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ABSTRACT

This paper describes experiments carried out by the
UC3M team for TRECVID 2008 high-level feature ex-
traction task. Being our first participation in TRECVID,
our goal this year has been to develop a modular system
to facilitate future developments and incorporation of
new functionality (feature extraction and classification
modules). We have basically carried out experiments
with two different kinds of classification technologies,
namely Support Vector Machines (SVMs) and Multi-
Task Learning (MTL), resulting in the following runs:

• SVM baseline: Scheme with late fusion and SVM
classifiers trained on the shot level, keyframe level,
and region level low-level descriptors.

• SVM with bal-SIFT: Similar to our SVM baseline,
but incorporating a different kind of region descrip-
tors using a balanced codeword.

• Bagging of SVM: Rather than using individual
SVM classifiers, multi-net bagging systems are
used.

• MLP-STL: Scheme with late fusion and Multi
Layer Perceptrons (MLP) trained individually for
each high-level concept. This run serves as a base-
line for the two following Multi-Task systems.

• Selective MLP-MTL: Incorporates Multi-Task
Learning, assigning all tasks the same importance.

• Selective MLP-MTL with priority: Multi-Task
Learning scheme, with focus on the individual
performance of each category.

The six submitted runs have achieved very similar per-
formance in terms of average InfAP, with results which
are slightly better or slightly worse than the median of
all submitted runs.

∗This work has been supported by Alcatel-Lucent (Spain) and
the Spanish Ministry of Science and Innovation under the i3Media
CENIT Research Contract.

1. INTRODUCTION

The main goal of our first participation in the TRECVID
high-level feature extraction (HFE) was to create a mod-
ular system architecture that allows for future develop-
ments in the years to come. In this way, in future versions
of our system we expect to be able to incorporate new
processing units in an easy way and, at the same time,
to take advantage of the previous years work.

As Figure 1 shows, the proposed system has four pro-
cessing steps: (1) a low level feature extraction layer, (2)
selection/extraction of the most adequate low-level fea-
tures (LF), (3) a supervised learning step, and (4) a late
fusion stage. The components of the first layer (denoted
as FE1,..., FEN in the figure) extract groups of low-
level descriptors at different levels: Shot Level features,
Keyframe Level features and Region Level features. Al-
though we have not considered early fusion for this year
system, it could be implemented by adding to this first
layer new modules which concatenate low level features
of different nature.

Once LF are extracted, there are different algorith-
mic approaches to reduce the dimensionality of this data,
either selecting the most appropriate features (feature se-
lection), or creating new ones (feature extraction). This
is the role of the second layer of our architecture, which
none of the systems presented to this year competition
implemented yet.

For each of the resulting features block and each of
the high-level features (HF), we train a system using the
labelled data resulting from the collaborative annotation
task [1], combining their confidences about the presence
or absence of the HF in a final late fusion process.

Following this general framework, our participation
in TRECVID consists of six different approaches, where
the differences between runs are mainly in the kind of
base classifiers employed. In particular, the submitted
runs can be classified in two groups according to the
kind of base learner employed:

1. Three of the six submitted runs have employed
Support Vector Machines (SVM) as base classi-



Fig. 1. HFE system modular architecture.

fiers. Namely, these three runs consist of a baseline
scheme and two improved schemes that incorpo-
rate either novel region level features or a Bagging
methodology.

2. The other three runs consist of the combination of
Multi Layer Perceptrons (MLP). As in the above
case, one of the runs is a baseline approach and
the other two are extensions based on Multi Task
Learning (MTL).

The rest of the paper is organized as follows: The
next section presents the Low Level Features that are
extracted from the video data. In Section 3, we describe
in detail the kind of base classifiers employed in each
run as well as their training process. Next, experimental
results are analyzed in Section 4. Finally, conclusions
and future work are included in Section 5.

2. LOW-LEVEL FEATURE EXTRACTION

High level feature extraction task relies on low-level fea-
tures generated from the audiovisual content. In our
system, low-level descriptors have been computed at dif-
ferent levels or granularities, namely (a) Shot Level fea-
tures, that capture content variation within a shot, (b)
Keyframe Level features, that describe image content on
each keyframe, and (c) Region Level features, that apply
spatial regionalization to detect and describe specially
discriminant areas in images.

2.1. Shot level features

Two shot level descriptors are extracted to model dy-
namic content within a shot. In particular, the proposed
system uses:

• Motion Activity (MA): this MPEG-7 descriptor [2]
provides a general categorization of motion within
a shot, modelling parameters such as motion inten-
sity, dominant orientation, and including spatial
regionalization to some extent.

• Mel-Frequency Cepstrum Coefficients (MFCC):
This set of features gives a description of the in-
band espectral energy present in the audio track
of a video shot. In our particular implementation,
39 components are extracted which include 12
MFCCs, the log-energy, 13 first-order derivatives
and 13 second-order derivatives. Information is ex-
tracted every 10 ms using an overlapping temporal
window of 30 ms.

2.2. Keyframe level features

Each keyframe extracted from the video content is de-
scribed by means of several image descriptors, namely:

• MPEG-7 visual descriptors: Color Layout (CL),
Color Structure (CS), Dominant Color (DC), Scal-
able Color (SC), Homogeneous Texture (HT), Edge
Histogram (EH) and Texture Browsing (TB). The
interested reader is referred to [2] for a complete
review of these descriptors.

• Color Auto-correlogram (AC): Color correlogram,
proposed in [3], extends the histogram by incorpo-
rating information about the spatial distribution
of pixels. Auto-correlogram is a particularization
of the correlogram that computes distributions of
pairs of pixels with the same color. In our imple-
mentation, the AC is extracted at several scales (1,
3, 5 and 7 pixels) using a 64 bins color quantiza-
tion.



• Gray Level Co-ocurrence Matrix (GLCM): pro-
posed in [4], the GLCM captures the spatial
relations that give place to textures at several
scales and orientations. Due to the complexity
and length of the GLCM, several measures have
been suggested in [4] to represent the matrix in
a compact form. In particular, our implementa-
tion uses the variance computed at each scale and
orientation to index the information.

• Gabor Wavelet (GW): In this descriptor a bank
of Gabor filters with various scales and rotations
is created using the Wavelet transform. Following
the implementation given in [5], the output of each
filter is employed to compute two measures, mean
and variance, that are then used for indexing.

2.3. Region level features

Some degree of regionalization has been also included in
our system. Using two affine covariant region detectors,
Hessian Affine Detector and Maximally Stable Extremal
Regions Detector (MSER) described in [6], a set of ellip-
tical regions is extracted for each keyframe. Then, each
region (also known as keypoint) is described using a 128-
dimensional SIFT descriptor [7], which has been found to
be very discriminative in several computer vision tasks.

Once the SIFT-based features have been extracted, a
Bag-of-words model is built which generates a codebook
of visual words. A simple clustering technique like K-
means has been used to compute those codewords that
seem to consistently appear in the video corpus. Then,
each image is vector-quantized so each region descrip-
tor is assigned to its closest codeword and a normalized
histogram of words is computed. This model allows the
system to work with fixed-length input vectors of size N
(N = 1500 in our implementation), which corresponds
to the size of the vocabulary.

Furthermore, we have experimented with the gener-
ation of codebooks, trying to incorporate spatial local-
ization of regions to some extent . The original bags-
of-words model, since it comes from text retrieval area,
does not explicity represent any spatial information while
visual documents actually tend to show a well-defined
spatial layout.

Furthermore, annotations in TRECVID training data
are given at shot/subshot level, so keypoint level labels
are not available. Since object-oriented concepts usu-
ally take place in small areas of the images, the basic
procedure that randomly samples keypoints from posi-
tive/negative keyframes will lead to unbalanced region
sets that contain a greater number of negative than pos-
itive samples. Unbalanced codebooks will then become
less discriminant when detecting specific concepts, since

many of the words will point to background areas rather
than to the concepts.

To avoid this issue, we have used an unsupervised
technique that generates labels at region/keypoint level
so that balanced sets can be employed to compute the
codebook. This technique is based on the well-known
Probabilistic Latent Semantic Analysis (PLSA) [8], but
it incorporates spatial localization of regions. Partic-
ularly, this approach classifies keypoints into two topics
(foreground and background) and separately models spa-
tial location of foreground and background as gaussian
and uniform distributions, respectively. Once the regions
are labeled, a balanced set with the same number of pos-
itive and negative samples is generated to compute the
codebook. A complete description of the unsupervised
labeling approach can be found in [9].

To distinguish between the two SIFT implementa-
tions, in the following we will refer to the former (i.e., the
one with unbalanced codebook) as un-SIFT features, and
to the latter (balanced codebook) as bal-SIFT features.

3. HIGH-LEVEL FEATURE EXTRACTION

For the HFE process we have relied on supervised clas-
sification techniques based on Support Vector Machines
(SVMs) and Multi Layer Perceptrons (MLPs). Basically,
the differences between runs reside on the specific kind
of base classifiers used, altough of all them follow the
same training process. Therefore, we start this section
by describing the settings shared by all runs, explaining
later the particularities of the runs based on SVMs and
on MLPs.

3.1. General settings

According to the general system description (Figure 1),
and taking into account that feature selection/extraction
procedures have not been implemented in this year sys-
tem, a different base classifier (either SVM or MLP) has
to be trained for each kind of LFs, and each high-level
label. However, some LFs have not been considered for
all categories, specifically:

• SIFT variables have only be extracted for cate-
gories: Bridge, Emergency Vehicle, Dog, Airplane
flying, Bus, Harbor, Telephone, Hand, Mountain,
Boat ship, and Flower. The reason for this is that
the codebooks necessary to generate the SIFTs
have only been created for the categories with
spatial localization.

• The audio data has been removed from the cate-
gories where the validation error was close to 50%.
Namely, the categories in which no audio informa-



tion is used are: Classroom, Two People, Hand,
and Flower.

• Motion activity (MA) features have only been used
by the SVM classifiers, given that the performance
of MLP learners generally degraded when consid-
ering them.

Before training any classifier, we have normalized in-
put variables to have zero mean and unitary standard
deviation. Furthermore, since the TRECVID data set
has many more negative patterns than positive ones, we
tried to compensate both classes before training the clas-
sifiers. For this purpose, we have first taken all positive
instances and a random subset of the negative ones. Sec-
ondly, the influence of positive and negative patterns on
the cost function used by the classifiers has been ad-
justed, so that both classes are assigned the same im-
portance during the training.

To adjust the free parameters of our models, we have
used a five fold cross validation process. To give the same
relevance to positive and negative classes, we separately
compute their classification error and, next, we average
them to obtain the average validation accuracy of the
classifier.

The late fusion process is implemented using a
weighted linear combination of the outputs of all classi-
fiers, using an hyperbolic tangent activation function at
the output of the combination. The combination weights
of such network are adjusted using a gradient descent
algorithm that minimizes the average overall accuracy,
assigning again the same importance to false positives
and false negatives.

3.2. SVM base learners

Three of the six runs use SVM with Gaussian kernel as
base classifiers. The LIBSVM toolbox available at [10]
has been employed to train these SVM classifiers. Their
free parameters (kernel dispersion and factor penalty)
have been selected following the cross-validation process
described above, allowing a maximum of 10 negative pat-
terns for each posive one in the training set. As pre-
viously explained, the effect of this unbalanced classes
representations was compensated by using different pe-
nalizations for both classes in the SVM functional.

Concretely, the submitted runs are:

• SVM baseline (“A UC3M 1 5”): This is our SVM
baseline scheme, in which each SVM is directly
trained with one of the sets of LFs described in
Section 2. For the region descriptors, we have used
un-SIFT features for our baseline.

• SVM with bal-SIFT (“A UC3M 2 3”): In contrast
to the previous run, this system used the balanced

codebook for the region descriptors, i.e., bal-SIFT
features are used instead of un-SIFT. Therefore, it
only differs from the baseline system in the SVMs
associated to the SIFT features (the remaining
SVM classifiers have not been retrained).

• Bagging of SVM (“A UC3M 3 1”): Due to each
SVM is trained with a subset of all the available
negative data, we have exploited the advantages
of Bagging methods [11] to increase the represen-
tation of negative samples in the training of the
classifiers. Then, rather than employing only one
SVM for each group of LFs, we have trained a
set of 10 SVMs (each one trained with a different
subsampled data set), averaging their outputs to
obtain the final classifier decision. In this way,
and according to the principles of bagging, we
should be able to reduce the variance of the er-
ror and improve the overall system performance.
Note that all SVM networks of this run use the
same kernel dispersion and penalization factors
cross-validated for the baseline system. There-
fore, no additional cross-validation was required.
For future systems, however, we will consider and
independent cross-validation of these parameters
when using bagging, since the settings that provide
optimal performance for an individual SVM do not
necessarily imply the best possible results of the
multi-net system.

For this third run, un-SIFT descriptors were used,
so that results could be directly compared to those
of the baseline system.

3.3. Multi-Task learning with MLP base learners

The sharing of training data among the different HF con-
cepts makes Multi-Task Learning (MTL) an interesting
approach to improve generalization in the case of lack
of training samples [12]. Since the number of positive
instances is highly unbalanced among the different high-
level concepts, we can use MTL to better exploit the
available data using inter-category relationships.

We have built our MTL base classifiers upon the
one-hidden layer MLP architecture proposed by Caruana
[13]. Under such an approach, tasks interact by shar-
ing all the hidden neurons and adding as many output
neurons as tasks to be solved. However, since the in-
ternal representation (hidden nodes) is the same for all
tasks, this approach becomes suboptimal when the tasks
are not closely related [14]. Therefore, as an attempt to
overcome a negative knowledge transfer among the high
level features, we add to the MLP-MTL network a set of
task-private hidden neurons, as illustrated in Figure 2,
so that the specific structure of each concept (unrelated
information) can be captured [15].



Fig. 2. Structure of MLP networks used for Multi-Task
Learning of high-level concepts.

Moreover, we try to discover the relation between the
multiple categories by adding a regularization term to
the standard MLP-MTL cost function. Thus, consider-
ing that we have T different categories and the labeled
training data set {(x1, y1t), ..., (xM , yMt)}

T

t=1, M being
the number of training instances, we can train the task
functions {ht}

T
t=1 minimizing the following regularized

cost function:
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where ρc and ρp are coupling parameters weighting the
output parameters wout

c,t and wout
p,t , respectively. In other

words, they weight the importance of the common and
private internal representations. For instance, when the
ratio ρc/ρp is low, cost function (1) tends to be the stan-
dard MLP-MTL (i.e., only shared hidden nodes are ac-
tive), whereas a large quotient strengthens the contri-
bution of private representations (in other words, cate-
gories tend to be independently solved). This approxi-
mation selectively transfers the information among tasks
(according to the coupling parameters); therefore, we will
call this framework Selective Multi-Task learning [16].

Each MTL base classifier simultaneously predicts the
20 TRECVID categories; therefore, its training provides
20 outputs in the second step of the system and the same
number of late fusions will be necessary to combine MTL
outputs for each category (see Figure 3). It is important
to point out that a previous task-level clustering of sim-
ilarity, e.g. according to the co-ocurrences of high level
features, could result in better performance; however,

Fig. 3. System architecture for the supervised learning
and late fusion layers when Multi-Task Learning is used.

time limitations have prevented us from trying it this
year.

We consider two different runs based on the MTL
scheme we have just described:

• Selective MLP-MTL (“A UC3M 16 2”): For this
run all tasks are considered equally significant. Pa-
rameters ρc and ρp have the same values for all the
categories, and are cross-validated according to the
average error over the 20 tasks.

• Selective MLP-MTL with priority (“A UC3M 20 4”):
We focus on the individual performance of each
category; i.e., ρc and ρp have different values for
each category.

Additionally, with the aim of analyzing the potential
advantages of both MLP-MTL approaches, we have de-
veloped the following baseline system using Single-Task
Learning (STL):

• MLP-STL (“A UC3M 12 6”): Each category is in-
dividually solved by a different MLP.

Unlike the SVM based systems, when using MTL we
have used a unique training dataset for all LFs and con-
cepts. To balance the positive and negative classes, these
three runs only take for the negative class the negative
instances that are positive, at least, in one of the other
categories. In this way, we have tried to keep in the
training set the most discriminative instances.

Model parameters to select by cross validation in the
MTL approaches are the number of hidden nodes in the
task-private and common parts (where, for simplicity, we
assume that both parts have the same size), and coupling
parameters ρc and ρp. In the STL model we only need
to validate the number of hidden nodes. Moreover, we
use in all the MLP approaches the same linearly decreas-
ing input and output learning rates, and an appropriate
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Fig. 4. Average InfAP of all our submitted runs. Results
are shown in comparison with the best performing run,
median, and 25th and 75th percentiles.

number of epochs according to a previous convergence
analysis.

4. PERFORMANCE EVALUATION

In this section we evaluate the performance of all six
runs in terms of InfAP. To start with, Figure 4 illustrates
the achieved InfAP averaged over the 20 high-level con-
cepts. The best result, median and the 25th and 75th
percentiles are also shown in the figure as a reference
for comparison. We can see that all runs achieve very
similar results, performing in all cases very close to the
median of all submitted runs.

Regarding the SVM based runs, it was the baseline
approach which got the highest InfAP, although differ-
ences in performance among these three runs are almost
negligible. Although we originally expected an improved
performance when using the bal-SIFT region descriptors,
our validation results (in terms of classification accuracy)
already suggested that a very small difference existed
between classifiers using un-SIFT and bal-SIFT. This is
also obvious when looking at the upper panel of Fig-
ure 5, which shows per class InfAP. We can see that
bal-SIFT features usually lead to a sligthly worse per-
formance, class Boat ship being the only exception. We
are currently thinking about some other ways of creating
balanced codewords that can improve the performance of
the classifiers.

Bagging of SVM was also unsuccessful to improve
the performance of the baseline. Although improvements
are ocassionally encountered in some categories, it is the
very poor performance of this approach in the category
Dog which is actually degrading somehow significantly
the performance of the run with bagging when compared
with the SVM baseline.

Regarding the MLP based approaches, the two ap-

proaches with MTL were able to improve the average
performance of the Single-Task run, although differences
in performance are too small to consider these results
conclusive. Selective MTL with priority generally per-
formed better than MTL with equally significant tasks,
both in average, but also when looking at per class re-
sults (lower panel of Figure 5).

As previously explained, we think that MTL perfor-
mance could be improved by a previous task-level clus-
tering of similarities, based on co-ocurrences of high-level
features. We will consider this possibility for next years,
as a way to prevent negative transfer of knowledge among
classes which are not related and, therefore, should not
be learnt together.

To conclude the section, we have compared in Fig-
ure 6 the results of the best performing SVM and MLP
based runs. SVM improvements are clear in classes Dog,
Two People, Bus, Driver, Telephone and Mountain, and
are responsible for the higher average InfAP. In contrast
to this, MLP-MTL with priority is only clearly superior
to the SVM baseline in two classes: Boat ship and Air-
plane. It would be interesting to analyze the performance
of Multi-Task schemes using other component networks
which are more powerful and easier to train than MLPs,
and we consider this as an interesting line for future re-
search.

5. CONCLUSIONS AND FURTHER WORK

In this document we have presented the architecture of
our system for high-level feature extraction, explaining
which are the modules which have been implemented so
far. Experiments this year have been focused on SVM
networks and Multi-Task learning. We have submitted
6 runs based on these technologies, achieving in all cases
average performances which are around the median of all
submitted runs.

For next years, we will consider the extension of these
schemes, further exploring the possibilities of Multi-Net
systems and Multi-Task learning. Feature extraction and
selection will also be explored as a way to reduce the
complexity of the system and the training of the classi-
fiers. Finally, we will also work on the development of
new low-level descriptors with the goal of reducing the
semantic gap with the high-level concepts.
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