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Abstract

This notebook paper summarizes Team NEC-UIUC’s ap-
proaches for TRECVid 2009 Evaluation of Surveillance
Event Detection. Our submissions include two types of sys-
tems. One system employs the brute force search method
to test each space-time location in the video by a binary
classifier on whether a specific event occurs. The other
system takes advantage of human detection and tracking to
avoid the costly brute force search and evaluates the candi-
date space-time cubes by combining 3D convolutional neu-
ral networks (CNN) and SVM classifiers based on bag-of-
words local features to detect the presence of events of inter-
ests. Via thorough cross-validation on the development set,
we select proper combining weights and thresholds to mini-
mize the detection cost rates (DCR). Our systems achieve
good performance on event categories which involve ac-
tions of a single person,e.g. CellToEar, ObjectPut, and
Pointing.

1. Introduction

Event detection based on human action recognition in
uncontrolled environments shows great potentials for many
emerging video-content analysis applications, thus it at-
tracts more and more research interests and experiences
rapid advances in recent years. Nevertheless, most of the
existing approaches [3, 5, 9, 17, 4, 18, 10, 7] first address
human action detection with some simplified assumptions
such as known spatial locations and temporal segmentations
of actions, no (or very little) scale and viewpoint changes,as
well as static and clean background. Therefore human fig-
ures can be reliably extracted and aligned. However, these
assumptions seldom hold in real-world surveillance videos.
Even the same type of actions may exhibit enormous varia-

tions due to cluttered background, different viewpoints and
many other factors (e.g. human-body occlusions and low-
resolution videos) in unconstrained real-world environment.

This line of research suffers from a lack of stan-
dard benchmark video dataset which provides sufficient
clearly defined video events together with ground truth
annotations in unconstrained real-world environment. To
our best knowledge, TREC Video Retrieval Evaluation
(TRECVid) [14] has made the largest effort to bridge the re-
search efforts and the challenges in real-world conditionsby
providing an extensive 144-hour surveillance video dataset
recorded in London Gatwick Airport. There are 10 required
events in TRECVid 2009 Evaluation, we concentrate on the
events that involve the actions of a single person, such as
CellToEar, ObjectPut, Pointing, and PersonRuns.The ap-
proaches developed by the Video Analysis Group at NEC
Laboratories America based on 3D Convolutional Neural
Networks and bag-of-words of local features are first elab-
orated in Sec.2– 5. Then, we present the approach using
brute force search in videos developed by the Image For-
mation and Processing (IFP) group at UIUC in Sec.6. The
experiments as well as implementation issues about compu-
tational complexity and parameter selection are discussedin
Sec.7. Concluding remarks are given in Sec.8.

2. System Overview

For the tasks in TRECVid 2009 Event Detection Eval-
uation, we focus on 3 events that require understanding of
articulated body motions of a single person,i.e. CellToEar,
ObjectPut, andPointing. We mainly follow the framework
we employed in TRECVid 2008 Evaluation, which incorpo-
rates hypothesis generation, feature extraction, and classifi-
cation modules. The candidate regions are generated based
on human detection and tracking which not only signifi-
cantly reduces the searching space but also eases the tough
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Figure 1. The system diagram of NEC’s approach on human action detection.

requirements of collecting sufficient negative samples. Oth-
erwise, the classifier in the action detector has to fulfill the
job of discerning human from non-human regions and deter-
mining whether they are performing the actions of interests
simultaneously. Afterwards, for each candidate region we
calculate dense DHOG descriptors and build bag-of-words
features based on raw gray-level images and motion edge
histogram images (MEHI) to train two binary SVM classi-
fiers for each action category. At the same time, we learn
convolutional neural networks (CNN) classifiers based on
3D cubes. The classification scores of these 3 classifiers are
combined to make the final decision. In the post-processing
stage, the frame-based classification results are linked to
event segments by heuristics. The system diagram is illus-
trated in Fig.1.

3. Human Detection and Tracking

We apply a human detector based on Convolutional Neu-
ral Networks (CNN) [12] and a detection-driven multiple
hypotheses based tracker [2, 6, 19] integrating color, shape
and texture cues to locate human heads. For the develop-
ment set of TRECVid 2008 dataset, we annotated all human
heads every 750 frames. The first 70% of heads are used to
train the CNN human detector and the remaining 30% are
used to test the performance. Denote the labeled rectangle
of a head asRL and the detected or tracked rectangles as
RD andRT , respectively. We regard a detection as a cor-
rect one if the overlapped area is larger than one half of both
the labeled and the detected head,i.e. Area(RL ∩ RD) >
Area(RL)/2 andArea(RL ∩ RD) > Area(RD)/2. This
criterion examines both location and scale of a detection,
which is quite strict for head detection in fact. The reason
to train a human head detector rather than a pedestrian de-
tector based on the whole body is due to the crowded scenes

in the TRECVid videos where partial occlusions of human
bodies happen very frequently.

For 4 different camera views, the number of frames la-
beled (# of frames), the average number of tagged heads per
frame (avg. # of labels), the average number of detected
heads (avg. # of detected heads), the average number of
tracked heads (avg. # of tracked heads), the recall rates and
precision rates of the detector and tracker are summarized in
Tab.1. The performance is quite good given the extremely
complex and crowded scenes in the TRECVid test videos,
e.g., on average there are over 24 persons in the videos of
CAM2. Certainly, wrong human detections may degrade
the action detection performance later on. However, in prac-
tice, applications have to cope with such imperfect detection
and tracking results and do not expect accurate annotations
of human figures. Some typical human detection and track-
ing results from different camera views are shown in Fig.2.
The detection and tracking results are stored into hard drives
which are loaded when extracting training features or per-
forming action detection on the evaluation set. The human
detection and tracking runs at 0.5-2 fps depending on the
number of persons in the scene, so it may take up to 48
hours to process a 2-hour video.

4. BoW Features based SVM

Given the human detection and tracking results, we crop
an enlarged candidate image region or an cube around every
tracked head. Then, we train binary one-against-all SVM
classifiers for each action category based on bag-of-words
(BoW) of dense local features extracted from the candidate
region or cube. The flow chart is shown in Fig.3 and the
technical details are elaborated as follows.

We extract dense DHOG features, where DHOG is es-
sentially a fast implementation of the SIFT descriptor [13],



Table 1. Performance of detection and tracking (per head)
Per frame CAM1 CAM2 CAM3 CAM5 Overall
# of frames 3775 3774 3774 3772 15095
avg. # of labels 5.505 24.315 11.486 7.330 12.159
avg. # of detected heads 3.349 16.122 7.236 5.459 8.042
avg. # of tracked heads 4.120 21.545 8.940 8.070 10.668
recall of the detector 43.53% 46.25% 42.58% 45.25% 44.81%
precision of the detector 74.40% 67.37% 66.09% 62.21% 66.99%
recall of the tracker 51.68% 56.76% 48.66% 54.11% 53.65%
precision of the tracker 70.80% 62.42% 61.19% 51.03% 60.80%

Figure 2. Sample human detection and tracking results for camera view 1,2,3,5.

from both raw gray images and motion edge history images
(MEHI). Local features on raw gray images preserve the ap-
pearance information. On the other hand, MEHI proposed
in [20] only concerns with the shape and motion pattern.
Therefore, the bag of local features extracted from these two
different kinds of images are complementary to each other.
The procedure to calculate MEHI is illustrated in Fig.4. For
consecutive frames, we first calculate the frame difference
images which only retain the motion information, and then
we perform Canny edge detection to make the observations
cleaner. The motion edges are accumulated to a single im-
age with a forgetting factor.

The spatial pyramid matching (SPM) [11] of a bag of in-
terest point descriptors demonstrates superb performancein
object and scene categorization due to its power to delin-
eate the spatial layout of shape patterns. Given the location
of a head output by the human tracker, we crop a candi-
date region with 4 times of the head width by 6 times of
the head height, as shown in Fig.5. Afterwards, we cal-
culate DHOG features on a dense grid within the candidate
regions,i.e. every 6 pixels with two patch sizes7 × 7 and
16 × 16. Each 128D DHOG feature is softly quantized
using a codebook with 512 words , then we construct the
BoW features from both2 × 2 and3 × 4 cells in the candi-
date cube. The dimensionality of the final feature vector is
512×(2×2+3×4) = 8192. We test such BoW features ex-
tracted from a single frame or from a cube. The cube based
BoW features are constructed from 7 frames with frame in-
terval 2 (e.g.frame -6, -4, -2, 0, 2, 4, 6 if the current frame is
frame 0). Note we do not align human figures and the cube

is composed of regions at the same location in successive
frames as illustrated in Fig.3.

x4

x6

Figure 5. Extraction of the candidate regions.

To train the SVM classifier for each action category, we
label the positive samples as many as possible and collect a
vast number of negative samples. The total number of train-
ing samples is about 520K where each sample is an 8192D
feature vector. Thus, only the storage for one set of training
data requires 17G bytes (520K × 8192 × 4 ≃ 17G). The
huge memory requirements and the enormous computations
make learning of SVM classifiers extremely challenging for
this task. As far as we know, no off-the-shelf SVM pack-
age can fulfill this task. Thus, we develop a new averaged
stochastic gradient descent (ASGD) method to train linear
SVM classifiers to deal with the huge amount of data. The
first order stochastic gradient descent (SGD) [15] is as good
as any second order SGD with optimal matrix valued step
size. Our ASGD based SVM learning is very efficient since
we only need to access each sample once in an iteration.
The training of 5 classifiers for 5-fold cross-validation and
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Figure 3. Flow chart of NEC’s approaches based on bag of localfeatures.

Figure 4. Illustration of MEHI extraction. From left to right: (a) the original frame, (b) the frame difference image, (c) Canny edge
detection, (d) the accumulated motion edge history image

the final classifier for 3 events using the 520K samples takes
about 12.5 minutes in total on a 64bit blade server with CPU
Intel Xeon 2.5GHz (8 cores) and 16GB RAM.

5. Cube based Convolutional Neural Networks

Conventional paradigm of pattern recognition usually
consists of two steps in which the first step computes hand-
crafted features from raw inputs and the second step learns
classifiers based on the obtained features. The overall per-
formance of the system is largely determined by the first
step, which is, however, highly problem dependent and re-
quires extensive human intervention. Convolutional neural
networks (CNN) are a class of deep networks in which mul-
tiple stages of learned feature extractors are applied directly
on the raw input images and the entire system can be trained
end-to-end in a supervised or unsupervised manner [12, 16].
It has been shown recently that, when trained with appropri-
ate regularization, CNN can achieve superior performance
on image classification tasks [1, 21]. We consider the ap-
plication of CNN to video action recognition in TRECVid.
A simple approach for CNN in video processing is to treat
the video frames as still images. However, such approach
does not take advantage of the motion information carried
by multiple contiguous frames. We propose a 3D CNN ar-
chitecture, in which the motion information of video data is
captured by performing convolution in both space and time.

In traditional CNN, convolution and subsampling are ap-
plied on the 2D feature maps in the previous layer to com-
pute the feature maps in current layer. When applied to
video processing problems, it is desirable to capture the mo-
tion information conveyed by multiple contiguous frames.
We propose the 3D CNN architecture in which multiple
contiguous frames are fed into CNN and the convolution
is performed in both space (in a single frame) and in time
(among multiple contiguous frames). In particular, the fea-
ture maps in the 3D convolution layer is connected to mul-
tiple contiguous frames in the previous layer, and contigu-
ous feature maps are connected to contiguous feature maps
in the previous layer in a overlapping manner similar to
the convolution in space. To perform convolution opera-
tions along the time axis, we also require that the same set
of weights are applied repeatedly with a specified tempo-
ral window size. Fig.6 shows the 3D convolution with a
temporal window size of 3.

For the TRECVid video data, bounding boxes for the hu-
mans that perform the actions have been obtained by human
detection, tracking, and manual labeling. To apply the 3D
CNN, we also apply the same bounding box to frames be-
fore and after the current frame with certain step size. In this
application, the step size is set to 2. So, suppose the current
frame is 0, we extract a bounding box at the same position
from frames -6, -4, -2, 0, 2, 4, and 6. From the multiple
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Figure 6. The 3D CNN architecture in which the convolution isperformed both in space and in time. In the 3D convolution layer, the
connection weights with the same color share the same set of weights. The 3D convolution and sampling can be applied alternately
multiple times.

input frames, we first compute the gradients on each input
frame and the optical flow from contiguous frames along
x andy directions. Along with the gray image of each in-
put we obtain a total of 5 channels in which three of them
contain 7 feature maps and the other two that derived from
optical flow contain 6 feature maps. In this architecture, the
3D convolution is performed separately on the the different
channels (RGB, gradient, and optical flow) with a tempo-
ral window of size 3. The proposed architecture is shown in
Fig.7. The bounding box on each frame is scaled to60×40
and the sizes of the filters and the subsampling ratios are
shown in Fig.8. The classification scores of this method is
denoted by3D-CNN.

6. Alternative System

We also demonstrate an alternative system developed at
the University of Illinois. We take a general approach for
detecting a variety of short duration actions (average dura-
tion of one second) with characteristic motion or appear-
ance patterns. The system is applied on 4 events:Pointing,
ObjectPut, PersonRuns, CellToEar. We follow the sliding
window detection paradigm, in which all possible locations
in every frame of the video are evaluated to see whether
it contains the event or not. The candidate windows for
event detection are 30 frames in time and of varying spa-
tial size depending on the camera and horizontal location
of the bounding box. However, the horizontal to vertical
aspect ratio of the bounding box is always fixed at 4 to 6.
That means our candidate windows are space-time rectan-
gles with the vertical edge longer than the horizontal one.

This is consistent with the shape of the most subjects in the
video corpus (unless they are seated). We infer the size-
location relation of subjects in the video corpus by comput-
ing the linear relation between the locations and head sizes
of manually annotated people in each of the five cameras.

To accomplish the goal of event detection, we take ad-
vantage of two types of features describing appearance and
motion respectively. The framework uses a bag of features
approach for motion features, while the appearance feature
is extracted from a dense grid on the entire candidate win-
dow. Finally the two sets of descriptors in each candidate
window are concatenated together and classified with a lin-
ear kernel SVM as shown in Fig.9. To accelerate the sliding
window search, K-nearest neighbor (KNN), feature extrac-
tion and SVM kernel evaluation are all completely or par-
tially CUDA, which gives us a 15x to 30x speed boost in
most cases1.

6.1. Appearance features

We construct histograms of oriented gradients (HoG) [8]
to describe the appearance of the subject in the candidate
window. We have empirically found that the 10th frame
of each annotated event contains the most characteristic ap-
pearance of the subjects for each event (e.g. for Pointing
subject usually have their arms fully extended). HoG fea-
ture is a static image feature, which we extract from the
10th frame of each candidate window. The bins of the his-
tograms are over the orientations. We use eight orientation

1The CUDA source codes are available to download at
http://libvivid.sourceforge.net
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Figure 8. The sizes of kernels and feature maps employed in the 3D CNN architecture.

bins equally spaced from 0 to 180 degrees of image gradient
direction.

We define a (nx × ny) fixed grid within the candidate
window. Each grid point corresponds to a15 × 15 square
region from which an 8 dimensional histogram of gradient
orientations will be computed. The direction of the gradi-
ent at the pixel determines which bin of the histogram the
pixel belongs to, and the magnitude of the gradient at the
pixel determines the weight of the vote cast. Finally the
histograms of all blocks are concatenated to form the holis-
tic appearance feature vector of the candidate window. The
spatial dimensions of the candidate windows are re-scaled
to 90 × 60 pixels, and we setnx andny to 15 and9 pro-
ducing a15× 9 × 8 = 1080 dimensional feature vector for
appearances.

6.2. Motion Features

As opposed to shape and appearance, it is hard to local-
ize motion patterns. Therefore for describing motion, we
pursue a bag of features approach, where the location of
the motion within the candidate window has no effect on
the feature descriptor. We first find points of motion in the
candidate window and we randomly sample a fraction of
them. Then we use motion history images [3] to describe

the motion around each sampled point. In the next step, we
find the nearest codeword from a dictionary of motion his-
tory descriptors which was learned offline by clustering a
large number of motion history descriptors randomly col-
lected from the video corpus. Finally we count the number
of nearest neighbors to each dictionary codeword from the
extracted motion history image descriptors in the candidate
window. This gives us a histogram equal to the size of our
codeword dictionary. We use this histogram as our motion
feature. The size of the trained dictionary is1000 code-
words.

6.2.1 Random sampling on the motion boundary
(RSMB)

To find the points of motion in the candidate windows, we
randomly sample from the motion boundaries obtained by
thresholding the pixel-wise difference between two consec-
utive frames. This sampling method is rather naive, yet it
is still more structured than uniformly sampling from all
pixels in the video. It is logical in this case since mo-
tion information relevant to action detection is mostly con-
tained around the pixels of the motion boundary. The ran-
dom sampling process is conducted by finding all the mo-
tion boundary pixels in a candidate window and then ran-



Figure 9. Diagram of the UIUC System. Two types of features are concatenated at the classification stage to improve the detection accuracy

domly selecting 50% of them. This approach has the ad-
vantage that more samples are collected from frames with
large amounts of motion and few get selected from frames
with little motion. Thus we can quickly discard candidate
windows with little to no motion. Our studies indicate that
densely sampling points from the motion boundary, even
randomly, yields superior results to the recognition per-
formance obtained with state of the art space-time interest
point detectors.

6.2.2 Motion history images (MHIST)

Motion History Images [3] are one of the first features pro-
posed for representation and recognition of simple action
categories. The initial studies have assumed that the sub-
jects are well localized and their scales are known. Unfor-
tunately we do not have such kind of clean environment in a
general surveillance setting, and despite our sliding window
approach, we have to allow for flexibility of the features
in both time, space and scale space. Therefore we make
a slight adjustment to the original definition of the motion
history image, where we use MHIST as a local region de-
scriptor in which we extract the motion history image of an
(X×Y ×T ) region centered around the sampling point. The
drawback of MHIST features is that the non moving pixels
of the foreground objects are not registered in the descrip-
tor. However we use this feature to specifically describe
motion and augment it with the static appearance descriptor
explained in the previous sub section. This approach allows
us to cover a significant range of information relevant for
characterizing the action in the candidate window.

The motion history imageH of a (X × Y × T ) sized
regionR centered around a point(x0, y0) at timet0 in the
video volumeV (x, y, t) is described as follows:

D(x, y, t) = |V (x, y, z) − V (x, y, t − 1)| (1)

h(x, y, t) =

{

0, D(x, y, t) < k

1, D(x, y, t) ≥ k
(2)

Hx0,y0,t0(x̂, ŷ) = max
0≤t̂≤τ

(1 − t̂
τ
)h(x0 + x̂, y0 + ŷ, to + t̂)

(3)

|x̂| ≤ X
2

, |ŷ| ≤ Y
2

In this system, we setX = Y = 11 andT = 12.

6.3. Training of the system

We used TRECVid 2008 Development corpus as our de-
velopment data since we had added location labels to a part
of the time labeled ground truth. We trained separate sys-
tems on all 4 testing events and all 5 camera views. The
labeled events are very sparse compared to the rest of the
corpus. Therefore while it is relatively easy to obtain nega-
tive non-event samples, training becomes massively unbal-
anced due to the large amounts of negative samples. To
overcome this imbalance, we adopt a bootstrap classifier
training strategy, where we start out with a balanced num-
ber of positive and negative training samples. A classifier
trained using this set and is applied to the training corpus.
The false alarms found are added to the set of negative sam-
ples from the previous round to form a new set of negative
samples. We then train a new classifier and repeat this pro-
cess adding “tougher” negative samples to the training set at
each iteration. The classifier training is terminated when a
reasonable rate for false positive production is achieved on
the training corpus. The results are denoted by UIUC-1 in
the experiments.

7. Experiments

TRECVid 2009 Event Detection Evaluation [14] pro-
vides 99 hours videos in the development set and about 44
hours videos in the evaluation set, where the videos were
captured using 5 different cameras with image resolution
720 × 576 at 25 fps. From the statistics of events in the
development set, we find out there are hardly any events
in the videos of CAM4, so we exclude those videos from
our experiments to save some computation power. Even
though, to detect human actions in such a huge dataset,
computational efficiency remains the topmost concern to
ensure the experiments can be done within reasonable time.
So we save intermediate results to hard drives to avoid re-
peated computations and try to utilize parallel computing
with multi cores as much as possible. The system is imple-
mented using C++ and compiled with Intel Compiler 10.1
to utilize multiple cores. The experiments are mainly per-
formed on 64bit blade servers with Intel Xeon 2.5GHz CPU
(8 cores) and 16GB RAM. It took about 20 days to complete
all the experiments. Next, we elaborate the details about
training sample preparation, feature extraction, parameters
selection based on 5-fold cross-validation.



7.1. Training sample preparation

Collecting training samples is not trivial. The ground
truths about time intervals of actions in the development set
were provided by NIST. We further label the locations of
the persons performing the actions of interests,i.e. Cell-
ToEar, ObjectPut, andPointing, every 3 frames as the posi-
tive samples. We further generate 6 additional positive sam-
ples from each labeled positive sample by perturbing the lo-
cations and scales. The total numbers of positive samples
for CellToEar, ObjectPut, and Pointing are about 25.2K,
39.3K, 152.2K, respectively. The negative samples include
two subsets from human labeling and detection results: 1)
the same persons performing the actions are labeled as neg-
ative samples in two 30-frame intervals before and after the
action occurs; 2) the detected persons that are not perform-
ing the actions when the actions occur. The total number of
negative samples is about 303K. The collection of negative
samples need to ensure the classifiers do not learn action
models only for some specific persons. Quite often the per-
sons performing the actions are too hard to find even for our
labelers, so we only manage to label about one half of the
action instances in the ground truths provided by NIST.

7.2. Feature extraction and classification

We train two codebooks with 512 words on the DHOG
features extracted from gray images and MEHIs in 8 hours
videos on the day 2007/11/12 using K-Means. After load-
ing detection and tracking results from the files, we extract
BoW features and train SVM classifiers using the ASGD
algorithm described in Sec.4. We train 4 SVM classi-
fiers based on a single image and cube of gray images
and MEHIs, where the classification results are denoted by
Gray-Frame, Gray-Cube, MEHI-Frame, andMEHI-Cube,
respectively. The training features are only extracted where
the labels are available, so it only takes about 8 hours to
obtain one set of features. Evaluation on a 2-hour video re-
quires feature extraction and classification for all persons in
every frame, which may take about 1-2 days depending on
the number of detected persons. We save the classification
scores of all persons from these 4 classifiers and those of
the3D-CNNmethod to hard drives.

7.3. 5-fold cross-validation performance
For each candidate region, the classification scores of

three classifiers are combined linearly. If the combined con-
fidence is larger than a thresholdT , this frame is regarded
as positive. The frame based results are linked to generate
the event segments by heuristics considering the spatial and
temporal smoothness and consistency. We limit the maxi-
mum number of output events for one 2-hour videos by 20
and output 2 events at most for the short video clips in the
evaluation set.

We exhaustively search the combining weights (with
step 0.1) and the threshold (with step 0.01) to minimize the

DCR directly. Towards this end, we implement DCR cal-
culation with C++ which is very critical to the efficiency.
Moreover, due to the computational issue, we can only af-
ford exhaustive searching of combining weights of 3 sets
of classification scores. The videos in the development set
of TRECVid 2009 were recorded on 10 different days, so
we perform 5 fold cross-validation using the training fea-
tures from 8 days to train and test on the other 2 days. We
have tried different combinations and find the following two
are good in terms of DCR scores in the cross-validation:
Method 1Gray-Frame+ Gray-Cube+ MEHI-Cube; and
Method 2Gray-Frame+ MEHI-Frame+ 3D-CNN.

The average DCRs per event per camera of 5-fold cross-
validation are shown in Tab.2 and Tab.3, where the number
of events, true detections, and false positives are shown in
the parenthesis,e.g. (806/21/244). These tables about the
cross-validation performance guide us what methods shall
be included in the final submissions. The final combining
weights and the threshold{ω1, ω2, ω3, T } (ω1 +ω2 +ω3 =
1) are selected by exhaustively searching the best common
parameters that yield the lowest DCR per event per camera,
which are shown in Tab.4 and Tab.5. We expect the DCR
on the evaluation set is in between of the average DCR ob-
tained by the cross-validation and the lowest DCR obtained
by searching common parameters.

We submitted event detection results of 4 systems. Sub-
mission NEC-1 and NEC-2 correspond to the 2 aforemen-
tioned methods. Submission NEC-3 selectively combines
NEC-1 and NEC-2 based on the cross-validation perfor-
mance per events per camera. Submission UIUC-1 includes
the detection results of UIUC’s system. From Tab.6, we
can see the evaluation performance is in line with our ex-
pectation. Our detection results on the eventsCellToEar,
ObjectPut, andPointingoutperform all other participants.

7.4. Discussion

The false positives rates are still fairly high. A consider-
able portion of the false positives appear similar to the true
ones in terms of the motion patterns,e.g. touching hair is
occasionally misclassified toCellToEarand it is very hard
to distinguish betweenObjectPutandObjectGet. The ma-
jority of the false positive are induced by cluttered back-
ground, occlusions in a crowd, and the complicated inter-
actions among people. The combination weights of 3 clas-
sifiers vary dramaticallyw.r.t different events in different
cameras, which indicates that the performance and the gen-
eralization ability are not stable.

8. Conclusions

The strengths of our system are on 3-fold: 1) the de-
scription power of the BoW features and 3D-CNN; 2) the
efficient ASGD learning algorithm to utilize vast number
of training samples; and 3) the thorough cross-validation



Table 2. 5-fold cross-validation performance ofGray-Frame+ Gray-Cube+ MEHI-Cube
CellToEar ObjectPut Pointing

CAM1 1.0000 (40/0/0) 0.9979 (706/9/38) 0.9973 (926/5/9)
CAM2 1.0015 (265/0/6) 0.9937 (1122/7/11) 0.9990 (999/3/8)
CAM3 1.0053 (262/0/21) 1.0010 (843/1/9) 1.0023 (1056/0/9)
CAM5 0.9526 (239/21/217) 1.0000 (432/0/0) 1.0070 (1048/2/36)
Overall 0.9896(806/21/244) 0.9981(3103/17/58) 1.0014(4029/10/62)

Table 3. 5-fold cross-validation performance ofGray-Frame+ MEHI-Frame+ 3D-CNN
CellToEar ObjectPut Pointing

CAM1 1.0000 (40/0/0) 0.9915 (706/13/33) 0.9978 (926/4/7)
CAM2 1.0000 (265/0/0) 1.0059 (1122/2/34) 1.0000 (999/2/8)
CAM3 1.0313 (262/0/125) 1.0010 (843/0/4) 1.0033 (1056/3/25)
CAM5 0.9507 (239/17/132) 1.0003 (432/0/1) 1.0088 (1048/9/71)
Overall 0.9954(806/17/257) 0.9997(3103/15/72) 1.0025(4029/18/111)

which finds the reliable working point in terms of DCR.
TRECVid Event Detection Evaluation not only provides the
chance to test the performance of the state-of-the-art ap-
proaches in realistic settings but also motivates us to inves-
tigate parallel computing and learning algorithms dealing
with huge number of samples. Event detection in uncon-
strained surveillance videos remains an open and challeng-
ing problem for computer vision and machine learning in
the near future.
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Table 4. Parameter selection ofGray-Frame+ Gray-Cube+ MEHI-Cube

CellToEar ObjectPut Pointing
CAM1 1.0003 (40/0/0) (0.3,0.3,0.4,1) 0.9871 (706/17/33) (0.3,0,0.7,0.67) 0.9971 (926/6/10) (0,0.6,0.4,0.77)
CAM2 1.0003 (265/0/0) (0.3,0.3,0.4,1) 0.9944 (1122/7/12) (0.7,0,0.3,0.72)0.9968 (999/6/10) (0.2,0.2,0.6,0.65)
CAM3 1.0003 (262/0/0) (0.3,0.3,0.4,1) 1.0002 (843/1/3) (0,0.3,0.7,0.74) 1.0001 (1056/0/1) (0,0.5,0.5,0.92)
CAM5 0.9591 (239/20/218) (0,0.3,0.7,0.15)0.9991 (432/1/0) (0.2,0.3,0.5,0.86)0.9963 (1048/8/11) (0.2,0,0.8,0.81)
Overall 0.9892(806/20/218) 0.9946(3103/26/48) 0.9970(4029/20/32)

Table 5. Parameter selection ofGray-Frame+ MEHI-Frame+ 3D-CNN

CellToEar ObjectPut Pointing
CAM1 1.0003 (40 0 0) (0.3,0.3,0.4,1) 0.9866 (706/16/30) (0.5,0.3,0.2,0.54) 0.9961 (926/6/6) (0.6,0.3,0.1,0.74)
CAM2 1.0003 (265/0/0) (0.3,0.3,0.4,1) 0.9974 (1122/9/32) (0.1,0.5,0.4,0.55) 0.9982 (999/4/6) (0.3,0.7,0,0.73)
CAM3 1.0000 (262/0/0) (0.3,.3,0.4,1) 1.0000 (843/1/2) (0.5,0.5,0,0.67) 0.9994 (1056/3/7) (0.5,0.1,0.4,0.59)
CAM5 0.9529 (239/17/152) (0,0.6,0.4,0.41) 0.9994 (432/1/1) (0.4,0.4,0.2,0.67) 0.9968 (1048/18/59to) (0,0.6,0.4,0.46)
Overall 0.9877(806/17/152) 0.9953(3103/27/66) 0.9970(4029/31/78)

Table 6. Evaluation performance of our submissions.
CellToEar #Ref #Sys #CorDet #FA #Miss Act.DCR Min.DCR

NEC-1 194 35 3 32 191 0.995 0.991
NEC-2 194 20 1 19 193 1.001 0.998
NEC-3 194 20 1 19 193 1.001 0.998
UIUC-1 194 183 0 58 194 1.019 1.060

ObjectPut #Ref #Sys #CorDet #FA #Miss Act.DCR Min.DCR
NEC-1 621 10 2 8 619 0.999 0.997
NEC-2 621 11 3 8 618 0.998 0.998
NEC-3 621 5 2 3 619 0.998 0.997
UIUC-1 621 555 1 190 620 1.061 1.020
Pointing #Ref #Sys #CorDet #FA #Miss Act.DCR Min.DCR
NEC-1 1063 6 2 4 1061 0.999 0.999
NEC-2 1063 5 2 3 1061 0.999 0.998
NEC-3 1063 6 2 4 1061 0.999 0.999
UIUC-1 1063 774 13 225 1050 1.062 1.006


