
Nanjing University in TRECVID 2009
Yang Yang, Jingwei Xiao, Kang Lin, Gangshan Wu, Tongwei Ren, Yaqiong Wang

State Key Lab for Novel Software Technology, Nanjing University

{yang,xiaojw,lingkang,rtw,wyq}@graphics.nju.edu.cn, gswu@nju.edu.cn

Abstract

This report describes the details of our system for copy detection task in TRECVID 2009. We submitted 4 runs, 2

for video-only queries and 2 for video + audio queries. Details are listed below. Each group is with same technique

but different parameters.

NJU.v.balanced.1, NJU.v.nofa.1: SURF feature is used. Videos are indexed with feature points. We adopt

LSH as indexing technique.

NJU.m.balanced.1, NJU.m.nofa.1: SURF feature is used. Feature points are made to BOF before videos are

indexed. A post process of SURF points pairing is included.

For video-only queries, LSH (Locality-sensitive Hash) was built using SURF points but the approach cost too much

memory. To save time and space cost, we generated a global feature for each frame using bag-of-features when

dealing with video + audio queries, and ignored audio information in both query and reference media. Because

it’s our first time participation, our goal is to complete whole process of TRECVID copy detection task, get

experience of the key technologies in CBCD.

Keywords

Content-based copy detection, Speeded Up Robust Features, Bag-of-features, Locality-Sensitive Hashing,

Approximate Nearest Neighbor Search

1. Introduction

Video copy detection technologies are recently considered rather useful especially on copyright protection and

advertising monitoring. The main task is to find similar video copies from the data base, using image/video

features and other computer vision approaches. This kind of technologies can also be used in redundancy

reduction of huge database.

TRECVID, which is held by NIST, is an evaluation program in video retrieval domain and video copy detection

is also included.

This is our first time participant of TRECVID Copy Detection task. With regard to the special requirement of

this task, we adopted Speeded Up Robust Features (SURF) [1][4] as visual feature. We chose two different

schemes of indexing in video-only and video + audio task. They are Locality-sensitive Hashing and Random

Kd-tree Searching. We wish to evaluate the performance of these two schemes on huge data set. The experiment

results brought us some experience.

Our system was implemented with C++ and OpenCV(Open Computer Vision Library) [5] library.

Unfortunately, the TRECVID Copy Detection Sample Generator [9] from INRIA-LEAR failed to return expected

video queries on any of our computers. So, we had no chance to refine our system before submitting results.

2. Video-only Task

Our system extracts SURF feature points from keyframes selected from reference videos. In offline phase, SURF

points from reference video are extracted and stored. The system then constructs an index for them. In querying

phase, features are extracted in the same way as reference videos. In order to find the related video in the

reference video set, for each SURF point of query video, the system finds its nearest neighbors among points of

reference video. Then, a voting procedure was set up to select the qualified videos. The general scheme of our

system in video only task is show in figure 1.

2.1 Frame Feature Extraction

The reason why we adopt Speeded Up Robust Features is that its extraction speed is relatively fast. Because it is

scale-invariant and robust, most of the transformation can be deal with. An upright version of SURF (U-SURF) was

used for there’s no rotation in the 10 transformations. We extracted the “I” fames in videos as keyframes where

we extract SURF points from, avoiding prediction and compensation in compressed domain. The sample rate is

about 2 fps.

2.2 Feature Points Indexing

In video-only task, our system adopted Locality-sensitive Hashing to construct point index. We used one version

of implementations called “E2LSH” [6] by MIT. To accelerate the voting scheme, we tried to return all points in the

bins which query points was hashed to, without linear comparing.

2.3 Dealing with Flip (vertical mirroring)

Both position and local descriptor of SURF points are being changed while vertical mirroring. For an upright surf

point, vertical mirroring just changes sequence of some dimensions, and signs of X-Haar responses. By changing

sequence of some dimensions and negating some values, the descriptor can be flipped. Our system automatically

generates flipped descriptor while extracting from queries. The flipped ones participate voting right after the

original ones.

Figure 1.

Procedure of our method in

video-only task

Figure 2.

Procedure of our method in

 video + audio task

2.4 Result Analysis

Our results were shown in figure 3 and seem not so good. After we submitted the results, we started looking for

the problems. One of the reasons is from our index scheme.

LSH is a multi-dimensional index technique which is very popular recently. The index structure is presented

as hash tables. The number of hash tables is one of the parameters which determine the LSH performance. We

had done a simple evaluation on LSH after we submit the result. We found that if the parameters of hash tables

are very close to optimal ones, the points in one hash bin are pretty close. There’s no problem returning all

elements in one bin. Otherwise, the result would be unacceptable.

A hash table may cost a bit of memory depending on the count of points. Since our system directly build

index using SURF points, single PC can hardly hold the memory used by searching and voting scheme, even a

server. We adopt a group of 5 PCs to handle this, each with 4GB memory. Reference data were split into 5 pieces

and deployed. Voting results were joined together to generate the final result. Though we run it under such

configuration, we can still keep no more 10 hash tables in memory. This is far away from the optimal settings,

because for 64 dimensions, LSH required about 160 hash tables. In order to reduce the requirement, we adopted

feature of SURF-16, reducing 64 dimensions to 16. We have done some statics on each dimension using TRECVID

videos, finding that rounding bins made much less contribution to descriptor distance than center bins. These

approaches leaded us to final result, but not a satisfying result.

3. Video + Audio Task

Since the approach we used in video-only was not so good and successful. We made a lot of changes in visual

feature processing and indexing. After SURF points extracted from keyframes, instead of building index directly,

we generate a global feature for each keyframe. Index is built with global features. Query keyframes are being

indexed to find similar frames. Then, a further step of SURF point comparing is performed. The procedure is

shown in figure 2.

3.1 Global Feature

The global feature we generated is called “visual bag-of-words” or “bag-of-features” [3], which is a histogram of

SURF descriptors on a chosen set of bins. We selected the bins by performing a K-MEANS algorithm on a sampled

set of SURF points from reference data. Feature histogram was calculated by:

2

0

| |

() (,),

1
,| | 3

(,)

0 ,

n

x i
i

c p

H x G c p

e c p
G c p

otherwise

σ σ
πσ

=

−−

=

− <=

∑

in which xc is the thx bin center, and ip is the thi SURF point in point set. Since SURF point has a Laplacian

sign marking the point to be positive or negative, two kind global features were generated, one from positive

points and one from negative ones.

3.2 Index Construction

Indexing scheme we chose this time is random kd-tree search algorithm [7] provided by toolkit of “FLANN” [8].

Unlike LSH, kd-tree’s memory cost just depends on the count of SURF points (approximately a little more than the

memory to store SURF points), and more stable. We first apply the parameter selection algorithm provided in [7]

on a sampled dataset to obtain optimized parameters.

3.3 SURF Comparing

In order to get a more accurate similarity between query frame and reference frame, a further step comparing

was performed using SURF points. To accelerate, we used a kd-tree search algorithm implemented by “ANN tool

kit” [9] instead of linear searching. The new similarity was measured by points paired.

3.4 Audio Feature Extraction

We intended to extract MFCC coefficient as our audio feature. However, there’re some problems with the mpeg

audio decoder. We have configured it for several days but it still failed to work. So, we had to drop audio in our

work, in order to submit a result before deadline.

3.5 Result Analysis

The results are shown in figure 4, also disappointing. We’re still looking for the reasons. It is probably because we

did not set the search parameters of FLANN well. The parameters were calculated by training on the sampled

feature set with algorithm provided by [7]. Maybe the sample rate is too small to represent the whole feature set,

and the algorithm cannot work on the feature set well.

4. Conclusion

This report describes our content-based video copy detection system in TRECVID 2009. It is the first time of our

participation in TrecVID, and the results are rather disappointing, however, the experiences we get are very useful.

Because copy detection is a very important technique in video monitoring and copyright protecting, our lab will

keep on working at this and hope we can do better next time.

5. Reference

[1] H Bay, A Ess, T Tuytelaars, L Van Gool. “Speeded-Up Robust Features (SURF)”. In CVIU’2008.

[2] A Andoni, P Indyk. “Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions”. In

Communications of the ACM, 2008.

[3] G Csurka, C Dance, L Fan, J Willamowski, C Bray. “Visual categorization with bags of keypoints”. In ECCV’2004

Workshop on Statistical Learning in Computer Vision.

[4] H Bay, A Ess, T Tuytelaars, L Van Gool. “SURF: Speeded up robust features”. In ECCV’2006.

[5] Developed by OpenCV group. “http://opencv.willowgarage.com/wiki/”.

[6] Developed by A Andoni et al, MIT. “http://www.mit.edu/~andoni/LSH/”.

[7] M Muja, DG Lowe. “Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration”. In

VISAPP’2009.

[8] Developed by M Muja et al, UBC. “http://people.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN”.

[9] Developed by INRIA-LEAR IMEDIA group, “http://lear.inrialpes.fr/people/douze/trecvid_generator/”.

a) balanced b) no false alarm

Figure 3.

Performance of our method in

video-only task

c) balanced d) no false alarm

Figure 4.

Performance of our method in

video + audio task

