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ABSTRACT

Approach we have tested in our submitted runs:For visual- based
copy detection, we find links between video shot key-frames using a
probabilistic latent space model over local matches between the key-
frame images. This facilitates the extraction of significant groups
of local matching descriptors that may represent common semantic
elements of near duplicate key-frames. For 2009, we have worked
on an optimal representation of the test database. We first select the
discriminant local descriptors. Then, we quantize the selected local
descriptors into a hierarchical structure.

For audio based copy detection, we give results with two differ-
ent feature parameters: 15-bit energy difference parameters similar
to [1] and a feature-based mapping of test frames to query frames.

Differences we found among the runs:We submitted 1 run for
the video only copy detection task (same run for Balanced andfor
nofa). Four runs were submitted for the ”audio only” copy detection
task :

• CRIM.a.NOFA.EnNN2pass: energy-diff parameter search
rescored with nearest-neighbor mapping.

• CRIM.a.NOFA.NN22para: search using nearest-neighbor
mapping.

• CRIM.a.BALANCED.EnNN2pass: lower threshold than for
NOFA case.

• CRIM.a.BALANCED.EnNN22wt15: fuse Energy-diff pa-
rameters search (wt 15) with nearest-neighbor mapping
search.

We fused the video submission from CRIM with each of the four
audio only submissions to get four different submissions for au-
dio+video copy detection task. The threshold was adjusted based
on the results of 2008 a+v queries.

Relative contribution of each component of our approach:For
visual-based copy detection, the probabilistic latent space model
over local matches between the key-frame images produces a ro-
bust and accurate filtering process in relation to all possible local
matches. It works well even if there are only a few local matches
between the key-frames of the copied video in question. We have
introduced a new method for SIFT quantizing. It improves thetime
computation performance while keeping a good precision forSIFT
representation.

For audio only copy detection, the fingerprints obtained by map-
ping each test frame to the nearest query frame (NN-based fin-
gerprints) reduced minimal NDCR by half over that obtained with
energy-difference based fingerprints.

This work was supported in part by the Natural Science and Engineering
Research Council of Canada (NSERC)

What we learned about runs/approaches and the research ques-
tion(s) that motivated them :Approaches based on local descriptor
matching are efficient for video copy detection but very timecon-
suming. Our method is more adapted when there is very little com-
mon visual information to establish a link between two key-frames.
Video copy detection may not need such a good precision. For audio
copy detection, mapping each test frame to the nearest queryframe
(NN-mapping) results in robust audio copy detection. The minimal
normalized detection cost rate (NDCR) for even the worst case trans-
formations is less than 0.03 for 2008 queries, and less than 0.075 for
2009 queries. The algorithm provides easy parallel processing on a
graphics processing unit, leading to a very fast search.

Index Terms— video copy detection, audio copy detection,
copy detection, near duplicate detection.

1. INTRODUCTION

Video copy detection or near-duplicate detection (NDT) in movies
is a relatively new topic [2] as it offers an alternative to watermark-
ing for copyright control, business intelligence, advertisement track-
ing and law enforcement investigations. Videos often contain au-
dio. Sometimes the original audio is retained in the copied material,
sometimes it is replaced by a new soundtrack. Nevertheless,audio
is an important and strong feature for some application scenarios of
video copy detection. Audio copy detection is used to monitor peer-
to-peer copying of music or any copyrighted audio over the internet.
It is also used to monitor advertisement campaigns over the TV and
radio broadcasts.

Visual NDT often proceeds via a video summarization approach
like reducing a video in a set of key-frames. The copy detection
task then consists of finding near-duplicates in key-frame images
[3][4][5]. Matching key-frames through a set of key-pointsis an
interesting strategy as it is robust to occlusions and illumination
changes. Also, invariant descriptors for the key-points provide ro-
bustness to view point change. Two different groups of approaches
based on key-point matching techniques have been proposed in the
literature. One group (e.g. [6][7]) filters out the outliersbetween the
whole key-frames using robust matching methods such as RANSAC
or Least Median of Squares (LMS). However, those fitting meth-
ods perform poorly when the ratio of inliers falls below 50%.This
requires a large overlap between a pair of images for an efficient
matching process. In practice however, key-frames of two similar
video segments can differ significantly due to the presence of motion
in the scene or the key-frame generation process. Also, RANSAC
is not efficient if there are only few inliers between 2 near dupli-
cate key-frames. The second more recent group of approachesseek
to find common spatial patterns (e.g. [8], [9]). These approaches
are mainly based on comparing key-point neighborhoods. However,



there is an ambiguity in the choice of the neighborhood size used for
the comparison. Moreover, outliers can be present in the neighbor-
hood. In fact, it is always possible to obtain erroneous matches due
to the presence of common local structures. Some authors ([8], [9])
use an efficient representation inspired from text analysiscalled Bag
Of Words (BOW), to represent neighborhoods. BOW representsa
text document as a vector; counting the number of occurrences of
different words as features. In [8], [9], descriptors are quantized into
clusters which are analogous to words in a text document. TheBOW
representation has two shortcomings when dealing with ambiguities:
polysemy (i.e. a word having two different meanings) and synonymy
(i.e. two words with same meaning). BOW generative models cap-
ture the co-occurrence information between elements in a collection
of discrete data by introducing a latent variable (i.e. a context value),
in order to raise the ambiguities of the BOW representation.BOW
generative models are used in natural language processing and sta-
tistical text analysis to discover topics in documents [10].

In [11] and [12], BOW generative models are used to extract
and link place features and cluster recurrent physical locations (key-
places) within a movie. It finds links between key-frames of acom-
mon key-place based on the use of a probabilistic latent space model
over the possible local matches between the key-frames. This allows
the extraction of significant groups of matching descriptors that may
represent characteristic elements of a key-place. Here, weadapt this
approach for the video copy detection task. The BOW is used to
represent key-frame images. BOW generative model filters out un-
informative matches, generated by very common image structures,
and extract groups of matches that may represent structuralelements
representative of near duplicate key-frames. Inliers are extracted,
whatever the outlier number, by using a latent value for eachmatch.
A latent value is a context value shared by a group of local matches
that may represent a structural characteristic element (analogous to
a topic for text document).

However key-points based methods are very time consuming. It
requires a very big database representation. Each video from the test
database is represented by a set of several key-frames whichare also
represented by a set of several local descriptors. For 400 hours video,
we get a minimum of 100 millions local descriptors. Some authors
([8][9][5]) use prototype-based clustering such as K-means to quan-
tize local descriptors into a limited number of prototype (about 200
000). This quantization introduces errors, since cluster prototype
may be not well defined. The cluster prototypes are only a coarse
representation of the clustered descriptors. Also, 200 000proto-
types is not enough to represent well all the variability that a 128
dimension size vector could have. We propose a quantizing method
which reduces the 128 floating point representation into 17 short val-
ues. We also propose an efficient comparison function between two
quantized descriptors.

When we look at the published papers in audio copy detec-
tion and in advertisement detection, we see that the two fields have
evolved differently. In audio copy detection [13] [14], theemphasis
is on speed, since we compare the copy with a huge repository of
copyrighted audio. Small percentage of misses will not makea big
difference as long as we capture most of the copying. It has tobe ro-
bust under various coding schemes and distortions that speech may
go through over the internet. A fast audio copy detection uses audio
fingerprints. In audio fingerprinting, they use energy differences in
consecutive bands to generate a feature with 32 bits. The search is
speeded up by looking for exact match of these 32 bits in the stored
repository. A more complete search is only performed aroundthese
matching frames. This process has been shown to be robust to many
coding schemes and audio distortions over the internet [13].

In advertisement detection, the emphasis is more on finding all
the ads broadcast in the campaign [15] [16] [17]. The processis
speeded up by first using a fast search strategy that overgenerates
the possible advertisement matches. These are then compared using
a detailed match. The detailed match in many instances includes
comparing video features, as in some instances, the same audio may
be played even though the video frames may be different.

We have experimented with the copy detection and the advertise-
ment detection algorithms. We published a paper on advertisement
detection where we use a fast search followed by a detailed match-
ing algorithm [17]. We also experimented with the energy difference
parameter used in audio copy detection [1]. We found that this pa-
rameter is very robust to various query transformations in the 2008
TRECVID copy detection competition [18]. We experimented with
a new parameter which maps frames of test audio to nearest query
frames. We show that this mapping is robust to the query transforma-
tions and reduces the missed segments from 7.7% to 1.6% for 2008
queries. These new parameters can be computed using a graphics
processing unit (GPU) resulting in an accurate and fast copydetec-
tion. Rescoring the segments found using the energy difference pa-
rameters with these new parameters results in 1.7% missed segments
with only a small increase in computing.

This notebook paper is organized as follows. Section 2 give de-
tails about the methodology and implementation of our approach for
the video copy detection task. Section 3 describes the audiocopy de-
tection system. Section 4 describes the fusion of the audio and video
system. Section 5 presents the evaluation process and performance
results on the TRECVID dataset 2009.

2. VIDEO COPY DETECTION SYSTEM OVERVIEW

Our approach is derived from our last year’s approach [19] which
finds links between video shot key-frames, based on a probabilis-
tic latent space model over local matches between the key-frame
images. This allows the extraction of significant groups of local
matching descriptors that may represent common characteristic el-
ements of near duplicate key-frames. We combine it with various
pre-processing steps designed to accelerate and improve the match-
ing process for any query type, as well as post-processing steps de-
signed to find the copied video segment borders. Figure 1 illustates
the global video copy detection system.

Fig. 1. Video copy detection system.

Fig. 2. Pre-processes for video test database.



Fig. 3. Pre-processes for query video.

Most of the pre and post processing processes are similar as
those from last year (shot detection, key frames selection,auto-
crop, video insert detection, redundant key frame filtering, local de-
scriptor extraction, post-processing). Figures 2 and 3 illustrate pre-
processing steps for query videos and test dataset videos. We fo-
cused this year on an optimal representation of the test dataset. In-
deed, we get a minimum of 100 million local descriptors to represent
400 hour of test dataset videos. We first introduce a non discriminant
descriptor filtering step based on Latent Dirichlet allocation model-
ing. This eliminates about 40% of non relevant local descriptors
from the test dataset. We propose a quantizing method for SIFT lo-
cal descriptor which reduces the 128 floating point representation
into 17 short values. This is combined with an efficient compari-
son function between two quantized descriptors. Then, quantized
descriptors are stored in a hierarchical structure for fastretrieval.

2.1. Key-frame extraction and local descriptor extraction

Once the automatic shot transition detection is completed,each shot
is then summarized in a few representative frames (key-frames). To
this aim, we compute the overlap between images using a simple
method based on camera motion estimation [20]. The algorithm
finds the optimal frame path over the shot which then minimizes the
overlap between frames. We extract local descriptors for each key-
frame. First, Regions Of Interest (ROI) are automatically detected
in the image with a difference of Gaussians (DOG) point detector
from which we derive local descriptors using SIFT [21]. We use
SIFT because it performs the best in terms of region representation
specificity and robustness to image transformations [22].

2.2. Local descriptor quantizing

Each SIFT descriptor is in fact composed of 16 gradient histograms
concatenated representing 16 independent regions. Therefore, each
of these 16 regions can be represented independently. We define a
vocabulary set to represent each region. We use normalized vectors
on a regular grid in a four dimensional space to define our vocabu-
lary. We chose a regular grid to be able to represent equally any pos-
sible region configuration. Therefore, we get a vocabulary of size 16
and we use 16 bit value to code each region. Each region histogram
is projected in the vocabulary space. Let{Vi}i=1..Nv

be the vocab-
ulary set,X the normalized histogram projection in the vocabulary
space andci the i-th bit of the corresponding code valueC for X.
For eachi, if d(Vi, X) < Threshold, ci = 1 elseci = 0 whered

is the L1 distance. We also project the vector composed by thenorm
values of each region histogram in the vocabulary space. Therefore,
we obtain a vector composed of 17*16 bit size values to represent
one SIFT descriptor. We can now use a very fast distance mea-
sure to make correspondence between descriptors. If two descrip-

tors have the same sequence values, they are matched immediately,
otherwise, a quick comparison function is applied. Let{Cj

0
}j=1..17

and{Cj
1
}j=1..17 , two descriptors representation. A correspondence

is set if Cj
0
&C

j
1

6= 0 for all j. The following scheme (figure 4)
illustrates our coding scheme. We create an additional quantized

Fig. 4. SIFT coding scheme.

value (coarse quantized value) for each descriptor by usinga similar
coding process with a dictionary of size 2 associated with anindex
comparison function. We use this index to filter out quickly descrip-
tors pairs for the finest comparison measure. The advantage of this
quantization method is that the precision level can be defined by the
vocabulary size or by the number of partitions of the descriptor vec-
tor (number of regions). The quantization error is limited because of
the multi assignment approach to vocabulary vectors for each region.

2.3. Hierarchical representation

We use the 2 previously presented descriptor quantized value to cre-
ate a hierarchical indexing structure. We first cluster all descriptors
using the first quantized value (fine index). A new cluster is created
if a quantized descriptor value from the dataset does not match any
other clusters using the comparison function with the fine quantized
value. The fine quantized value becomes the new cluster represen-
tation. We obtain about 4 million clusters. Each descriptorin the
dataset is then assigned to one or several clusters. The clusters are
themselves indexed using their coarse quantized value (coarse in-
dex). For descriptor similarity retrieval, we parse coarseindexes to
select relevant cluster fine indexes. We then parse the selected fine
indexes to select a cluster. All quantized values from the selected
cluster are then compared with the query value.

2.4. Key-frame link extraction

We extract groups of local matches between near duplicate key-
frames. We use the concept of Bag of visterms (BOV) for repre-
senting each key-frame where a visterm is a set of local descriptors
participating in a local match. We then apply a generative prob-
abilistic model to extract groups of local matches that represent a
common structure representative of 2 near duplicate key-frames. We
use the Latent Dirichlet Allocation (LDA) generative model[22],
which is a new model derived from pLSA [10], to provide a discrete



discriminant analysis over matches. The significant extracted vis-
term distributions are seen as part of latent topics which are, in fact,
typical structural elements of a key-frame. Latent topics are used
as context values for visterms. A group of local matches (visterms)
sharing the same latent topic constitutes a topic link across images.
See [19],[11] and [12] for more details.

2.5. Descriptor filtering

In order to accelerate the linking process, we need to deal with the
fewest possible number of local descriptors. One idea consists of
eliminating the more common local descriptors which are notdis-
criminative enough. For instance, local descriptors corresponding to
straight lines or corners can be found in many images. This type of
local descriptor is not specific enough to accurately describe an im-
age. We apply the BOW generative models [22], over the quantized
local descriptors from key frame test dataset. This provides a dis-
crete discriminant analysis over the quantized local descriptors. It
eliminates about 40% of non relevant local descriptors fromthe test
dataset.

2.6. Post-Processing

Copied video segments are detected once links are extractedbetween
the query and the reference key-frames. We apply RANSAC in the
temporal domain in order to estimate the time shift and dilation be-
tween the times codes of the detected links. This step ensures that
detected links are forming a coherent segment in time up to a transla-
tion and scaling factors. Finally, the shot boundaries fromwhich the
selected near-duplicate key-frame belongs to, define the time range
of the near duplicate video segment. The confidence value is calcu-
lated from the number of local matches first extracted by the proba-
bilistic latent space model and then selected by the video copy seg-
ment RANSAC estimation.

3. AUDIO COPY DETECTION SYSTEM

3.1. AUDIO Copy Detection System Overview

The overall system shown in Fig. 5 first computes the audio finger-
prints of the audio query. We tried two different audio fingerprints.
One fingerprinting method is based on energy differences in con-
secutive sub-bands [1] [13], and results in a very fast search giving
good results. The other fingerprints are based on classification of
each frame of the test to the nearest frame of the query1. These fea-
tures result in even better performance. These features areslow to
compute, but can be speeded up by parallel processing on a GPU.

Query audio - Compute audio
fingerprints

-
find counts of

matching
fingerprints

-
Output start,

end, and count
of best segment

test
fingerprints

6

Fig. 5. Audio copy detection algorithm using fingerprints.

We use these fingerprints to find test segments that may be
copies of the queries. Fingerprint matching is done by moving the
query over the test and counting the total fingerprint matches for each
alignment of the query with the test. One such alignment is shown in

1These features are not strictly fingerprints, as their valuechanges when
we change the query.

Fig. 6. In this alignment, the matching test segment is identified by
the matching start frame (frame 4), the last matching frame (frame
8), and the number of fingerprint matches (3 matches). If we have
100 frames/sec, then the count/sec will be 3 * 100/(8-4+1) = 60. The
best matching segment is the segment with the highest count.This
is similar to the scoring used in [1].

Since the same query is matched against all the test segments,
the total count is a good measure of match between the query and
the test segment. However, when comparing matches for different
queries, count/sec is more relevant, since the queries varyin duration
from 3 secs to 3 minutes.

fp1 fp2 fp3 fp4 fp5 fp6 fp7 fp8

fp9fp10fp7fp11fp5fp12fp3fp13fp14fp15

Test fingerprints

Query fingerprints

???
matching fingerprints

Fig. 6. One example of matching query to a test.

3.2. Feature Parameters for Audio Copy Detection

We experimented with two different feature parameters. Thefirst
feature corresponds to the audio fingerprint used in music search and
other copy detection tasks [1] [13]. The fingerprint we used is similar
to that used in [1]. These fingerprints have 15 bits/frame: The audio
signal is lowpass filtered to 4 KHz and divided into 25 ms windows
with 10 ms frame advance. A pre-emphasis of 0.97 is applied and
then multiplied by a Hamming window before computing the Fourier
transform. The spectrum between 300Hz and 3000 Hz is divided
into 16 bands using mel-scale. A triangular window is then used
to compute energy in each band. The energy differences between
the sub-bands are used to compute the fingerprint. IfEB(n, m)
represents the energy value of thenth frame at themth sub-band,
then themth bit F (n, m) of the 15-bit fingerprint is given by

F (n, m) = 1, if EB(n, m) − EB(n, m + 1) > 0,

Otherwise, F (n, m) = 0.

In the original formulation, Haitsma and Kalker [13] use 32 bits
generated from consecutive sub-band and consecutive framediffer-
ences. Using 15 bits from one frame is more robust to bandwidth
limitations and extraneous speech addition. With 15 bits, we see
more frequent repetition of the fingerprints even for the transformed
audio. We call this feature asenergy difference fingerprint.

To search for a test segment that matches a query, we hash the
fingerprints of the query. For example, if the fingerprint forframe
k of the query isfp, thenhash(fp) = k. For each framej of the
test, we keep a countc(j) of query frame matches when the first
frame of the query starts at framej of the test. If the test frame
t has a fingerprintfp1, then the countc(t − hash(fp1)) is incre-
mented whenhash(fp1) exists. At the same time, we also update
the first and the last matching test frames for query startingat test
framet − hash(fp1). Since more than one frame can have the fin-
gerprint fp1, hash(fp1) can have multiple values, and therefore
all the countsc(t − hash(fp1)) are updated. The maximum count
c(t1) for some test framet1 and the corresponding start and end test
frames gives the best matching test segment. As we can see, there



are only three operations involved per test frame. So, the computing
to search for the best test segment that matches the query is trivial.

Note that, we search for a segment in the test that matches the
query. Since the query is fixed, the count of number of fingerprint
matches in a segment is a good measure of the match. However,
when we want to use a threshold across many queries, then a bet-
ter measure is the count/sec. The reason is simple. Query duration
varies from 3 secs to several minutes. Therefore, the distribution of
matching fingerprint counts for test segments will be very different
when the query lengths differ. Using counts/sec across queries nor-
malizes the counts and leads to fewer false alarms and higherrecall
rate. We compute a counts/sec threshold that gives minimal NDCR.

The second feature parameter maps each frame of the test to the
closest frame of the query. For computing this measure of closeness,
we compute 12 cepstral coefficients and normalized energy and its
delta coefficients. The distance between the test frame and aframe of
the query is defined as the sum of the absolute difference between the
corresponding cepstral parameters. Ifq1, ..., qn are the query cep-
stral parameters for a frame andt1, ..., tn are the cepstral parameters
for a test frame, then this distance is computed as

Pn

i=1
|qi − ti|.

The test frame gets the frame number of the query frame closest to
this test frame. We call this feature asNN-based fingerprint.

Computing the closest query frame for each test frame is com-
pute intensive. Two possible alternatives can reduce the computing.
One is to organise the frames in a binary tree and traverse it to find
the best frame. The other choice is to use a graphics processing unit
(GPU). GPU’s are cheap, a GPU with 1 Gbyte of memory and 240
processors costs less than $500. The query, and the frames ofthe
test can be transferred to the GPU and the calculation done inpar-
allel in the GPU. Our implementation on a GPU has reduced the
overall computing by a factor of over 100.

The search for the test segment that matches the query is trivial.
As before, we keep a countc(i) for each framei of test as a pos-
sible starting point for the query. Assume that for each testframe
i, m(i) is the query frame that is closest to the test framei. Then
for each test framei, we increment the countc(i − m(i)). We also
update the starting test frame, and the last test frame corresponding
to frame(i − m(i)). The countc(j) then corresponds to the num-
ber of matching frames between the test and the query if the query
started at framej. The framej with the highest countc(j) and the
corresponding start and end matching frames is the best matching
segment.

4. AUDIO+VIDEO COPY DETECTION

In 2008, there were 10 transformations per video query, and 7trans-
formations per audio query. This resulted in a total of 70 transfor-
mations per query, or there were 70*201 total audio+video queries.
One of the queries (query 166) had two test segments, so we re-
moved this query. We ran fusion on these 70*200 a+v queries from
2008 in order to tune our algorithms. For merging audio+video
queries, we used the audio submission of EnNN2pass. We merged
the corresponding audio and video query into one if the test seg-
ments overlapped. Since we have more confidence in audio seg-
mentation, we took the start and end of test segment from the audio
query. The overall score was weighted addition of the two scores.
If the test segments for video and audio did not overlap, thenwe
only output the test segment with the highest weighted score. Only
one test segment per audio+video query was output. We kept the
weight of audio score as 1, while we varied the weight of the video
score from 0,1,2,3,4 in order to find the optimal weight. We esti-
mated the average minNDCR over all the 70 transformations. Table

1 shows the average minNDCR as we vary the weighting for the
video score. From the Table, we can see that a weight of 2 is optimal
with min NDCR of 0.014. We also tried keeping the weight of video
query when the test segments do not overlap as 2, and increasing the
weight when the two test segments overlap. However, this strategy
did not improve the minNDCR. When we get one threshold for all
the transformations, the minNDCR increases to 0.015.

Table 1. min NDCR (averaged over 70 transformations) for NOFA
case for fusion of audio+video queries from 2008 as we vary the
weight of video score from zero to 4.

Weight 0 1 2 3 4

minimal NDCR 0.017 0.016 0.014 0.016 0.017

The optimal weight for video for all four audio+video sub-
missions turns out to be 2 in each case. For one threshold for
all transforms, the minNDCR when combined with NN22para is
0.011, when combined with EnNN22wt15 (fusion of energy diffand
nearest-neighbor fingerprints), it is 0.008.

5. COPY DETECTION RESULTS

5.1. Dataset for Copy Detection

The test data for copy detection comes from NIST sponsored
TRECVID 2008 and 2009 competitions [18] [23] [24]. All together,
we have 385 hours of video + audio.

The queries for the 2009 submission also come from 201 origi-
nal queries that are different from the 2008 queries. For 2009, only
seven video transforms are used, for a total of 1407 video queries.
For audio only also, there are seven transforms for a total of1407
audio only queries. The audio+video queries are a combination of
all the audio and video transforms, and therefore there are 201*7*7=
9849 queries. The seven video transformations for 2009 are shown
in table 2. The seven audio transformations for 2008 and 2009are
shown in table 3.

Table 2. Query video transformations used in TRECVID 2009.

Transform Description

T1 original video is inserted in font of background video
T2 insertions of pattern
T3 strong reencoding
T4 change of gamma
T5 decrease in quality
T6 3 post production transformations
T7 3 random transformations

For audio copy detection, the system was developed using audio
queries from TRECVID 2008. These are 1407 queries (201 queries
* 7 transforms). Query 166 occurred twice in the test, so it was
removed from the development set.

5.2. Video only 2009 query results

During the final experimentation on the test database for the2009
video copy detection tasks, we found that reading indexing data from
the disk took 90% of the total processing time. We truncated our test
database drastically in order to resolve this problem. We discarded
all clusters with more than 150 descriptor value. This removed 60%



Table 3. Query audio transformations used in TRECVID 2008/2009.

Transform Description

T1 nothing
T2 mp3 compression
T3 mp3 compression and multiband companding
T4 bandwidth limit and single-band companding
T5 mix with speech
T6 mix with speech, then multiband compress
T7 bandpass filter, mix with speech, compress

of the test database. Big clusters represent less specific descriptors.
However, it results in an accurate precision detection algorithm (low
false alarm) while the recall rate is between 30% and 75%. We no-
ticed that about 30% of our submitted detection (see table 4)was
considered as false alarm while the visual content was actually near
duplicated. Indeed, we may have found redundant visual content at
a different place in a movie. Redundant visual segments are most
often grouped together on the timeline. Therefore, we generate new
results (see table 5) with larger copy detected video segment (80
seconds were added before and after the initially detected copied
segment).

Table 4. Video only submitted detection results.

Transform 1 2 3 4 5 6 7

N. queries 134 134 134 134 134 134 134
Miss rate 0.48 0.4 0.61 0.43 0.28 0.7 0.71
FA count 17 15 21 13 14 10 11
Mean F1 0.72 0.73 0.61 0.64 0.68 0.63 0.61
Mean time(s) 1374 796 989 765 780 1123 1136
Opt NDCR B 0.84 0.87 0.85 0.89 0.69 0.83 0.96
Opt NDCR NF 0.84 0.87 0.90 0.89 0.69 0.98 0.96

Table 5. Video only detection results with larger copy detected video
segment.

Transform 1 2 3 4 5 6 7

N. queries 134 134 134 134 134 134 134
Miss rate 0.44 0.35 0.58 0.39 0.24 0.68 0.7
FA count 11 8 17 7 8 8 9
Mean F1 0.29 0.27 0.3 0.28 0.28 0.3 0.3
Mean time 1374 796 989 765 780 1123 1136

Our detection performance of our submitted result is slightly
better than the median performance.

5.3. Audio only development on 2008 queries and results on
2009 queries

The audio only copy detection system was developed on 2008
queries. We give detailed performance figures and rationalefor the
four submissions for the 2009 queries. Basically, we experimented
with the energy difference fingerprints and the NN-based finger-
prints and their combinations.

5.3.1. Energy difference fingerprint

The copy detection using Energy difference fingerprints wasrun on
1400 queries from 2008 and 385 hours of test audio from TRECVID.
The results were compiled for no FA case (Rtarget = 0.5/hr, CMiss =
1, CFA = 1000). We calculated the no FA result separately for each
transform. We also give results when we use one threshold forall
the transforms. This is the case in real life, where we do not know
the transformation the query has gone through. (Also, this is the
threshold we need to provide in our submission).

Table 6. Minimal NDCR for no FA for energy diff fingerprints with
one optimal threshold per transform for 2008 queries.

Transform 1 2 3 4 5 6 7

min NDCR .007 .007 .030 .022 .060 .053 .053

For no FA case, results for each transform are given in Table 6,
where the decision threshold for each transform is computedsepa-
rately. The first four transforms do not have any extraneous speech
added, while the last three add extraneous speech to the query. For
the first two transforms, the number of missed test segments are less
than 1%. Even for transforms with extraneous speech added, the
worst result is 6% missed segments. In no FA case, the minimalnor-
malized detection cost rate (NDCR) corresponds to a threshold with
no false alarms: all the errors are due to missed test segments cor-
responding to the queries. Table 7 shows minimal NDCR when we
have one threshold for all the transforms. In this case the min NDCR
more than doubles for the last three transforms.

Table 7. Minimal NDCR for no FA for energy diff fingerprints with
one optimal threshold for all transforms for 2008 queries.

Transform 1 2 3 4 5 6 7

min NDCR .015 .037 .037 .022 .127 .135 .165

Let us look at the distribution of counts for the matching test
segments. For energy difference fingerprints, we only keep segments
with counts greater than 30. Table 8 shows total number of test seg-
ments that match the queries with a given count. Over 350,000test
segments have a matching count of 35. However, if we reject test
segments with counts less than 36, the minimal NDCR goes up sig-
nificantly. This means that a significant number of correctlymatch-
ing test segments have counts below 36. The counts for matching
segments vary between 32 and 2300. The counts are consistent: the
correct segment has higher count than the incorrect segments. How-
ever, across queries, these counts cannot be used to get gooddis-
crimination. For discrimination across queries, we use counts/sec.

Table 8. Segments with matching counts N for the 1400 queries.

count N 31 35 45 55 75 100

segments 738464 354898 133572 74480 16492 1796

The average query processing time for the energy differencefin-
gerprints is 15 secs on Intel Core 2 quad 2.66GHz processor (we
only use one processor). For searching through 385 hours of audio,
this search speed is very fast.



Table 9. Minimal NDCR for no FA for NN-based fingerprints with
one optimal threshold per transform for 2008 queries.

Transform 1 2 3 4 5 6 7

min NDCR 0.007 0 0.007 0.007 0.022 0 0.03

5.3.2. NN-based fingerprint

The copy detection using NN-based fingerprints was run on thesame
2008 queries and 385 hours of test data. The results in Table 9for
one optimized threshold per transform are better than thosein Table
6 for the energy difference fingerprints. Results for one threshold
across all transforms are shown in first row of Table 10. Thesere-
sults are nearly the same as those for one threshold per transform,
except for a small increase in min NDCR for transforms 3 and 4.
One surprising result is that we do not miss any segments for trans-
form 6 even though extraneous speech has been added to the queries
with this transformation.

Table 10. Minimal NDCR for no FA for NN-based fingerprints with
one optimal threshold for all transforms. second row shows rescor-
ing of energy diff results with NN-based features

Transform 1 2 3 4 5 6 7

NN-based .007 0 .015 .015 .022 0 .03
NN-based rescore .007 0 .007 .007 .037 .03 .03

The computing for finding the query frame closest to the test
frame is significantly higher than that for the energy difference fin-
gerprint. To reduce computing, we programmed it in a GPU with
240 processors and 1 Gbyte of memory. The nearest neighbor com-
putation lends itself easily to parallelization. The resulting average
compute time per query is 360 seconds when we use 22 features
(12 cepstral features + normalized energy + 9 delta cepstra). Even
though these parameters are very accurate, they are much slower to
compute than the energy difference parameters. As we reducethe
number of features used to compute the nearest query frame, the re-
sults get worse. Table 11 gives the minimal NDCR for 13 features
(12 cepstral features + normalized energy).

Table 11. Minimal NDCR for no FA for NN-based fingerprint with
one optimal threshold per transform, using 13 cepstral parameters.

Transform 1 2 3 4 5 6 7

min NDCR .007 0 .022 .022 .022 .007 .03

We can reduce the computing time by just rescoring the re-
sults from energy difference parameters with the NN-based features.
Rescoring lowers average CPU time/query to 20 secs. Min NDCRis
shown in the second row of Table 10. Compared to energy difference
feature, min NDCR has reduced significantly.

Table 12 shows total number of test segments that match one
of the queries and have a given count. The number of test seg-
ment matches with a given count drops dramatically with increasing
counts. The count threshold for no FA is 23. Above 23, there are no
false-alarm segments. Using counts/sec instead of counts does not
reduce minimal NDCR. Counts itself are a good measure of copy
detection, even across queries of different lengths. So theNN-based
fingerprints generate very few false alarms, and the boundary be-
tween false alarms and correct detection is well marked.

Table 12. Segments with matching counts N for the 1400 queries.

count N 11 20 25 30 35 40

segments 12147 71 61 22 36 28

Since rescoring energy-difference fingerprints with NN-
based fingerprints results in very fast compute times (20
secs/query) and low NDCR, we submitted one run for nofa
(CRIM.a.nofa.EnNN2pass) and one for the balanced case
(CRIM.a.balanced.EnNN2pass) using this rescoring. The only
difference was the threshold: for nofa, the threshold corresponds
to the score for correct detection just above the highest score for
any false alarm. For balanced case, the threshold corresponds to
highest score for any false alarm. Table 13 shows the resultsfor
2009 queries. The results show optimal NDCR and actual NDCR
using the thresholds from 2008 queries. First, the results for nofa
and for balanced case are exactly the same. Second, the optimal and
actual min NDCR are the same, except for a small difference for
transforms three and six. The mean processing time is 20.5 secs.
It turns out that these results are close to the best results for both
computing speed and min NDCR.

Table 13. optimal and actual NDCR for no FA and balanced cases
for Energy-based fingerprints rescored with NN-based fingerprints
for 2009 queries

Transform 1 2 3 4 5 6 7

mean proc time 20.4 20.3 20.3 20.5 20.9 21.2 21
mean F1 .921 .936 .924 .89 .92 .90 .90

opt min NDCR .052 .06 .067 .06 .06 .075 .082
actual min NDCR .052 .06 .075 .06 .06 .09 .082

Since the results for NN-based feature search are the best and
most reliable, we submitted one nofa submission using NN-based
features computed using 22-cepstral features. Table 14 shows re-
sults for this case. Compared to the EnNN2pass submission, these
results are slightly better for many transforms. However, the overall
computing has gone up from 20.5 secs/query to 376 secs/query.

Table 14. optimal and actual NDCR for no FA for copy detection
with NN-based fingerprints for 2009 queries

Transform 1 2 3 4 5 6 7

mean proc time 376 376 376 376 376 375 376
mean F1 .921 .93 .92 .89 .925 .88 .90

opt min NDCR .052 .052 .067 .06 .052 .067 .075
actual min NDCR .052 .06 .075 .067 .052 0.075 .082

5.3.3. Fusion of Energy difference and NN-based fingerprints

We fused the two results by combining the counts/sec from Energy
diff fingerprint with counts from NN-based fingerprints. We multi-
plied by 15 the counts/sec to achieve a proper balance. For segments
common in the two fingerprints (same query, overlapping testseg-
ment), we added the weighted scores and output the segment corre-
sponding to the NN-based fingerprints. For segments not in com-
mon, we output the weighted score for the segment. The results for
no FA case for 2008 queries are shown in Table 15. The results for



Table 15. Minimal NDCR for fused results from the two fingerprints
for no FA case (separate threshold per transformation).

Transform 1 2 3 4 5 6 7

min NDCR .007 0 .007 0 .022 0 .015

Table 16. Minimal NDCR for fused results from the two fingerprints
for no FA case (one threshold for all the transformations).

Transform 1 2 3 4 5 6 7

min NDCR .007 0 .007 0 .022 0 .022

no FA with just one threshold across all transformations is shown
in Table 16. When we compare Tables 10 and 16, we see signifi-
cant reduction in min NDCR due to fusion. If we average acrossall
transformations, the min NDCR goes down from 0.016 to 0.008.Ta-
ble 17 compares this averaged minimal NDCR for energy difference
fingerprints versus NN-based fingerprints versus the fused results for
2008 queries. Note that rescoring results from energy diff features
with NN-based features results in only a small increase in computing
while reducing min NDCR from 0.077 to 0.017.

Table 17. Comparison of averaged min NDCR across all transforms
for different fingerprints when using one threshold for all transforms
for 2008 queries.

Method minimal NDCR avg CPU time

energy diff fingerprints 0.077 15 sec
energy diff + NN-based 2nd pass 0.017 20 sec

NN-based fingerprints 0.016 360 sec
fused results 0.008 375 sec

We also gave a submission using this fusion for the balanced
case for 2009 queries. The results are shown in Table 18. The results
are good except for the actual results for the transform seven. The
compute time per query is 390 secs.

Table 19 summarizes the results for the four submissions for
2009 audio queries. For min and actual NDCR, we average the
NDCR across all transformations in order to see relative advantage
of each algorithm. The optimal min NDCR keeps going down with
the improved algorithms. However, the actual min NDCR goes up
for the fused results due to transform 7. This was due to one false
alarm that was above the given threshold. This was brought about
by the energy diff parameter. This was the primary reason fornot
submitting any runs with energy diff parameter alone, even though
they are the fastest to compute.

5.4. Audio+video 2009 query results

We computed the audio+video query results as described in Section
4. We gave four audio+video submissions corresponding to the four
audio only submissions. The results (optimal min NDCR and actual
min NDCR averaged across all 49 transformations) are shown in
Table 20. These results correspond to the following submissions:

• CRIM.m.NOFA.EnNN2pass: fuse 2009 video submission
(weight 2) with audio only submission EnNN2pass.

• CRIM.m.NOFA.NN22para: fuse 2009 video submission
(weight 2) with audio only submission NN22para.

Table 18. optimal and actual NDCR for balanced case for copy
detection with fusion of energy difference and NN-based fingerprints
for 2009 queries

Transform 1 2 3 4 5 6 7

mean proc time 390 389 389 389 390 389 390
mean F1 .921 .93 .92 .88 .925 .88 .90

opt min NDCR .052 .052 .06 .052 .052 .052 .082
actual min NDCR .052 .052 .06 .06 .052 .075 .137

Table 19. Comparison of averaged min NDCR across all transforms
for the different 2009 audio query detection submissions.

Method opt min actual avg CPU
Method NDCR min NDCR time

energy diff + NN-based 2nd pass 0.065 0.068 20.5 sec
NN-based fingerprints 0.0607 0.066 376 sec

fused results 0.057 0.070 390 sec

• CRIM.m.BALANCED.EnNN2pass: fuse 2009 video sub-
mission (weight 2) with audio only submission EnNN2pass.

• CRIM.m.BALANCED.EnNN22wt15: fuse 2009 video
submission (weight 2) with audio only submission
EnNN22wt15.

As can be seen from Table 20, the actual min NDCR is close to the
optimal min NDCR except for the first one. All the processing times
are high due to the average of 995 sec processing time per video
query. Overall, the system NN22para performed well for bothaudio
and audio+video submissions.

Table 20. Comparison of averaged min NDCR across all transforms
for the different 2009 audio+video query detection submissions.

Method opt min actual avg CPU
Method NDCR min NDCR time(sec)

CRIM.m.nofa.EnNN2pass 0.056 1.34 1016
CRIM.m.balanced.EnNN2pass 0.056 0.063 1016

CRIM.m.nofa.NN22para 0.055 0.06 1371
CRIM.m.balanced.EnNN22wt15 0.052 0.058 1385

6. CONCLUSIONS

For visual-based copy detection, approaches based on localdescrip-
tor matching are efficient for this task. It is robust to many transfor-
mations. However, local descriptor matching is very time consuming
and we have to deal with a very big database if we want to maintain
high precision. We introduce an efficient SIFT quantizing method
and use it to build a hierarchical indexing structure for fast retrieval.
However, we could not really take advantage of this approachthis
year because we encountered many problems while trying to effi-
ciently store and swap from the disk our indexing structure.The
probabilistic latent space model over local matches between key-
frames allows a fast, robust and accurate filtering process among all
possible local matches. This method is better adapted when there
is very little common visual information to establish a linkbetween
two key-frames. Video copy detection may not need such a good
precision. However, our results are close to the median performance



for visual copy detection and we get best results for severaltransfor-
mations when we combine with audio.

We compare copy detection results on audio queries from
TRECVID 2008 task using two different audio fingerprints. Fin-
gerprints derived from energy differences in consecutive bands take
only 15 seconds/query and give good results. When we computejust
one optimized threshold over all queries and average the minNDCR
over all transformations, we get a value of 0.077 for no FA, i.e., we
miss 7.7% of the test segments that match the queries. For NN-based
fingerprints that map each test frame to the nearest query frame, for
the same scenario, we get min NDCR of 0.016. In other words, aver-
age segment miss rate goes down from 7.7% to 1.6%. However, we
need to use a GPU to get reasonable compute times, and the average
compute time for one query increases to 360 seconds. However, if
we just rescore the energy diff based results with NN-based features,
the miss rate goes down from 7.7% to 1.7% while the computing
increases from 15 secs to 20 secs. When we fuse the results forthe
two fingerprints, the min NDCR goes down from 0.016 to 0.008. In
other words, the segment miss rate goes down from 1.6% to 0.8%
when averaged over all transformations. However, we do not see
a similar decrease for 2009 queries. For 2009 queries, the optimal
min NDCR goes down from 0.065 (for rescoring with NN-based fin-
gerprints) to 0.057 (fused results). However the actual minNDCR
fluctuates around 0.070 due to the difficulty of picking an accurate a
priori threshold.

When we combine audio + video queries, the minNDCR varies
between 0.015 and 0.008 for 2008 queries when we estimate one
threshold for all the transformations. The best result is when we
merge video submission with the fusion of energy-difference and
nearest-neighbor fingerprints. For 2009 audio+video queries, the op-
timal min NDCR averaged over all transformations varied between
0.056 and 0.052. The actual min NDCR averaged over all trans-
formations varies between 1.34 and 0.058. The reason is thatit is
difficult to come up with an a priori threshold from 2008 queries that
will work well for the 2009 queries. The only system that worked
well in all scenarios was NN22para where we use NN-based finger-
prints for search. For NN-based fingerprints, the thresholds are more
stable, resulting in low min NDCR for both 2008 and 2009 queries
in all scenarios.
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