, the visual examples are utilized and thus runs 2 and
3 are identical for these topics. This secondary use of visual
examples is shown with a “◦” in Table II.

Runs 4–6 combine both modalities. In run 4, the features
used with the concept models are pre-selected whereas in runs
5 and 6, the features used with the concept models are selected
based on the concept-wise feature selection results. Run 6
includes also additional features based on face detection and
motion (see Section II-B).

For completeness, we also show the remaining combinations
of the three search types as additional runs 7–9. Run 7
combines the text search (run 1) and example-based retrieval
(run 2), run 8 consists of content-based search using both
the visual examples and the semantic concepts, and run 9
combines all three types of search cues.

A. Text search

For text-based search, the topic-wise English queries were
analyzed using the Stanford part-of-speech tagger6 [17]. The

5topics 222, 228, 233, 240, 242, 243, 252, 262, 264, 266, and 268
6http://nlp.stanford.edu/software/tagger.shtml



TABLE II
AN OVERVIEW OF THE SEARCH TASK RUNS. SEE TEXT FOR DETAILS.

con- feat. addit.
# run id text visual cepts sel. feat. MIAP
1 F_A_1_PicSOM_1_6 • 0.0085
2 F_A_1_PicSOM_2_5 • 0.0116
3 F_A_1_PicSOM_3_4 ◦ • 0.0208
4 F_A_2_PicSOM_4_3 • ◦ • 0.0228
5 F_A_2_PicSOM_5_2 • ◦ • • 0.0199
6 F_A_2_PicSOM_6_1 • ◦ • • • 0.0189

7 additional run • • 0.0110
8 additional run • • 0.0222
9 additional run • • • 0.0187

nouns and verbs of each query were used as the text search
queries, expanded with synonyms using the WordNet [18]
package included in the Lucene search engine.

The ASR/MT documents were used on the shot level.
The shot-level retrieval results were spread to the temporally
neighboring shots using a triangular kernel of five shots in
width.

B. Feature selection for visual examples

The selection of features for content-based retrieval based
on the visual examples only is always somewhat problematic
since the number of examples is usually quite small. In
previous years, we have typically used a small fixed set of
features based on their frequency of appearance among the sets
of selected features in the high-level feature extraction runs.
This year we tried a new method which calculates a score for
each feature SOM depending on how well the examples are
grouped into tight clusters.

For each SOM, we calculate the pair-wise distances between
the best-matching units (BMUs) of the topic examples in
question. The distances are passed through a Gaussian kernel
function which gives a high score only for short distances and
scores approaching zero for long distances. The final suitability
score for the SOM is the average over all distances, giving
an indication of how many short pair-wise distances were
present in the BMU distribution on the SOM. This favors
SOMs trained on features that describe some shared property
of the topic examples, i.e. the examples end up into one or a
few tight clusters.

C. Feature selection for concept models

The sets of features used with the semantic concept models
were also selected for each topic in runs 5 and 6, whereas in
runs 3–4 the concept models used a fixed set of five features.
The most often selected features in the high-level feature
extraction task (Section III-B) were used as the fixed feature
set. The concept-wise feature selection in runs 5–6 was based
on aggregating the lists of concept-wise features of all used
concept models for each topic.

D. Semantic concept matching

The search topics were matched with the semantic concepts
to facilitate concept-model-based retrieval in runs 3–6. As the
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Fig. 3. MIAP values for our runs in the automatic search task. The baseline
runs (1–3) and the additional runs (7–9) are shown as lighter bars. The medians
of all type A baseline runs and all type A runs are also shown for comparison.

concept ontology, we used the 20 high-level features from
this year’s high-level feature extraction task and 33 of last
year’s high-level features. The concepts defined in the last
year’s experiments were trained using the 2007 training data.
In addition, keyframe-based face detection was used as an
additional feature in run 6. The matching of semantic concepts
to queries was based on a lexical analysis of the topic-wise
textual descriptions.

E. Results

The MIAP scores for our search runs are listed in Table II
and illustrated in Figure 3. The runs 1–3 are of the required
baseline type, among which the maximum and median over
all submissions were 0.0365 and 0.0083, respectively. Of our
baselines, the ASR/MT text search (run 1) had the worst
average performance, and the concept-based retrieval (run 3)
performed best. These experiments confirm our earlier results
that on average using semantic concepts for automatic search
works better than using the visual examples for content-based
retrieval, at least when using such a small number of examples
that are available in the TRECVID search topics. For this
reason, we preferred the semantic concepts in all subsequent
non-baseline runs.

All our runs used only the common TRECVID development
data, thus qualifying them as type A runs. Over all type
A automatic search submissions, the maximum and median
values were 0.0669 and 0.0174, respectively. The text search
and concept-based retrieval were combined in run 4, resulting
in the best overall performance among our search runs.

In run 5, the use of concept-wise feature selection for
the concept models degraded the results. This may be due
to the aggregation of the lists of concept-wise features for
all concepts. Better results might possibly be obtained by
using only the concept-wise selected features for each concept.
Likewise, the addition of face detection and motion features
in run 6 degraded the average results.



The additional runs 7–9 complete our experiments with the
remaining combinations of the three search types. The most
striking observation from these runs is the relatively low MIAP
score of run 9, in which all three types of search cues are used.
In that run the inclusion of the text search degrades the results,
while in run 4 the text search improves performance over the
concept-based retrieval.

V. VIDEO SUMMARIZATION

by content
shot rejection

by similarity
shot rejectionshot boundary

detection
clip

selection
summary
generation

Fig. 4. An overview of the video summarization algorithm.

We participated in the BBC rushes summarization task [19]
using an approach consisting of initial shot boundary detection
followed by shot content analysis and similarity assessment
and pruning. These stages are shown in Figure 4. The basic
method is similar to our last year’s summarization method,
which is described in more detail in [20].

This year we included new detectors for frames containing
clapper boards, three different motion detectors, and a speech
detector. We also replaced our SOM-based shot boundary
detection algorithm [21] with a simple thresholding of the pro-
portion of successfully tracked feature points (Section II-B). A
shot boundary corresponds to the case when the proportion of
tracked feature points that are lost is greater than a heuristically
set threshold. This simple approach works reasonably well
with the BBC rushes material as the shot boundaries are almost
always cuts.

A. Content detectors

We detect certain types of low and high-level concepts from
the rushes material using specialized detectors. To prevent
“junk concepts” from appearing in the summaries they are
detected and removed. Color bar test screens, black frames,
white frames and clapper boards are detected using the same
SOM-based algorithm as was used for the high-level features
in Section III. Small sets of hand-picked frames for each
concept were used as positive examples for training the
detectors.

The junk concept detection results in a score value for
each video frame. These frame-wise scores are then summed
in groups of 25 frames to produce a score for each second
of video. If this sum exceeds a certain threshold, the whole
second was marked as belonging to the concept. The value
of the threshold varies from concept to concept and was
determined by subjective judgement of the results in the
development set. Furthermore, the results were smoothed so
that if the previous and next seconds agreed on the detection
result, then the central second would have the same result. For
the clapper board detectors we used a further heuristic which
removed too short or too long sequences.

Based on thresholding the KLT Histogram feature, we detect
three types of motion: camera motion, camera zoom, and

object motion. As in previous tasks, we use the OpenCV face
detector for face detection.

A speech/non-speech classifier provided by the Speech
Group in our department at TKK7 was used for detection of
spoken content. The speech/non-speech detector is a hidden
Markov model (HMM) classifier where speech and non-speech
sounds are modelled as single states with 24 Gaussian com-
ponents. Insertion penalties are used in decoding to exclude
short speech or non-speech segments. Audio is represented
by the 13-dimensional MFCC feature used in the high-level
feature detection and search tasks. The audio features are used
with their first and second order differentials and treated with
cepstral mean subtraction (CMS) and maximum likelihood
linear transformation (MLLT). The classifier was trained for a
general setting, using training data of over 5 hours of television
news data from the Finnish Broadcasting Company (YLE).

After shot boundary detection, we prune the list of shots
by using the content detectors. Shots that contain detected
faces, speech, or object motion receive positive weight whereas
frames detected as color bars or black/white frames lead to
negative weight. The shots that score lower than a heuristically
set threshold are rejected from further processing. See [20] for
details.

These concept detectors are also used in the clip selection
stage.

B. Shot similarity pruning

We determine the novelty of a shot based on the shots’
visual contents using 256×256-sized SOMs trained with three
image features: Color Layout, Edge Co-occurrence, and Edge
Histogram. Unlike last year, we use common SOMs trained
with the development data for all test videos, instead of
training a separate SOM for the frames of each test video.
This considerably reduces the computational requirements of
the summarization algorithm.

In brief, the low-pass filtered BMU trajectory of the frames
within the shot constitutes the shot’s signature. We use trian-
gular kernels whose width is set to eight map units. In this
task, we ignore the temporal element and construct the shots’
signatures by averaging over the frame-wise distributions. The
shots are thus modeled as single discrete class densities over
the SOM grids. The similarity between two shots is measured
using Euclidean distance between the shot signatures.

The most similar shots are removed until both the 2% time
limit and an empirically set dissimilarity threshold are reached.
This additional threshold is used to reduce the number of shots
below the allowed limit of 2% if the remaining shots are still
deemed as too similar to each other.

C. Clip selection

A single representative clip of fixed length of one second is
selected from each remaining shot to the video summary. The
selection is based on scoring the frames within the shot and
finding the highest-scoring frame. This frame is then set as the
center frame of the one-second clip selected to the summary.

7http://www.cis.hut.fi/projects/speech/



TABLE III
AN OVERVIEW OF SELECTED SUMMARIZATION RESULTS. THE VALUES

ARE AVERAGES OVER ALL TEST VIDEOS (EXCEPT FOR MAX. DURATION).

Ours Min Median Max Baseline
Duration (DU) 24.0 13.6 28.1 31.8 31.3
Total time (TT) 36.6 22.6 41.4 59.6 59.6
Inclusion (IN) 0.45 0.07 0.45 0.83 0.83
Amount of junk (JU) 3.29 2.52 3.11 3.64 2.66
Redundancy (RE) 3.39 2.02 3.37 3.99 2.02
Tempo/rhythm (TE) 3.05 1.44 2.80 3.38 1.44
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Fig. 5. The average fraction of inclusions found vs. average duration of all
submitted summaries; our run shown as “•”, baseline run as “�”.

Initially, we favor frames near the center of the shot using
linear weighting. The score of frames containing detected
faces, speech, object motion, or camera motion is increased us-
ing heuristic weights. Correspondingly, scores for any frames
containing clapper boards or detected as colorbars, black
frames, or white frames are reduced.

The representative clips are then played at normal speed and
combined using temporal ordering and fade-outs and fade-ins
from black, with the audio track not included.

D. Results

An overview of our summarization results is given in
Table III. The shown measures are from the standard measures
provided by NIST and described in [19]. The two topmost
results (DU and TT) are measures of time (in seconds),
IN lists the fraction of ground-truth inclusions found in the
summaries, and the three remaining results are from the
assessor questionnaire with the range of 1–5 (5 being the
desired value in all cases). In can be observed that overall our
summarization algorithm obtained results quite close to the
median values. The fraction of ground-truth inclusions found
in our summaries (45% on average) was equal to the median of
all runs, with somewhat shorter times than the median values
on average duration and on total time spent on judging the
summaries. Of the subjective measures, our run performed
better than the median on the amount of junk present and on
tempo/rhythm, while the redundancy score was slightly over
the median.
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Fig. 6. The average fraction of inclusions found vs. average redundancy of
all submitted summaries; our run shown as “•”, baseline run as “�”.

It can be assumed that the amount of inclusions included
depends on the duration of the generated summaries and,
on the other hand, the amount of redundancy present in the
summaries. To illustrate these relations, Figures 5 and 6 show
plots of the average fractions of inclusions found over the
average values of durations and redundancy, respectively, for
all submissions. Our submission is highlighted as a filled bullet
and the baseline run provided by CMU is shown with a dia-
mond shape. The figures show a clear relation between these
measures as the summaries with high fractions of inclusions
found tend to have high time expenditure values, as was to
be expected. Similarly, the lack of redundancy correlates with
lower values of found ground-truth inclusions.

E. Discussion

Overall, our summarization algorithm showed rather aver-
age performance on both the objective and subjective mea-
sures. The algorithm pipeline shown in Figure 4 is rather
generic and it can be assumed that increased performance can
be obtained within the framework by improving the individual
processing stages. There are a number of ways to improve
the summarization algorithm. The used motion detectors were
rather crude, and the motion feature could also be used for
object segmentation. The playback speed in the summary
clips can be varied. As the baseline runs and a number of
other submissions to the summarization task have shown, fast-
forwarding can be useful. It is also possible to include the
temporal element in the shot similarity pruning stage and
compare the signatures of individual frames instead of an
aggregation of them. In fact, this is already applied in the
copy detection task (Section VI-A).

While the computational requirements were not a main
concern in these experiments, we obtained a considerable
speed-up in the algorithm. The time for overall summary
generation was 2 hours 44 minutes (corresponds to 6.2 times
real time). In last year’s experiments the average time was was
6 hours 17 minutes. The majority of the computational effort
was again spent on feature extraction.



test video

query video

matched location
Fig. 7. Matching a query video to a an original video from the test collection
in video copy detection.

VI. VIDEO COPY DETECTION

For the video copy detection pilot task we submitted ten-
tative runs based on our algorithm used for shot similarity
determination in the summarization task (c.f. Section V-B).
Our runs used only the video modality.

A. Method

Both the test video T and the query video Q are first
sampled at one keyframe per second. Let us assume that the
test video has LT and the query video LQ keyframes and that
LQ ≤ LT .

The LQ keyframes of the query video are aligned to every
LT − LQ + 1 possible positions in the test video so that
each keyframe has an aligned pair. The similarity of the query
video to the aligned position pT ∈ {0, 1, . . . , LT −LQ} in the
test video is then measured using the low-pass filtered BMU
signatures S of the keyframes. We use a triangular kernel of
four map units in width. Unlike in summarization, we compare
the aligned keyframes individually.

Due to the setup in the copy detection task where the actual
copied clip may only be a part of the query video, we compare
l ≤ LQ successive keyframes at a time and consider only the
best match. Again, there are LQ− l +1 possible positions pQ

for the matched location. The similarity of the query video to
the test video at position pT is thus

D(T,Q; pT ) = arg min
pQ

1
l

l−1∑
i=0

d(ST (i+pQ+pT ), SQ(i+pQ))

Figure 7 shows an example where the query video has been
aligned to two positions, pT = 0 and pT = 14, to the test
video. For the purpose of illustration, we use LQ = 7 and
l = 4 in the figure.

In the actual experiments, we used a concatenated signature
consisting of 64×64-sized SOMs trained with Color Layout
and Edge Histogram features and Euclidean distance metric
normalized to d ∈ [0, 1]. In these pilot experiments, we
used a fixed overlap of l = 20 frames and considered
only the best match between a query and test video, i.e.
D(T,Q) = arg minpT

D(T,Q; pT ). A detection was assumed
if 1−D(T,Q) > τ , where τ is an empirically set threshold.

B. Results

Due to the preliminary nature of the experiments and the
lack of training data, it was to be expected that the copy

detection results are modest. We submitted three runs which
differ only on the value of τ (τ = 0.1, 0.3, and 0.5). Of
the ten transformations, our runs had the smallest value of
minimal normalized Detection Cost Rate (min DCR=0.906)
for transformation 3 (insertion of pattern).

VII. CONCLUSIONS

All the experiments reported in this paper were performed
using a common framework for content-based indexing and
retrieval of visual objects. The basic functionality of the frame-
work has remained the same as in previous years’ experiments
and we have introduced new additions to the system each year.

In high-level feature extraction, the used approach shows
relatively good performance but fails to reach the level of
the state-of-the-art methods based on SVMs. The efficiency
and scalability of our approach, however, makes it feasible to
construct models for large sets of concepts such as the LSCOM
[22] ontology without high computational requirements.

The temporal and inter-concept co-occurrences can be used
to improve the results in a post-processing algorithm. The
selection of a suitable post-processor is, however, a difficult
problem requiring further attention.

In automatic search, the results validate our earlier obser-
vations that semantic concept detectors can be a considerable
asset in automatic video retrieval. However, it often turns out
that the selection of various parameters for each high-level
feature or search topic separately using the development set is
fairly inefficient and parameters optimized based on the whole
set of concepts or topics tend to generalize better to the test
set. Furthermore, the inclusion of additional features such as
audio features, face detection, or motion features had little
effect in the overall performance in the current setup.
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