

Learning TRECVID'08 High-level Features from YouTube

Adrian Ulges*, Markus Koch, Christian Schulze, Thomas M. Breuel

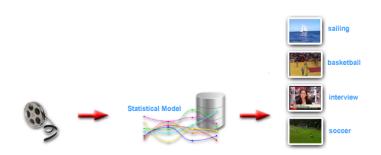
Image Understanding and Pattern Recognition DFKI & TU Kaiserslautern / Germany

2008/07/07

Outline

Motivation

Online Video Concept Detection


TRECVID'08 Experiments

More Experiments

Discussion

Concept Detection



Detection of generic semantic concepts in video

- objects ("US flag"), locations ("desert"), events ("interview")
- ▶ main application: video search

Concept Detection

Key issue - training data acquisition

▶ training sets must be large-scale and annotated

Ulges: CIVR'08 4 2008/07/07

Training Data: State-of-the-art

- high-quality manual annotations
- ► TRECVID [Smeaton06], MediamilI [Snoek06], LSCOM [naphade06], ...
- detectors exist for 100s of concepts

Training Data: State-of-the-art

- high-quality manual annotations
- ► TRECVID [Smeaton06], Mediamill [Snoek06], LSCOM [naphade06], ...
- detectors exist for 100s of concepts

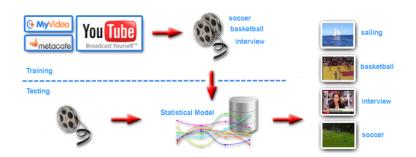
Limitations

- ▶ need to scale up further (1,000s of concepts [Hauptmann07])
- annotations are bound to a dataset
- annotations are static

Outline

Motivation

Online Video Concept Detection


TRECVID'08 Experiments

More Experiments

Discussion

Online Video Concept Detection

Idea: use online video as training data

- tags provided by users are used as annotations
- video taggers can learn autonomously

Online Video Concept Detection

Benefits

- scalability: can scale up to 1,000s of concepts
- flexibility: web community keeps content up-to-date

Online Video Concept Detection

Benefits

- scalability: can scale up to 1,000s of concepts
- ▶ flexibility: web community keeps content up-to-date

Problems

- web video is a mixture of domains with varying production style (TV news, home video, music clips, ...)
- annotations are coarse and weak
- (for benchmarking) potential mismatch between TRECVID and YouTube concepts.

YouTube

YouTube (filtered)

TRECVID 2008/07/07

How Well Do Concept Detectors Trained on YouTube Work?

Key Idea

- use a standard concept detection approach (visual words + SVM)
- train it on YouTube and on a standard dataset (TRECVID-devel)
- benchmark both detectors

Experiments

- 1. participation in TRECVID'08
- 2. further experiments: TV05, TV07, YouTube

Outline

Motivation

Online Video Concept Detection

TRECVID'08 Experiments

More Experiments

Discussion

Approach

- Keyframe Extraction
 - ▶ adaptive clustering [Borth08]
- ► Features: Bag-of-visual-words
 - dense sampling over several scales (ca. 3,600 features / frame)
 - SIFT descriptors
 - 2,000-means clustering to codebook
- Classifier: SVMs
 - $\sim \chi^2$ kernel
 - lacktriangle cross-validation for γ and C maximizing avg. prec.
 - roughly balanced training sets (downsample negative class)
- Fusion over keyframes
 - simple averaging

Datasets

- Test
 - standard TV'08 test data

- ► Training 1: TV'08
 - standard TV'08 training data
- ► Training 2: YouTube
 - downloaded using the YouTube API
 - ▶ 100 videos per concept of up to 3 min. length
 - two refinements:
 - 1. by category: mountain \rightarrow

mountain[travel&places]

2. **manually**: mountain[travel&places] →

mountain+panorama[travel&places]

YouTube Dataset: Quality

YouTube

mountain

cityscape

Ulges: CIVR'08 14 2008/07/07

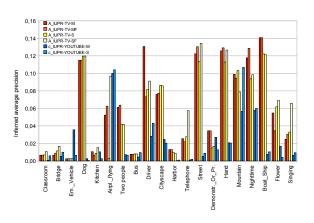
YouTube Dataset: Quality cont'd

YouTube

singing

telephone

Ulges: CIVR'08 15 2008/07/07


Results 1

Top detections of YouTube-based detector

- infMAP for TRECVID runs: 5.3-6.3 %
- ▶ infMAP for YouTube runs: 2.1-2.2 %
- performance strongly depends on the concept

Concept "Dog":

TRECVID training "dogs"

detected TRECVID test "dogs"

- specialized detectors make use of duplicates in the dataset
- ▶ the YouTube-based tagger cannot do this

if annotations on the target domain are given, specialized detectors outperform YouTube-based ones in terms of MAP. Influence of Duplicates?

Outline

Motivation

Online Video Concept Detection

TRECVID'08 Experiments

More Experiments

Discussion

Goal: Compare YouTube-based detectors with standard ones on a third target domain where no annotations are given!

- Approach / Concepts: see last experiments
- Datasets:
 - 1. TV05: TRECVID'05 video data with LSCOM annotations.
 - 2. TV07: TRECVID'07 video data with TRECVID'08 annotations
 - 3. YouTube: see last experiment

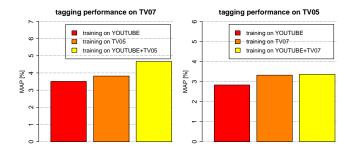
Setup

- split each dataset for training and testing
- ▶ train on all datasets → 3 detectors
- test each detector on all 3 datasets

MAP[%]			
training / testing	TV05	TV07	YOUTUBE
TV05	18.40	3.82	14.68
TV07	3.32	9.65	16.49
YOUTUBE	2.83	3.51	31.33

- specialized detectors always perform best! (also for YouTube)
- all detectors generalize poorly!
- ▶ in-depth analysis: duplicates in all datasets

MAP[%]			
training / testing	TV05	TV07	YOUTUBE
TV05	18.40	3.82	14.68
TV07	3.32	9.65	16.49
YOUTUBE	2.83	3.51	31.33


▶ the relative performance loss for the YouTube-based detector is moderate (11.4%)

Results 3

Enhancing standard training sets with YouTube material

▶ join two datasets, test on third one

► Combining training sets with YouTube material slightly increases generalization performance (11.7%)

Outline

Motivation

Online Video Concept Detection

TRECVID'08 Experiments

More Experiments

Discussion

Conclusions

YouTube helps on domains with no training annotations when...

- ... replacing standard datasets (11.4% performance loss, but autonomous training)
- ... complementing standard datasets (11.7% increase in generalization capabilities)
- ▶ more: [TRECVID Notebook Paper], [adrian.ulges@dfki.de]

Conclusions

YouTube helps on domains with no training annotations when...

- ... replacing standard datasets (11.4% performance loss, but autonomous training)
- ... complementing standard datasets (11.7% increase in generalization capabilities)
- more: [TRECVID Notebook Paper], [adrian.ulges@dfki.de]

Issues

- ► Scaling to 1000 tags?
- Adapting YouTube-based detectors to other target domains?

Thanks for Your Attention!

(thanks also to Marcel Worring and Alexander Hauptmann for helpful discussions!)

References

- ► [Smeaton06]: A. Smeaton, P. Over, W. Kraaij. *Evaluation Campaigns and TRECVID*. MIR 2006.
- [Snoek06]: C. Snoek, M. Worring, J. van Gemert, J. Geusebroek, A. Smeulders. The Challenge Problem for Automated Detection of 101 Semantic Concepts in Multimedia. Multimedia 2006.
- [Naphade06]: M. Naphade, J. Smith, J. Tesic, S. Chang, W. Hsu, L. Kennedy, A. Hauptmann, J. Curtis. Large-Scale Concept Ontology for Multimedia. IEEE Multimedia, 2006.
- ► [Hauptmann07]: A. Hauptmann, R. Yan, W. Lin. How many High-Level Concepts will Fill the Semantic Gap in News Video Retrieval?. CIVR, 2007.
- ▶ [Ulges08]: A. Ulges, C. Schulze, D. Keysers, T. Breuel. *A System that Learns to Tag Videos by Watching Youtube*. ICVS, Santorini, 2008.
- ▶ images taken from: [youtube,TRECVID datasets]