
SFU at TRECVid 2009: Event Detection

Weilong Yang, Tian Lan, and Greg Mori
School of Computing Science

Simon Fraser University

Abstract

This paper describes the SFU entry for the TRECVid
2009 event detection challenge. We attempted to detect
events involving either one or two individuals, and present
algorithms for “running”, “embrace”, and “pointing”
event detection. The system has three stages. First, pre-
processing is performed to extract candidate space-time re-
gions using background subtraction and photogrammetric
context. These candidate regions are processed with spe-
cific event detection algorithms, utilizing motion for “run-
ning” and “embrace” and shape for “pointing”. A post-
processing step produces temporally localized responses for
evaluation. The system is computationally efficient (0.2 sec-
onds per frame) and achieved very good minimum DCR
scores on the final evaluation.

1. Introduction

In the TRECVid 2009 event detection evaluation, the ob-
jective is to automatically detect the occurances of a pre-
specified set of events in surveillance videos. In our sub-
mission, we focus on detecting events that comprise one or
two individuals rather than large groups of people. Hence,
we develop systems for the detection of “person running”,
“embrace”, and “pointing” events.

The dataset consists of surveillance camera footage
which was accquired at London Gatwick airport. Note
that this task only requires locating times (i.e. frames) at
which the events occur, rather than accurate spatial loca-
tions. The dataset is large in scale – an approximately
100 hour video dataset, which consists of videos from five
fixed-view surveillance cameras in the airport, has been re-
leased for development purposes. Representative frames
from each camera view are shown in Fig.1.

Compared with the benchmark human action datasets in
common usage in the computer vision literature (e.g. KTH
and Weizmann datasets), TRECVID is much more difficult
and realistic. We list the main challenges of TRECVID be-
low.

Figure 1. Representative Frames of TRECVID event detection
dataset.

∙ Rarity of events: Detecting events in surveillance
videos is a rare event detection problem. Finding in-
stances of an event such as “person running” is akin
to searching for a needle in a haystack. In contrast,
the benchmark human action datasets formulate small
scale forced choice problems with balanced categories.
Each input video contains one of a small set of pos-
sible actions, with no large “background” or “other”
category.

∙ Cluttered background and occlusion: The TRECVid
videos all have cluttered backgrounds, which not only
contain static background objects, but also dynamic
ones, e.g. moving people. In addition, instances of
events are often occluded by other moving people.

∙ Action variation: Different persons may perform
the same action differently. Unlike many bench-
mark datasets, the actions in TRECVid are not chore-
ographed, instead the captured actions are natural and
realistic. This leads to a very large variation for the
same pre-defined action. Further, actions are captured
from a variety of different camera viewpoints.

∙ Incomplete annotation information: For the devel-
opment videos, the annotations only provide tempo-
ral locations of the pre-defined events, and no spatial
bounding box information is provided. This makes
the training of a detector more difficult (bounding box



information is essential for many learning-based ap-
proaches).

2. Event Detection System
Given a pre-defined event, the objective of event detec-

tion is to temporally localize all similar events in test videos.
We develop an event detection system for the TRECVid
evaluation that first detects events in specific spatial and
temporal locations in test videos, and then post-processes
them to produce temporally localized output for evalua-
tion. The system is based on space-time window-scanning,
computing a score for the presence of each event at space-
time locations. Exhaustively searching all possible space-
time windows in a video is time-consuming. In order to
reduce the searching space, we apply pre-processing steps
using background subtraction and photogrammetric context
to discard the majority of regions in a video. Foreground
regions are detected using the standard Gaussian Mixture
Model (GMM), and those which do not cover enough fore-
ground are discarded. In our system, we use the background
subtraction code provided by Zivkovic et al. [5]. Example
results are shown in Fig. 3(b). To further reduce the search-
ing space, we employ photogrammetric context information
to roughly estimate the human height on images and deter-
mine where events are likely to occur (Sec. 3). We then
apply specific event detection algorithms for each event on
these candidate regions to produce spatially and temporally
localized events (Sec. 4). Finally, these are post-processed
to produce temporally localized output (Sec. 5).

The details of these steps are provided below. An overall
flowchart view of our system is provided in Fig. 2. Note
that the overall system is computationally fast. The C++
and OpenCV implementation processes videos in roughly
0.2s per frame.

3. Contextual Cues
Divvala et al. [1] use the term photogrammetric context

to describe a variety of camera parameters, such as cam-
era height, focal length, orientation, etc. Hoiem et al. [3]
model camera parameters to reason about the relative scales
of objects, which can greatly improve object detection per-
formance. Our work is similar to [3]. In the TRECVID
event detection videos, the camera view is fixed. In the
absence of full camera calibration data, we learn the rela-
tionship between person height (in the image coordinates)
and his distance to the camera from the development video
dataset. After leaning, given the distance of a person to the
camera, we can roughly estimate his height in the frame.
Note that we assume all the people in videos have roughly
the same height in world coordinates, and in all the five
camera views, a person’s height in image coordinates has
a linear relationship with his distance to the bottom of the

Figure 2. The general flowchart of our event detection system.
Given an input video, we first extract the candidate regions by
background subtraction and photogrammetric cue. Then we run
the event detection on those candidate regions, whose results are
further processed by the post-processing stage.

(a)

(b) (c)
Figure 3. (a) Example input video frame (b) Background substrac-
tion result (c) Candidate regions obtained using photogrammetric
context and pruning based on foreground percentage.

image.
In [3], object image height is estimated with the follow-

ing equation:
ℎi = − yi

yc
(v0 − vi). (1)

where yi is the object height in world coordinates, yc is the
camera height, v0 is horizontal position and vi is object bot-
tom position. In our experiments, we use object top position
xi to represent the distance from people to the image bot-
tom, and Eqn. 1 can be adapted as follows:

ℎi = − yi
yc

(xi − ℎi) +
yi
yc

v0. (2)



(a) (b)
Figure 4. (a) Illustration of object image height ℎi, horizontal po-
sition v0, object bottom position vi, object top position xi ;(b) The
linear relationship between the person image height and his dis-
tance to the camera.

From the above equation, we can see that the object’s height
in image coordinates has a linear relationship with its dis-
tance to the image bottom (illustrated in Fig. 4(a)), which
is in accordance with our assumption. To simplify the no-
tation, we only use two parameters to represent this linear
relationship:

ℎi = axi + b. (3)

The parameters a and b are learned for each of the five cam-
era views. In the training data, we extract some representa-
tive frames and manually label people’s height in different
locations of the image. Each pair of person height and lo-
cation (ℎi, xi) can be expressed as a point in coordinates
where x is the distance from a person to the image bottom
and ℎ is the person’s height, as shown in Fig. 4(b). Then,
the parameters a and b can be obtained by linear regres-
sion. Fig. 4(b) shows an example of the relationship be-
tween ℎ and x for camera view 1, where the coordinate of
each blue point corresponds to a pair of manually labeled
person height and location (ℎi, xi). The same approach is
used for the other camera views.

In the TRECVID2009 airport videos, each camera view
represents a scene. For each scene, based on the ground
truth annotations for the development dataset, we can build
the confidence map for each pre-defined action. The exam-
ple confidence map of camera view 3 for the embrace action
is shown in Fig. 5. Because the ground truth annotations
only contain the frame location of the action, without the
spatial information, we manually label the spatial location
of the action and then produce the confidence map. This
idea of using confidence map to represent the scene contex-
tual information was proposed in [4], here we use the same
idea but build the confidence map by ourselves. For the
embrace action, by our observation, it often happens in the
public greeting region which corresponds to camera view 3,
but rarely happens in other scenes. We simply set the confi-
dence map all zeros for all the camera views except view 3.
The experimental results show that incorporating the scene
contextual information, the detection performance can be
improved.

(a) (b)
Figure 5. (a) The representative frame of camera view 3 (public
greeting area) (b) The confidence map of camera view 3 for em-
brace action.

4. Event Detection
The pre-processing steps will result in a set of candi-

date space-time regions which we will analyze to determine
whether they contain events of interest. We develop specific
event detection algorithms for each of the three event cate-
gories we consider: “person runs”, “embrace”, and “point-
ing”. The first two categories contain significant motion,
and so we develop algorithms based on analyzing patterns
of optical flow. We used features similar to that in Efros et
al. [2], which we briefly summarize below, before providing
the details of the three detection algorithms.

4.1. Optical Flow

In this work, we use the motion descriptors proposed by
Efros et al. [2], which has been widely used in action de-
tection and recognition. We first compute the optical flow
at each frame. The optical flow vector field F is then split
into two scalar fields, Fx and Fy corresponding to the hor-
izontal and vertical components of the flow vector. Fx and
Fy are further half-wave rectified into four non-negative
channels F+

x , F−
x , F+

y , F−
y , so that Fx = F+

x − F−
x and

Fy = F+
y − F−

y . Then, those four channels are blurred us-
ing a Gaussian kernel to obtain the final four channels Fb+x ,
Fb−x , Fb+y , Fb−y .

4.2. Event running

One of important features of the running event is that
its motion magnitude is higher than other confusing actions
(e.g. walking or jogging). Besides, the directions of the run-
ning actions in the TRECVID videos are often parallel to
the camera. Based on this observation, the detection of run-
ning action is achieved by only checking the magnitude of
the horizontal motion components. The output score of the
running detection is computed as follows:

Scoreix+ =

∑
j∈Ci

fbjx+

∣Ci∣

Scoreix− =

∑
j∈Ci

fbjx−
∣Ci∣

Scorei = pi ⋅max(Scoreix+, Score
i
x−)

(4)



where, Ci denotes the candidate region at location i, fbjx+
denotes the j-th element of the motion component Fb+x ,
∣Ci∣ refers to the total element number in the candidate re-
gion i. Because the optical flow computed in Section 4.1
is in image coordinates, if a running person is far from the
camera, his optical flow will be very small. The ideal way
to compute the optical flow for running detection is to first
convert the image coordinate to the world coordinate. How-
ever, there is no camera calibration information provided.
Therefore, we only multiply a parameter pi to the output
score in order to alleviate this effect of the motion inconsis-
tency problem. pi has a linear relationship with the distance
between candidate region and camera, as in the photogram-
metric context (Sec. 3). If the candidate region is close to
the camera, pi will be a small number. Otherwise, it will be
large.

4.3. Event embrace

For the detection of the embrace action, we choose a
template matching approach similar to that in [2]. We
first crop some template action clips from the development
videos. Given a template clip T , we slide it over all can-
didate regions in the test videos. The similarity between
template T and the candidate clip S can be computed using
normalized correlation. Suppose the four channels of the
descriptor for clip S are s1, s2, s3, s4, and each channel has
been concatenated to a vector. Similarly, the four channels
for clip T are t1, t2, t3, t4. We denote ŝk = [s1k − s̄k, s

2
k −

s̄k, ..., s
n
k − s̄k], and t̂k = [t1k − t̄k, t

2
k − t̄k, ..., t

n
k − t̄k],

where s̄k and t̄k are the mean values of channel sk and tk
respectively, sik denotes the i-th element in channel vector
sk. The output score for candidate clip S is computed as
follows:

d(S, T ) = C −
4∑

k=1

ŝk
T t̂k + "√

(ŝk
T ŝk + ")(t̂k

T
t̂k + ")

(5)

D(S, T ) = wS ⋅ d(S, T ) (6)

where wS denotes the confidence value at the location of
candidate clip S.

4.4. Event pointing

In TRECVid event detection videos, the variation of the
event pointing is very large. For example, people point
while walking, some people stand still and point; the di-
rection in which a person points is also highly variable.
Therefore, the motion feature is less reliable for the pointing
event. But we can observe that most of the pointing events
share a common feature, that is the “pointing-out” arms are

in the horizontal direction. So, instead of using the motion-
based matching scheme, we choose to run a horizontal arm
detector to detect the event of pointing.

In an attempt to prune out false positives, such as straight
lines on clothing and the background, we apply a head de-
tector to candidate regions first. Rather running the head
detector at multiple scales, we employ the photogrammet-
ric context again to estimate the head size. Then, for each
candidate location, the detector is only run in one single
scale, which can significantly improve the efficiency.

After head detection, we use an edge-based limb detec-
tor to detect the pointing event based on the locations of
detected heads. Since in pointing, the horizontal arm al-
ways appears around the head, so we do not need to scan
the arm detector over the edge map of the whole frame, but
only the specified area around the heads. Note that the edge
map is obtained from the results of background subtraction,
which can help to avoid false positives of static limb shaped
objects, e.g. bars.

5. Post-Processing
For embrace detection, we use motion based matching

scheme. The system will generate one score for each test
clip which has the same frame length as the template clip.
This score will be directly used to generate the final score
files without any post-processing. For the event of running
and pointing, the system will output a score for each frame.
However, running and pointing events normally lasts more
than 20 frames. Thus, we merge n consecutive frames into
one event, where n is the pre-defined parameter (e.g. 30).
The maximum score among those n frames will be chosen
as the score of this event.

6. Experiments on Development Data
To demonstrate the advantages of contextual informa-

tion, we did two experiments to compare our system with
the baseline system which does not use contextual informa-
tion. We first give a brief overview of the dataset we will
use in the experiment, then a short introduction about the
baseline system, followed by the experimental results.

6.1. Dataset for Experiments

The development dataset of the TRECVID evaluation
consists of 50 videos of approximately 100 hours of surveil-
lance data, each video lasts for approximately two hours.
We choose four videos from the development dataset as our
test videos. Each video has a different camera view. Since
the camera view with elevator does not contain the actions
of running, embrace and pointing, we simply remove this
camera view. A representative frame of each camera view
is shown in Fig. 1. To learn the parameters a and b in Sec-
tion 3, we choose another four videos to form our training



(a) (b)
Figure 6. Example results of our detector on running detection.

set. Note again that the videos in our training set and test
set are different. For embrace detection, we crop out ten
consecutive frames of one typical embrace action from the
training set as our template.

6.2. Baseline Systems

For comparison, we develop baseline systems for run-
ning and embrace detection. For the running baseline sys-
tem, we remove the photogrammetric context. This context
helps us to estimate the scale of the person in the frame.
Therefore, after removing the photogrammetric context, we
choose a standard sliding window approach with multiple
scales for the running detection. Note that in the running
baseline system, we do not use background subtraction. We
simply scan the candidate regions with eight different scales
over all locations in test videos.

For the embrace baseline system, we remove the scene
context. In our system, scene context is represented by the
confidence map. In the baseline system, we discard the con-
fidence map and compute the distance between template T
and the candidate clip S using Eqn. 5, without multiplying
the confidence value.

6.3. Results

After learning the parameters and cropping the embrace
template from the training set, we test our system and the
baseline system on the test set. The experimental results
are evaluated using detection error tradeoff (DET) curves,
which is a tradeoff between two error types: missed detec-
tion and false alarm. Basically, a good detection system
would achieve few missed detections, as well as few false
alarms. The DET curves of our system and baseline sys-
tem on running detection and embrace detection are shown
in Fig. 7. We also show the example results of our system
on running detection in Fig. 6. We can see the red bound-
ing boxes accurately locate running people, which not only
demonstrates the effectiveness of our detection algorithm,
but also the robustness of our person scale estimation.

For the comparison with baseline systems, we can see
from Fig. 7 our system outperforms the baseline systems.
By incorporating the photogrammetric context, there is al-
most a 10% miss rate decrease when the RFA = 10. RFA

(a)

(b)
Figure 7. DET curves of our system and baseline systems on (a)
Running; (b) Embrace. The blue curve represents the performance
of our system, while the green one represents the performance of
the baseline system.

denotes the average number of false alarms per hour of
video. It demonstrates the effectiveness of the photogram-
metric context. For the embrace detection, the scene context
can also improve the performance of our system. There is
also a 9% miss rate decrease when RFA = 100. The details
of performance improvements by the contextual informa-
tion are summarized in Table 1 and Table 2.

RFA = 0.1 RFA = 1 RFA = 10 RFA = 100

Context 95.2 90.5 79.4 49.2
Baseline 98.4 96.8 88.9 63.5

Table 1. Miss rate of our system and the baseline system under dif-
ferent RFA for running detection. RFA denotes the average num-
ber of false alarms per hour video.



RFA = 0.1 RFA = 1 RFA = 10 RFA = 100

Context 99.1 97.4 91.2 70.2
Baseline N/A 98.1 93.0 78.9

Table 2. Miss rate of our system and the baseline system under
different RFA for embrace detection. RFA denotes the average
number of false alarms per hour video.

7. Evaluation Results on the Formal Run of
TRECVid 2009

The results of our system on the TRECVid 2009 evalu-
ation formal run are shown in Table 3. We have achieved
very competitive minimum DCR results on the events of
running and embrace. We did not extensively tune param-
eters with the aim of producing low actual DCR score; our
actual DCR looks relatively higher (the lower the score, the
better the performance). But our system achieved very good
minimum DCR scores.

Event Actual DCR Minimum DCR

Running 1.804 0.986
Embrace 1.053 0.998
Pointing 1.793 1.005

Table 3. Actual DCR and Minimum DCR by events on the formal
run

8. Conclusion
We presented a system for the TRECVid 2009 event de-

tection challenge. We focussed on events involving small
numbers of people, and present algorithms for “running”,
“embrace”, and “pointing” event detection. The system
utilizes pre-processing to extract candidate space-time re-
gions based on background subtraction and contextual cues.
These candidate regions are processed with specific event
detection algorithms, utilizing motion for “running” and
“embrace” and shape for “pointing”. A post-processing
step produces temporally localized responses for evalua-
tion. The system is computationally efficient (0.2 seconds
per frame) and achieved very good minimum DCR scores
on the final evaluation.

References
[1] S. K. Divvala, D. Hoiem, J. H. Hays, A. A. Efros, and

M. Hebert. An empirical study of context in object detection.
In IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, June 2009.

[2] A. A. Efros, A. C. Berg, G. Mori, and J. Malik. Recognizing
action at a distance. In IEEE International Conference on
Computer Vision, pages 726–733, 2003.

[3] D. Hoiem, A. A. Efros, and M. Hebert. Putting objects in per-
spective. In Proc. IEEE Computer Vision and Pattern Recog-
nition (CVPR), volume 2, pages 2137 – 2144, June 2006.

[4] P. Wilkins, P. Kelly, and C. Conaire. Dublin city university at
trecvid 2008. In TRECVID 2008 workshop, 2008.

[5] Z. Zivkovic and F. van der Heijden. Efficient adaptive density
estimation per image pixel for the task of background subtrac-
tion. Pattern Recognition Letters, 27(7):773–780, May 2006.


