MCG-ICT-CAS TRECVID 2008 Automatic Video Retrieval System

Juan Cao, Yong-dong Zhang, Bai-lan Feng, Xiu-feng Hua, Lei Bao, Xu Zhang

> Multimedia Computing Group Institute of Computing Technology Chinese Academy of Sciences

> > NIST TRECVID Workshop November 17,2008

Outline

Overall system

- Review of baseline retrieval
- Performance analysis
 - Concept-based retrieval
 - Re-ranking
 - Dynamic fusion
- Conclusion

System Overview

- ASR shot matching
 A window of 3 shots
- Pre-processing
 - Stop words removing stemming
- Indexing
 - lucence

0.009

- Text-based retrieval
- Visual-based retrieval
 - Feature extraction

EH CM Sift-visual-keywords

Early fusion and LDA embedding

Retrieval model

Multi-bag SVM cosine-similarity

• Fusion

SSC dynamic fusion

0.009 0.033

- Text-based retrieval
 Visual-based retrieval
- HLF-based retrieval
 - Concept detectors
 - CU-VIREO374
 - Retrieval Model
 - Multi-bag svm

[Acknowledgement]: Thank Dr. Yu-Gang Jiang for great help in the experiments.

0.009 0.033 0.029

- Text-based retrieval
- Visual-based retrieval
- HLF-based retrieval
- Concept-based retrieval
 - Keywords mapping
 - DBCS mapping

0.009 0.033 0.029

0.044

- Text-based retrieval
- Visual-based retrieval
- HLF-based retrieval
- Concept-based retrieval
- Re-ranking
 - Face
 - motion

- Text-based retrieval
 Visual-based retrieval
 HLF-based retrieval
 0.029
 Concept-based retrieval
 0.044
 Re-ranking
 0.036
- SSC Dynamic fusion

Query-to-concept mapping

Query-to-concept mapping

What is useful ?

- Discriminability-ranking
 - The distributions fluctuate widely between the given category and the others, but remain stable within this one.
- Factors
 - **Difference** of the concept distribution
 - Detector performance
 - Collection characteristic

Distribution Based Concept Selection Framework(DBCS)

-

VAC: the difference between categories

$$VAC(t,c_i) \leftarrow \sum_{i \neq i} sign(F(t,c_i) - F(t,c_j))(F(t,c_i) - F(t,c_j))^2$$

VIC: the difference within the given category

$$VIC(t,c_i) \leftarrow \frac{1}{n_i} \sum_{s \in c_i} (F(t,s) - F(t,c_i))^2$$

Discriminability-score

 $Score(t) = VAC(t, c_i) / VIC(t, c_i)$

Where *F(t,s)* is the distribution function of concept *t* in shot *s*.

Example-1 Discriminability-similarity consistency

 Topic248 Find shots of a crowd of people, outdoors, filling more than half of the frame area

Example-2 Discriminability-similarity inconsistency

 Topic261 Find shots of one or more people at a table or desk, with a computer visible

Re-ranking

- face and motion factors
 - shot-level average face size and position
 - shot-leve principal motion direction and intensity

Dynamic fusion

Smoothed Similarity Cluster(SSC)

• A feature undergoes a rapid change in its normalized scores is likely to perform better than a feature which undergoes a more gradual transition.

$$SC = \frac{\frac{1}{1000} \sum_{n=1}^{1000} (score(n) - score(n+1))}{\frac{1}{N} \sum_{n=1}^{N} (score(n) - score(n+1))} \quad [P. Wilkins, 2007]$$

$$SSC = \frac{median(SC)}{standard \ deviation(SC)} \quad SC \ is \ unstable \ in \ real \ noisy \ data.$$

$$Run \ Weight = \frac{Run \ SSC \ Score}{\sum \ All \ SSC \ Scores} \quad In \ our \ system, \ all \ fusion \ processes \ are \ realized \ by \ SSC \ method.$$

Outline

- Overall System
- Review of baseline retrieval
- Performance analysis
 - Concept-based retrieval
 - Re-ranking
 - Dynamic fusion
- conclusion

Overview of submitted and unsubmitted runs

Run Description	Mean InfAP
Run 1: Text baseline	0.009
Run2*: Visual baseline(Multi-bag SVM)	0.024
Run3*: Visual baseline(LDA)	0.028
Run4: SSC(Run2, Run3)	0.033
Run 5: HLF baseline(svm, CU-VIREO374)	0.029
Run 6: HLF baseline +re-ranking	0.036
Run 7*: Concept retrieval(text map, CU-VIREO374)	0.026
Run 8*: Concept retrieval(DBCS map, CU-VIREO374)	0.039
Run 9*: SSC(Run7 + Run8)	0.043
Run 10: SSC(Run5 + Run9)	0.053
Run 11: SSC(Run4 + Run9)	0.067

Overall performance analysis

Automatic search runs of TRECVID2008

Conclusion-1

- Concept-based retrieval is a promising direction.
- DBCS mapping method can achieve a stable good performance.
 - The difference of the concept distribution is more useful than the distribution itself .
 - Select concepts independent of the detector performance is not reasonable.

Conclusion-2

- Face and motion based re-ranking technology is important for some special topics.
 - Shot-level feature is stable
 - Reducing the negative effect is important

Conclusion-3

 SSC dynamic fusion can make improvement in more than 80% cases, especially in the case of fusing different features.

Thank you!

Any more details can contact: caojuan@ict.ac.cn