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Abstract

In this paper we describe our TRECVID 2009 video re-
trieval experiments. The MediaMill team participated in
three tasks: concept detection, automatic search, and in-
teractive search. The starting point for the MediaMill con-
cept detection approach is our top-performing bag-of-words
system of last year, which uses multiple color descriptors,
codebooks with soft-assignment, and kernel-based supervised
learning. We improve upon this baseline system by explor-
ing two novel research directions. Firstly, we study a multi-
modal extension by including 20 audio concepts and fusion
using two novel multi-kernel supervised learning methods.
Secondly, with the help of recently proposed algorithmic re-
finements of bag-of-word representations, a GPU implemen-
tation, and compute clusters, we scale-up the amount of vi-
sual information analyzed by an order of magnitude, to a
total of 1,000,000 i-frames. Our experiments evaluate the
merit of these new components, ultimately leading to 64 ro-
bust concept detectors for video retrieval. For retrieval, a
robust but limited set of concept detectors justifies the need
to rely on as many auxiliary information channels as pos-
sible. For automatic search we therefore explore how we
can learn to rank various information channels simultane-
ously to maximize video search results for a given topic. To
further improve the video retrieval results, our interactive
search experiments investigate the roles of visualizing pre-
view results for a certain browse-dimension and relevance
feedback mechanisms that learn to solve complex search top-
ics by analysis from user browsing behavior. The 2009 edi-
tion of the TRECVID benchmark has again been a fruitful
participation for the MediaMill team, resulting in the top
ranking for both concept detection and interactive search.
Again a lot has been learned during this year’s TRECVID
campaign; we highlight the most important lessons at the
end of this paper.

1 Introduction

Robust video retrieval is highly relevant in a world that is
adapting swiftly to visual communication. Online services

like YouTube and Vimeo show that video is no longer the
domain of broadcast television only. Video has become the
medium of choice for many people communicating via the
Internet. Most commercial video search engines provide ac-
cess to video based on text, as this is still the easiest way
for a user to describe an information need. The indices of
these search engines are based on the filename, surrounding
text, social tagging, closed captions, or a speech transcript.
This results in disappointing retrieval performance when
the visual content is not mentioned, or properly reflected in
the associated text. In addition, when the videos originate
from non-English speaking countries, such as China, or the
Netherlands, querying the content becomes much harder as
robust automatic speech recognition results and their accu-
rate machine translations are difficult to achieve.

To cater for robust video retrieval, the promising solutions
from literature are mostly concept-based [34], where detec-
tors are related to objects, like an airplane flying, scenes,
like a classroom, and people, like female human face closeup.
Any one of those brings an understanding of the current
content. The elements in such a lexicon of concept detec-
tors offer users a semantic entry to video by allowing them
to query on presence or absence of visual content elements.
Last year we presented the MediaMill 2008 semantic video
search engine [32], which aimed for more robustness of con-
cept detectors in the lexicon rather than extending the num-
ber of detectors. Our TRECVID 2009 experiments continue
this emphasis on robustness for a relatively small set of con-
cept detectors. A robust but limited set of concept detectors
justifies the need to rely on as many multimedia information
channels as possible for retrieval. To that end, we explore
how we can learn to rank various information channels si-
multaneously to maximize video search results for a given
topic. To improve the retrieval results further, we extend
our interactive browsers by supplementing them with vi-
sualizations for swift inspection, and a relevance feedback
mechanism based on passive sampling of user browsing be-
havior. Taken together, the MediaMill 2009 semantic video
search engine provides users with robust semantic access to
video archives.

The remainder of the paper is organized as follows. We



Figure 2: MediaMill TRECVID 2009 concept detection scheme, using the conventions of Figure 1. The scheme serves as the blueprint
for the organization of Section 2.

Figure 1: Data flow conventions as used in Section 2. Different
arrows indicate difference in data flows.

first define our semantic concept detection scheme in Sec-
tion 2. Then we highlight our video retrieval framework for
automatic search in Section 3. We present the browser in-
novations of our semantic video search engine in Section 4.
We wrap up in Section 5, where we highlight the most im-
portant lessons learned.

2 Detecting Concepts in Video

We perceive concept detection in video as a combined mul-
timedia analysis and machine learning problem. Given an
n-dimensional multimedia feature vector xi, part of a shot
i [26], the aim is to obtain a measure, which indicates
whether semantic concept ωj is present in shot i. We may
choose from various audiovisual feature extraction meth-
ods to obtain xi, and from a variety of supervised machine
learning approaches to learn the relation between ωj and
xi. The supervised machine learning process is composed of
two phases: training and testing. In the first phase, the op-

timal configuration of features is learned from the training
data. In the second phase, the classifier assigns a probabil-
ity p(ωj |xi) to each input feature vector for each semantic
concept.

Our TRECVID 2009 concept detection approach builds
on previous editions of the MediaMill semantic video search
engine [32, 36], which draws inspiration from the bag-
of-words approach propagated by Schmid and her asso-
ciates [19, 24, 51], as well as recent advances in keypoint-
based color features [44] and codebook representations
[45,47]. We improve upon this baseline system by exploring
two novel research directions. Firstly, we study a multi-
modal extension by inclusding 20 audio concepts [3, 28, 40]
and fusion using two novel multi-kernel supervised learn-
ing methods [38, 49]. Secondly, with the help of recently
proposed algorithmic refinements of the bag-of-words ap-
proach [42], a GPU implementation [43], and compute clus-
ters, we scale-up the amount of visual information analyzed
by an order of magnitude, to a total of 1,000,000 i-frames.
We detail our generic concept detection scheme by present-
ing a component-wise decomposition. The components ex-
ploit a common architecture, with a standardized input-
output model, to allow for semantic integration. The graph-
ical conventions to describe the system architecture are in-
dicated in Figure 1. Based on these conventions we follow
the video data as it flows through the computational pro-
cess, as summarized in the general scheme of our TRECVID
2009 concept detection approach in Figure 2, and detailed
per component next.

2.1 Spatio-Temporal Sampling

The visual appearance of a semantic concept in video has
a strong dependency on the spatio-temporal viewpoint un-
der which it is recorded. Salient point methods [41] in-
troduce robustness against viewpoint changes by selecting
points, which can be recovered under different perspectives.
Another solution is to simply use many points, which is
achieved by dense sampling. Appearance variations caused
by temporal effects are addressed by analyzing video beyond



Figure 3: General scheme for spatio-temporal sampling of image re-
gions, including temporal multi-frame selection, Harris-Laplace and
dense point selection, and a spatial pyramid. Detail of Figure 2,
using the conventions of Figure 1.

the key frame level. By taking more frames into account
during analysis, it becomes possible to recognize concepts
that are visible during the shot, but not necessarily in a sin-
gle key frame. We summarize our spatio-temporal sampling
approach in Figure 3.

Temporal multi-frame selection In [32, 35] we demon-
strated that a concept detection method that considers more
video content obtains higher performance over key frame-
based methods. We attribute this to the fact that the con-
tent of a shot changes due to object motion, camera motion,
and imperfect shot segmentation results. Therefore, we em-
ploy a multi-frame sampling strategy. To be precise, we
sample up to 10 additional i-frames distributed around the
(middle) key frame of each shot.

Harris-Laplace point detector In order to determine
salient points, Harris-Laplace relies on a Harris corner de-
tector. By applying it on multiple scales, it is possible to
select the characteristic scale of a local corner using the
Laplacian operator [41]. Hence, for each corner, the Harris-
Laplace detector selects a scale-invariant point if the local
image structure under a Laplacian operator has a stable
maximum.

Dense point detector For concepts with many homoge-
nous areas, like scenes, corners are often rare. Hence, for
these concepts relying on a Harris-Laplace detector can be
suboptimal. To counter the shortcoming of Harris-Laplace,
random and dense sampling strategies have been proposed
[10,17]. We employ dense sampling, which samples an image
grid in a uniform fashion using a fixed pixel interval between
regions. In our experiments we use an interval distance of
6 pixels and sample at multiple scales.

Spatial pyramid weighting Both Harris-Laplace and dense
sampling give an equal weight to all keypoints, irrespective
of their spatial location in the image frame. In order to
overcome this limitation, Lazebnik et al . [19] suggest to
repeatedly sample fixed subregions of an image, e.g .,1x1,
2x2, 4x4, etc., and to aggregate the different resolutions
into a so called spatial pyramid, which allows for region-
specific weighting. Since every region is an image in itself,

Figure 4: General scheme of the visual feature extraction methods
used in our TRECVID 2009 experiments.

the spatial pyramid can be used in combination with both
the Harris-Laplace point detector and dense point sampling.
Similar to [24,32] we use a spatial pyramid of 1x1, 2x2, and
1x3 regions in our experiments.

2.2 Visual Feature Extraction

In the previous section, we addressed the dependency of the
visual appearance of semantic concepts in a video on the
spatio-temporal viewpoint under which they are recorded.
However, the lighting conditions during filming also play an
important role. Burghouts and Geusebroek [4] analyzed the
properties of color features under classes of illumination and
viewing changes, such as viewpoint changes, light intensity
changes, light direction changes, and light color changes.
Van de Sande et al . [44] analyzed the properties of color
features under classes of illumination changes within the
diagonal model of illumination change, and specifically for
data sets as considered within TRECVID. To speed up the
feature extraction process, we adopt the algorithmic refine-
ments of dense sampled bag-of-words proposed by Uijlings
et al . [42]. We present an overview of the visual features
used in Figure 4.

SIFT The SIFT feature proposed by Lowe [23] describes
the local shape of a region using edge orientation his-
tograms. The gradient of an image is shift-invariant: taking
the derivative cancels out offsets [44]. Under light intensity
changes, i.e.,a scaling of the intensity channel, the gradient
direction and the relative gradient magnitude remain the
same. Because the SIFT feature is normalized, the gradi-
ent magnitude changes have no effect on the final feature.
To compute SIFT features, we use the version described by
Lowe [23].



OpponentSIFT OpponentSIFT describes all the channels
in the opponent color space using SIFT features. The infor-
mation in the O3 channel is equal to the intensity informa-
tion, while the other channels describe the color informa-
tion in the image. The feature normalization, as effective in
SIFT, cancels out any local changes in light intensity.

C-SIFT In the opponent color space, the O1 and O2 chan-
nels still contain some intensity information. To add invari-
ance to shadow and shading effects, we have proposed the
C-invariant [12] which eliminates the remaining intensity in-
formation from these channels. The C-SIFT feature uses the
C invariant, which can be intuitively seen as the gradient
(or derivative) for the normalized opponent color space O1/I
and O2/I . The I intensity channel remains unchanged. C-
SIFT is known to be scale-invariant with respect to light
intensity.

rgSIFT For rgSIFT, features are added for the r and
g chromaticity components of the normalized RGB color
model, which is already scale-invariant [44]. In addition
to the r and g channel, this feature also includes intensity.
However, the color part of the feature is not invariant to
changes in illumination color.

RGB-SIFT For the RGB-SIFT, the SIFT feature is com-
puted for each RGB channel independently. Due to the
normalizations performed within SIFT, it is equal to trans-
formed color SIFT [44]. The feature is scale-invariant, shift-
invariant, and invariant to light color changes and shift.

Fast Dense SIFT/SURF We speed up the calculation of
densely sampled SIFT [23] and SURF [2] in two ways, de-
scribed in detail in [42]. First of all we observe that both
descriptors are spatial. Both are constructed of 4 × 4 sub-
regions which are in turn described by the summation of
pixel-wise responses over an area. For SIFT the pixel-wise
responses are oriented gradient responses, for SURF these
are Haar-wavelet responses. By reusing subregions in de-
scriptor creation, we obtain a speed-improvement of a factor
16. To enable this for SIFT we have to make a slight ad-
justment by removing the Gaussian Weighting around the
origin. Experiments showed that this does not influence the
final classification accuracy. For the second speed improve-
ment we devised a fast way to do summations of pixel-wise
responses over a subregion. Instead of a nested for-loop, we
do the summations over a subregion using two matrix multi-
plications [42]. The use of existing, highly optimized matrix
multiplication libraries gives us a speed-improvement of a
factor 2 over a naive C++ implementation.

We compute the SIFT [23] and ColorSIFT [44] features
around salient points obtained from the Harris-Laplace de-
tector and dense sampling. In addition, we compute SURF
[2] features around fast dense sampled points [42]. For all
visual features we employ a spatial pyramid of 1x1, 2x2, and
1x3 regions.

Figure 5: General scheme for transforming visual features into a
codebook, where we distinguish between codebook construction us-
ing clustering and soft codeword assignment. We combine various
codeword frequency distributions into a kernel library.

2.3 Codebook Transform

To avoid using all visual features in an image, while incor-
porating translation invariance and a robustness to noise,
we follow the well known codebook approach, see e.g .,
[17, 20, 30, 45, 47]. First, we assign visual features to dis-
crete codewords predefined in a codebook. Then, we use
the frequency distribution of the codewords as a compact
feature vector representing an image frame. By using a vec-
torized GPU implementation [43], our codebook transform
process is an order of magnitude faster for the most ex-
pensive feature compared to the standard implementation.
Two important variables in the codebook representation are
codebook construction and codeword assignment. Based on
last year’s experiments we employ codebook construction
using k-means clustering in combination with soft codeword
assignment and a maximum of 4,096 codewords, following
the scheme in Figure 5.

Soft-assignment Given a codebook of codewords, ob-
tained from clustering, the traditional codebook approach
describes each feature by the single best representative code-
word in the codebook, i.e.,hard-assignment. However, in a
recent paper [47], we show that the traditional codebook ap-
proach may be improved by using soft-assignment through
kernel codebooks. A kernel codebook uses a kernel function
to smooth the hard-assignment of image features to code-
words. Out of the various forms of kernel-codebooks, we
selected codeword uncertainty based on its empirical perfor-
mance [47].

Kernel library Each of the possible sampling methods
from Section 2.1 coupled with each visual feature extrac-
tion method from Section 2.2, a clustering method, and
an assignment approach results in a separate visual code-
book. An example is a codebook based on dense sampling
of rgSIFT features in combination with k-means cluster-
ing and soft-assignment. We collect all possible codebook
combinations in a (visual) kernel library. By using a GPU
implementation [43], this kernel library can be computed
efficiently. Naturally, the codebooks can be combined us-



ing various configurations. Depending on the kernel-based
learning scheme used, we simply employ equal weights in
our experiments or learn the optimal weight using cross-
validation.

2.4 Audio Concept Detection

The work on extracting audio-related concepts from the au-
diovisual signal was done by INESC-ID, emphasizing in par-
ticular audio segmentation and audio event detection meth-
ods [3, 28, 40].

Audio segmentation The audio segmentation module in-
cludes six separate components: one for Acoustic Change
Detection, four components for classification (Speech/Non-
speech, Background, Gender and Speaker Identification) and
one for Speaker Clustering. These components are mostly
model-based, making extensive use of feed-forward fully
connected Multi-Layer Perceptrons trained with the back-
propagation algorithm. All the classifiers share a similar
architecture: a Multi-Layer Perceptron with 9 input con-
text frames of 26 coefficients (12th order Perceptual Lin-
ear Prediction plus energy and deltas), two hidden layers
with 250 sigmoidal units each and the appropriate number
of softmax output units (one for each class), which can be
viewed as giving a probabilistic estimate of the input frame
belonging to that class. The Speaker Clustering component
tries to group all segments uttered by the same speaker.
The first frames of a new segment are compared with all
the same gender clusters found so far. A new speech seg-
ment is merged with the cluster with the lowest distance,
provided it falls below a predefined threshold. The dis-
tance measure for merging clusters is a modified version of
the Bayesian Information Criterion. The 4 audio concepts
female-voice, child-voice, music, and dialogue could poten-
tially be used for detecting the TRECVID video concepts
Infant, Classroom, Female-close-up, Two-People, People-
Dancing, Person-Playing-Music-Instrument, and Singing.

Audio event detection The audio event detection mod-
ule currently includes more than 70 one-against-all seman-
tic concept classifiers. For each audio event, world and
concept examples were chosen from a corpus of sound ef-
fects, in order to train models, using a radial basis func-
tion support vector machine classifier. Audio features were
retrieved using 500 ms window, with 50% overlap: mel-
frequency cepstral coefficients and derivatives, zero crossing
rate, brightness, and bandwidth. The latter are, respec-
tively, the first and second order statistics of the spectro-
gram, and they roughly measure the timbre quality. The F-
measure results on a separate test corpus of isolated sound
effects were generally very good (above 0.8), but the results
in real life TRECVID data show the degradation that can
be expected from the fact that audio events almost never
occur separately, being corrupted by music, speech, back-
ground noise and/or other audio events. More sophisticated

support vector machine detectors have been built, using
new features, different window sizes, different ways of incor-
porating context, and dimensionality reduction techniques.
The time constraints of this evaluation campaign, how-
ever, motivated the use of the described baseline approach.
The list of 16 audio event adopted in TRECVID includes:
Child-laughter, Baby-crying, Airplane-propeller, Airplane-
jet, Sirens, Traffic-noise, Car-engine, Bus-engine, Dog-
barking, Telephone-digital, Telephone-analog, Door-open-
close, Applause, Bite-eat, Water and Wind.

2.5 Kernel-based Learning

Learning robust concept detectors from multimedia features
is typically achieved by kernel-based learning methods. Sim-
ilar to previous years, we rely predominantly on the support
vector machine framework [48] for supervised learning of
semantic concepts. Here we use the LIBSVM implementa-
tion [7] with probabilistic output [21,27]. In order to handle
imbalance in the number of positive versus negative train-
ing examples, we fix the weights of the positive and negative
class by estimation from the class priors on training data.
While the radial basis kernel function usually performs bet-
ter than other kernels, it was recently shown by Zhang et
al . [51] that in a codebook-approach to concept detection
the earth movers distance [29] and χ2 kernel are to be pre-
ferred. In general, we obtain good parameter settings for a
support vector machine, by using an iterative search on both
C and kernel function K(·) on cross validation data [46].
In addition to the support vector machine framework, we
also study the suitability of two novel multi-kernel learning
methods for concept detection: Kernel Discriminant Analy-
sis using Spectral Regression and Non-Sparse Multiple Ker-
nel Fisher Discriminant Analysis.

Multi-Kernel: SR-KDA Linear Discriminant Analy-
sis [11], which is one of the most widely used statistical
methods, has been proven successful in many classification
problems. Recently, Spectral Regression combined with
Kernel Discriminant Analysis (SR-KDA) introduced by Cai
et al [5] has been successful in many classification tasks such
as multi-class face, text and spoken letter recognition. The
method combines the spectral graph analysis and regression
for an efficient large matrix decomposition in Kernel Dis-
criminant Analysis. It has been demonstrated in [5] that it
can achieve an order of magnitude speedup over the eigen-
decomposition while producing smaller error rate compared
to state-of-the-art classifiers. In [38], we have shown the
effectiveness of SR-KDA for large scale concept detection
problem. In addition to superior classification results when
compared to existing approaches, it can provide an order
of magnitude speed-up over support vector machine. The
main computationally intensive operation is Cholesky de-
composition, which is actually independent of the number
of labels. For more details please refer to [38].
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Figure 6: General scheme for kernel-based learning with support
vector machines and two novel multi-kernel learning methods, using
episode-constrained cross-validation for parameters selection.

Multi-Kernel: MK-FDA Kernel Fisher discriminant anal-
ysis has proven to be a very successful classification method
in various applications. In many real-world problems, mul-
tiple kernels capturing different “views” of the problem are
available. In such a situation, one naturally wants to use
an “optimal” combination of the kernels. In [50], the au-
thors proposed multiple kernel Fisher discriminant analysis
(MK-FDA), where the key idea is to learn the optimal linear
combination of kernels by maximizing the ratio of the pro-
jected between-class and within-class scatters with respect
to the kernel weights. In [50], the kernel weights are reg-
ularized with an `1 norm, which enforces sparsity but may
lead to a loss of information. To remedy this, we propose
to use an `2 norm regularization instead. We formulate `2

MK-FDA as a semi-infinite program, which can be solved
efficiently. Experiments show that `2 regularization tends to
produce non-sparse solutions. As a result, less information
is lost during the kernel learning process, and the perfor-
mance is improved over `1 MK-FDA as well as the uniform
weighting scheme. For more details on non-sparse MK-FDA
please refer to [49].

Episode-constrained cross-validation From all parame-
ters q we select the combination that yields the best av-
erage precision performance, yielding q∗. We measure
performance of all parameter combinations and select the
combination that yields the best performance. We use a
3-fold cross validation to prevent over-fitting of parame-
ters. Rather than using regular cross-validation for sup-
port vector machine parameter optimization, we employ an
episode-constrained cross-validation method, as this method
is known to yield a less biased estimate of classifier perfor-
mance [46].

The result of the parameter search over q is the improved
model p(ωj |xi, q

∗), contracted to p∗(ωj |xi), which we use to
fuse and to rank concept detection results.

2.6 Submitted Concept Detection Results

We investigated the contribution of each component dis-
cussed in Sections 2.1–2.5, emphasizing in particular the
role of audio, multi-kernel learning, and scalability by pro-
cessing 1,000,000 i-frames. In our experimental setup we
used the TRECVID 2007 development set as a training set,
and the TRECVID 2007 test set as a validation set. The
ground truth used for learning and evaluation are a combi-
nation of the common annotation effort [1] and the ground
truth provided by ICT-CAS [39]. An overview of our sub-
mitted concept detection runs is depicted in Figure 7, and
detailed next.

Run: Joe The Joe run is our single key frame baseline. It
applies the standard sequential forward selection feature se-
lection method on all (visual) kernel libraries computed over
key frames only. It obtained a mean infAP of 0.175. This
run tends to lag behind our other (multi-frame) runs, espe-
cially for dynamic concepts such as airplane flying, people
dancing, person riding bicycle, person playing soccer, and
person eating.

Run: William The William run is a cooperation between
the University of Amsterdam and the University of Surrey.
In this run, each (visual) kernel is trained using SR-KDA
with regularization parameter δ [38] which is tuned for each
concept using the validation set. Further, instead of using
equal weights for each classifier during fusion, weights for
individual kernels are learnt for each concept using the clas-
sification accuracy i.e. average precision on the validation
set. The weighted output from each classifier is then com-
bined using the SUM rule [18]. This run has achieved a
mean infAP of 0.190. For some concepts (cityscape, people
dancing, boat/ship), results are comparable to our top run
methods despite the fact that only 1 key frame is processed
for every shot in this run while multi-frames per shot are
processed in our top runs.

Run: Jack The Jack run is a cooperation between the
University of Amsterdam, INESC-ID, and the University
of Surrey. In addition to the visual kernels, we also gener-
ated an audio kernel using INESC’s audio concept detectors.
More specifically, the 20 output scores of the 20 audio con-
cept detectors were used as 20 features, and an RBF kernel
was build from these features. This audio kernel together
with the visual kernels were then used as input to Non-
Sparse Multiple Kernel Fisher Discriminant Analysis (MK-
FDA) [49], where the optimal kernel weights were learned
for each semantic concept. Experiments on the validation
set show that by introducing the audio kernel to the kernel
set, the mean average precision is improved by 0.01. On the
TRECVID 2009 test set this run obtains a mean infAP of
0.193. The concepts that benefit most from the audio kernel
are: person playing musical instrument, female human face
closeup, infant, singing, and airplane flying.
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Figure 7: Comparison of MediaMill video concept detection experiments with other concept detection approaches in the TRECVID 2009
High-level Feature Task benchmark.

Run: Averell The Averell run is based on a (visual) kernel
library based on SIFT, OpponentSIFT, C-SIFT, and RGB-
SIFT only, which have been applied spatio-temporally with
up to 5 additional i-frames per shot in combination with
a MAX rule combination. This run achieved a mean in-
fAP of 0.219, with the overall highest infAP for 3 concepts:
doorway, person playing soccer, and person eating.

Run: Rantanplan The Rantanplan run selects from all
the (visual) kernel libraries, all of which have been applied
spatio-temporally with up to 10 additional i-frames per shot
in combination with AV G and MAX rule combination, the
best performer per concept. This run achieved a mean in-
fAP of 0.224, with the overall highest infAP for 4 concepts:
traffic intersection, airplane flying, demonstration/protest,
and female human face closeup.

Run: Luke The Luke run extends upon the Rantanplan
run, by applying the standard sequential forward selection
feature selection method on all (visual) kernel libraries com-
puted over 1,000,000 i-frames. This run achieved the over-
all highest mean infAP in the TRECVID2009 benchmark
(0.228), with the overall highest infAP for 4 concepts: class-
room, nighttime, hand, and female human face closeup.

2.7 64 Robust Concept Detectors

Similar to our TRECVID 2008 participation, we again aim
for a small but robust lexicon of concept detectors this
year. To that end we have employed our Averell run
setting on the concept sets of TRECVID 2008 (20 con-
cepts), TRECVID2007 (36 concepts) and an additional

black/white detector. All 64 detectors have been donated
to the TRECVID community1 and are included in the 2009
MediaMill semantic video search engine for the retrieval ex-
periments.

3 Automatic Video Retrieval

The MediaMill team continued its effort on automatic
search, this year submitting 8 automatic runs. The overall
architecture of the search system was based on 3 fundamen-
tal search types — transcript-based retrieval, detector-based
retrieval, and feature-based retrieval — each of which was
submitted individually as a run. In addition we submit-
ted 5 combination runs, consisting of query-dependent and
query-independent approaches to video automatic search.

3.1 Baseline Retrieval Approaches

Our baselines correspond to the three information sources
of: transcripts, detectors, and low-level features. These are
implemented as follows:

Pippin: Transcript-based search Our transcript-based
search approach is similar to that of last year, incorpo-
rating Dutch automatic speech recognition transcripts and
English automatic machine translation transcripts [6]. This
year both the University of Twente [13] and LIMSI [9] do-
nated speech recognition transcripts. We evaluated both
for retrieval using the 2007 topics, and found that overall
retrieval performance could be improved by combining the

1Available from: http://trecvid.nist.gov/trecvid.data.html



text of both transcripts. This was further confirmed for
the 2009 topics with three additional (unsubmitted) runs
that we performed using this year’s topics. A run using
only University of Twente transcripts gained an MAP score
of 0.007, a run using only LIMSI transcripts gained an
MAP score of 0.009, and a run using combined transcripts
gained an MAP score 0.010. We combined the text of both
transcripts together with the machine translation for this
year’s entry, which resulted in a decreased final score of
0.009. At retrieval time, each topic statement was auto-
matically translated into Dutch using the online translation
tool http://translate.google.com, allowing a search on
the machine-translated transcripts with the original (En-
glish) topic text, and a search on transcripts from auto-
matic speech recognition using the translated Dutch topic
text. The two resulting ranked lists were then combined
to form a single list of transcript-based search results. To
compensate for the temporal mismatch between the audio
and the visual channels, we used our temporal redundancy
approach [14]. To summarize this approach, the transcript
of each shot is expanded with the transcripts from tempo-
rally adjacent shots, where the words of the transcripts are
weighted according to their distance from the central shot.

Sam: Detector-based search The detector-based search,
using our lexicon of 64 robust concept detectors, consisted
of two main steps: 1) concept selection and 2) detector com-
bination. We evaluated a number of concept selection ap-
proaches using a benchmark set of query-to-concept map-
pings, adapted from [15] to the new lexicon. The final
concept selection method used for automatic search was to
average the score for a concept detector on the provided
topic video examples, and select concepts that scored over
a threshold. In addition, any detectors with high informa-
tion content, that were also WordNet synonyms of terms
in the topic text, were also selected. As for the combina-
tion of multiple selected concepts for a topic, this was done
by simply taking the product of the raw selected detector
scores for each shot as its retrieval score. No extra nor-
malization or parametrization was done, nor were concepts
weighted according to their computed score for the exam-
ples. Rather, we used the triangulation of concept detector
scores to provide information on the relevance of a shot to
a query.

Merry: Feature-based search As we did last year, we
treat feature-based search as an on-the-fly concept learning
problem, with the provided topic video examples as positive
examples, and randomly selected shots from the test col-
lection as pseudo-negative examples. Spatio-temporal sam-
pling of interest regions, visual feature extraction, codebook
transform, and kernel-based learning were done as described
in Section 2. The resulting model was applied to the shots
in the test collection, shots were ranked according to the
probabilistic output score of the support vector machine.

3.2 Query-(In)dependent Multimodal Fusion

The final step in our retrieval pipeline is multimodal fu-
sion. Our aim here was to (1) compare query-dependent vs
query-independent methods, and (2) investigate the use of
the learning to rank framework [22] for video retrieval. In
all cases weights and/or models were developed using the
TRECVID 2007 and 2008 topics for training. Learning to
rank was done according to the SVM-Rank implementation
for learning to rank [16].

Gimli: Query-independent fusion Linear combination of
the three baseline approaches using weighted combsum fu-
sion.

Legolas: Query-independent learning to rank Learning
to rank-based combination of the three baseline approaches.

Aragorn: Query-class based fusion Query-class depen-
dent linear combination of the three baseline approaches us-
ing weighted combsum fusion. We utilize the query classes
and classification methodology employed by Mei et al. [25].

Gandalf: Predictive reranking Similarly to last year, pre-
dict which baseline approach will give the best performance,
using various query and result-based features for prediction.
Rerank the results of the predicted best baseline with results
from the other two baselines.

Frodo: Query-dependent Learning to Rank Learning to
rank-based combination of all 6 aforementioned automatic
search runs.

3.2.1 Automatic Search Results

Once again this year, the transcript baseline had the lowest
overall MAP of all runs with a score of 0.009. At 0.068,
detector-based search is the best performing baseline, while
feature-based search also does relatively well with a score
0.053. Of the combination approaches, query-dependent
learning to rank gives the best retrieval performance of
0.089. Surprisingly, query-independent learning to rank
gives the lowest performance over all combination strate-
gies. In these experiments, the learning to rank-method is
more effective when given both query-dependent and query-
independent results as input features.

Figure 8 provides a topic-level summary of the perfor-
mance of the MediaMill automatic search runs. We see that
transcript-based search had consistently low performance,
though it did achieve a high AP score relative to other runs
for an airplane or helicopter on the ground, seen from out-
side. Feature-based search gave higher performance, doing
well for visually distinctive scenes such as a building en-
trance and printed, typed, or handwritten text, filling more
than half of the frame area. Detector-based search per-
formed best for topics where one or more closely related
detectors where available, for instance something burning
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Figure 8: Topic-level comparison of MediaMill automatic video search experiments with other automatic search approaches in the
TRECVID 2009 benchmark.

with flames visible, where the explosion/fire detector was
selected, and street scene at night where the street and night
detectors were selected for search. Sometimes results were
disappointing: performance for the query for one or more
dogs, walking, running, or jumping, where the dog detectors
was selected, was severely degraded by inclusion of scores
from the people walking detector.

The performance of the query-dependent learning to rank
run is 0.089. If we were to select the best performing of the
three baselines for each topic, the performance would also
be 0.089. This indicates that the fusion approach is capable
of performing at least as well as a “best of” approach, at
least on an overall level. Performance over individual topics
varies, a large boost in performance is obtained for topics
where more than one baseline does well, for example for a a
building entrance AP is increased by 0.098, and for one or
more people, each at a table or desk with a computer visible,
performance more than doubles compared to the highest
performing baseline run. Conversely, when a single baseline
outperforms the others to a great degree, fusion tends to

reduce performance as compared to the best baseline. This
is the case for example with the topics a street scene at night
and something burning with flames visible.

4 Interactive Video Retrieval

The performance of interactive video search engines depends
on many factors, such as the chosen query method, the used
browsing interface with its implied interaction scheme, and
the level of expertise of the user. Moreover, when search
topics are generic and diverse, it is hard to predict which
combination of factors yields optimal performance. There-
fore, current video search engines have traditionally offered
multiple query methods in an integrated browse environ-
ment. This allows the user to choose what is needed. How-
ever, while this does offer the user complete control over
which strategy to use for which topic, it also allows the user
to inadvertently select a sub-optimal strategy.



Figure 9: Screenshots of the MediaMill semantic video search engine with its query interface (left), its ForkBrowser [8] (right), and its
CrossBrowser [37] (inset).
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Figure 10: Comparison of MediaMill interactive video search experiments with other interactive video search engines in the TRECVID
2009 benchmark.

4.1 Thread-Based Browsing

The basis for our TRECVID 2009 experiments is the Me-
diaMill Semantic Video Search Engine, see Figure 9. The
basic building block behind the browsing interface is the
thread; a linked sequence of shots in a specified order, based
upon an aspect of their content [8]. These threads span the

video archive in several ways. For example, time threads
span the temporal similarity between shots, visual threads
span the visual similarity between shots, a query thread
spans the similarity between a shot and a user-imposed
query, and history threads span the navigation path the
user follows.



The MediaMill Semantic Video Search Engine allows user
to choose between two modes for thread visualization. The
first visualization, the CrossBrowser shows the query thread
and the time thread in a cross formation. This visualiza-
tion is most efficient for topics where a single concept query
is sufficient for solving a topic [33, 37]. The second visual-
ization, the ForkBrowser, provides the user with two extra
diagonal threads, and a history thread. The ForkBrowser is
more efficient in handling complex queries where no direct
mapping between available concept detectors is possible [8].

4.2 Guiding The User to Results

Our TRECVID Interactive Retrieval experiments focus on
helping users to determine the utility of a given retrieval
strategy, and on guiding them to a correct set of results. To
this end we investigate the benefit of two strategies within
the MediaMill Semantic Video Search Engine.

To help users determine the utility of a given retrieval
strategy we introduce Active Zooming. This aids users both
by helping determine that a subset of visible results is not
relevant, and by helping to find a starting point within the
selected results. Active Zooming enables the user to quickly
and seamlessly visualize a large set of results from a single
thread at once. This allows users to make blink-of-an-eye
decisions about the contents of a single thread, or, in the
case of many relevant results, to quickly select large batches
of relevant results at once. The user is then able to ei-
ther continue browsing the thread, or go back to any other
thread.

To help guide users to correct results we introduce a Rel-
evance Feedback strategy based on passive sampling of user
browsing behavior in order to guide users to more relevant
results. For this, the system continuously monitors user be-
havior and uses this information on-demand to generate a
new set of results. It does so by training a support vector
machine model based on positive examples obtained from
the user, and negative examples obtained by passive moni-
toring. By using a pre-computed kernel matrix of inter-shot
distances this can be done interactively. The end result is a
reranking of the entire collection, which is then available as
a thread for visualization.

4.3 Interactive Search Results

We submitted two runs for interactive search. The Sauron
run was performed by a single expert user. The user was
instructed to use the ForkBrowser with Gabor and Wic-
cest [45] similarity threads. The user was allowed to use
Active Zooming and Relevance Feedback techniques on de-
mand. The Saruman run was performed by another sin-
gle expert user. The user was instructed to use the Cross-
Browser together with Active Zooming and Relevance Feed-
back. We provide a preliminary analysis of the logging data
for both runs.

In Figure 10 we show a per-topic overview of interactive
video retrieval results. The log-analysis indicates that the

users employed a variety of strategies to retrieve results. We
highlight a few typical cases. When relevant concept detec-
tors are available for a topic, these are taken as the entry
point for search by both users. For example, the users se-
lected the Hand detector for the topic a closeup of a hand,
writing, drawing, coloring, or painting. We found the capa-
bility to analyze and view multiple frames from individual
shots to be a significant benefit. For example, the results
for one or more dogs... were largely found by selecting the
opening credits of a single television program, in which a
dog can be seen running. This was however not apparent
in the key frames of these shots. For other topics, such as
train in motion or camera zooming in on a face, we found
that showing motion enabled the users to correctly answer
the topics. One user further increased the result for the lat-
ter topic by a creative use of Active Zooming: the zoom-in
motion was visually easily distinguishable which allowed the
user to select relevant shots rapidly. Furthermore we found
that almost all topics benefited from Relevance Feedback,
though the specific per-topic benefits are still being investi-
gated. In most cases the users also chose to auto-extend the
set of interactively selected results with relevance feedback
results.

Overall our approaches are the two best performing meth-
ods in the interactive video search task (Saruman: 0.246;
Sauron: 0.241), yielding the highest infAP scores for 18 out
of 24 topics. This indicates that our thread-based browsing
approach combined with robust concept detectors and rele-
vance feedback based on passive observation yields excellent
search results.

5 Lessons Learned

TRECVID continues to be a rewarding experience in gain-
ing insight in the difficult problem of concept-based video
retrieval [31]. The 2009 edition has again been a very suc-
cessful participation for the MediaMill team resulting in top
ranking for both concept detection and interactive search,
see Figure 11 for an overview. To conclude this paper we
highlight our most important lessons learned:

• By reusing subregions in the descriptors, we obtain a
speed-improvement of a factor 16 [42];

• Concept detection using the GPU is power-efficient
[43];

• Multi-modal concept detection using multi-kernel super-
vised learning seems promising but more experiments
are needed to be conclusive;

• Multi-frame processing is a true performance booster,
indicating the time has arrived to move on to video

analysis;

• Query-dependent learning to rank is a solid choice for
automatic search;



0 20 40 60 80 100 120 140 160 180 200 220
0

0.05

0.1

0.15

0.2

0.25

Concept Detection Task Submissions

 

 

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

Interactive Search Task Submissions

 

 

216 other concept detection methods
MediaMill concept detection method

22 users of other video retrieval systems
2 users of MediaMill video search engine

M
ea

n
 (

In
fe

rr
ed

) 
A

ve
ra

g
e 

P
re

ci
si

o
n

MediaMill Semantic Video Search Engine at TRECVID 2009

Figure 11: Overview of the 2009 TRECVID benchmark tasks in which MediaMill was the best overall performer. Top: concept detection
and bottom: interactive search, all runs ranked according to mean inferred average precision.

• Thread-based Fork- and CrossBrowsing using robust
concept detectors and on-the-fly learning yields excel-
lent search results;

Acknowledgments

This research is sponsored by the European VIDI-Video, the
BSIK MultimediaN project, the NWO MuNCH, the NCF
VideoSUPER project, and the STW SEARCHER project.
The authors are grateful to NIST and the TRECVID coor-
dinators for the benchmark organization effort.

References
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