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1 Overview

We propose a statistical framework for high-level feature (HLF) extraction, which employs
scale-invariant feature transform Gaussian mixture models (SIFT GMMs), acoustic features,
and maximal figure-of-merit (MFoM). The MeanInfAP of our best run was 0.1679. Our team
placed 11th after all of the runs and 4th among all participating teams. Notably, the InfAPs of
“Singing” and “People-dancing” were 0.229 and 0.319, respectively, which were the top scores
in all of the runs.

1. SIFT GMMs
First, we extract SIFT features from all the image frames in each shot. This multi-frame
technique is expected to perform well especially when objects are taken from different an-
gles. Then, we model SIFT features extracted in each shot by a GMM.We call the resulting
GMMs SIFT GMMs. They are expected to be more robust against quantization errors that
occur in hard-assignment clustering in the Bag-of-Keypoints approach. Furthermore, they
also have variance information of SIFT features. The expectation-maximization (EM)
algorithm is often used to estimate parameters of GMMs. However, there may not be
enough SIFT features in each shot to precisely estimate parameters. Hence, we estimate
the parameters of a SIFT GMM by using a maximum a posteriori (MAP) adaptation tech-
nique in which the priori distribution is the SIFT GMM estimated using all of the videos.
We classify shots by using support vector machines (SVMs) with the radial basis function
(RBF) kernel, where the distance between SIFT GMMs is defined as the weighted sum of
the Mahalanobis distances between the corresponding mixture components.

2. Acoustic features
As acoustic features, we extract mel-frequency cepstrum coefficients (MFCCs), which are
widely used in speech recognition. We model each HLF using an ergodic hidden Markov
model (HMM). We also make an HMM for all the HLFs as the universal background
model (UBM) and use the likelihood ratio between the target HLF model and the UBM
for detection.

3. MFOM A multi-class (MC)
MFoM learning scheme is used for the training stage. MC MFoM can directly optimize
any given performance metric (i.e. precision, recall, MAP, etc.) by approximating it to
a smooth function. Multiple features can be fused by the discriminative fusion method
based on the model-based transformation.

This paper is organized as follows. Section 2 describes the TITECH methods developed in
Tokyo Institute of Technology side. Their main focuses are SIFT GMMs and acoustic feature.
Section 3 explains the GATECH methods developed in Georgia Institute of Technology side,
where the main topic is MFoM. Section 4 describes how we fusion our results and Section 5
reports our results in the evaluation.



2 TITECH method

TITECH team propose two methods. One is a method based on SIFT GMMs and acoustic
features (Section 2.1), the other is the combination of local and global features (Section 2.2).

2.1 SIFT GMMs and acoustic features

2.1.1 SIFT GMMs

First, we extract SIFT features from all the image frames in each shot. This multi-frame
technique is expected to perform well especially when objects are taken from different angles.
Then, we model SIFT features extracted in each shot by a Gaussian mixture model (GMM).
We call the resulting GMMs as SIFT GMMs. The probability density function (pdf) of a SIFT
GMM is given by

p(x|θ) =
K∑
k=1

wkN (x|µk,Σk), (1)

where N (x|µk,Σk) is a pdf of Gaussian distribution with mean µk and variance Σk, and wk is
a mixing coefficient. They are expected to be more robust against quantization errors occur
in hard-assignment clustering in the Bag-of-Keypoints approach. Furthermore, they also have
variance information of SIFT features.

Expectation-Maximization (EM) algorithm is often used to estimate parameters of GMMs.
However, the number of SIFT features in each shot may not be enough to precisely estimate pa-
rameters. Hence, we estimate the parameters of an SIFT GMM by using Maximum a posteriori
(MAP) adaptation technique where the priori distribution is the SIFT GMM estimated using
all the videos.

We classify shots by using support vector machines (SVMs) with the RBF kernel given by

K(s, t) = exp(−γd(s, t)), (2)

where d(s, t) is the distance between SIFT GMMs of shots s and t. The distance d(s, t)is
defined as the weighted sum of the Maharanobis distances between the corresponding mixture
components.
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k }Kk=1 is the parameter set of the SIFT GMM estimated using all the

videos, θ(s), θ(t) are the parameters of SIFT GMMs of shots s and t, respectively.

2.1.2 Acoustic features

As acoustic features, we extract mel-frequency cepstrum coefficients (MFCCs), which are
widely used in speech recognition. We model each HLF by an ergodic hidden Markov model
(HMM). We also make an HMM for all the HLFs as the universal background model (UBM)
and use the likelihood ratio between the target HLF model and the UBM for detection.

2.1.3 Combination of SIFT GMMs and acoustic features

Finally, we compute a combined likelihood ratio given by

L = wauLau + whar log
phar

1− phar
+ whes log

phes
1− phes

, (4)



where Lau is the log-likelihood ratio from audio stream, phar is the posteriori probability esti-
mated by using SIFT GMMs and Harris-Affine regions, phes is that of Hessian-Affine regions,
and wau, whar, whes are weights for each stream. We use a 2-fold cross validation to optimize
weight parameters.

2.2 The combination of local and global features

As local features, we use the visual words used in our last year’s system [1]. We extract SIFT
descriptors according to the regions detected by the harris-affine detector and the hessian-affine
detector in each key-frame image. Then we employ a tree-structured codebook and node selection
method quantizing the SIFT descriptors to visual words. We can either share a codebook among
all the HLFs or construct specific codebook for each HLF. Sharing a codebook among all the
HLFs can save the compution time and the storage area. Using specific codebook for each HLF
can avoid over fitting for the HLF which is rarely present in development data set. The tree-
structured codebook and node selection technique we proposed in our system take advantages
of both codebook types.

Besides the local features, we also incorporate edge direction histogram, Gabor texture and
grid color moment as the global features in our sytem. These three kinds of global features are
first extracted from each key-frame image and then are concatenated to a long vector to present
the corresponding key-frame image. For the grid color moment, we divide each key-frame image
into small blocks and then take the mean, standard deviation and the third root of the skewness
of each color channel of the blocks. For the Gabor texture feature, we take the mean and
standard deviation of the output of Gabor filter. For the edge direction histogram, we detect
edge points using the Canny filter and then quantize the edge direction into small degrees [2].

3 GATECH method

The HLF extraction framework proposed by Georgia Institute of Technology is largely based
on the multi-concept (MC) text categorization framework proposed in [3].

3.1 Text Representation of Images

For text categorization, the document is considered as a sequence of words within a lexicon.
If we can represent an image with visual words, an obvious benefit from text representation
that is relatively easy to explore the semantic relations among the words can be adopted in the
HLF extraction problem. To represent an image with a lexicon, we first divide an image into
dense regular grids. From each grid, low-level visual features are extracted, and then clustered
to construct a visual codebook. Once a codebook is built, each grid can be represented as one
of visual alphabets (codebook index) in the codebook, and also an image being considered as
a sequence of visual alphabets. Since multiple low-level features such as color histogram and
texture are available, multiple lexicons can be built.

After an image is represented as a sequence of visual alphabets, the occurrence statistics
of single-letter and double-letter visual terms, which form unigram and bigram visual words
respectively, are available. With those statistics and LSA[4], a feature vector is extracted.
For example, if we have color lexicon, A = {A1, A2, . . . , AM}, with M visual color words, the
jth image, Ij , is represented by a vector, Ij = {vj1, v

j
2, . . . , v

j
M}, in which each component, vji ,

indicates the statistics of the ith visual word, Ai, in the jth image as follows:

vji = (1− ϵi) · cji/n
j , (5)

where cij is the number of occurrences of Ai in the jth image, nj
i is the total number of visual



words observed in the jth image, and ϵi is a normalized entropy of Ai defined as,

ϵi = − 1

logK

K∑
j=1

cji
ti

· log
cji
ti
, (6)

where K is the number of the training images, and ti is the total occurrence count of Ai. Taking
only unigram and bigram patterns, the dimension of a feature vector should be M +M ×M .
Since the dimension is usually very high, reaching 4,160 with a 64-token codebook, dimension
reduction can be accomplished naturally by singular value decomposition (SVD) [4].

3.2 MC MFoM Learning for Classifier Design

In MCMaximal Figure-of-Merit (MFoM) learning[5], the parameter set, Λ = {Λj , 1 ≤ j ≤ N},
is estimated by directly optimizing an objective performance metric.

GivenN concepts, C = {Cj , 1 ≤ j ≤ N}, and a training image set, T = {(X,Y )|X ∈ RD, Y ⊂ C},
X is an image representation in a D-dimensional space, and Y is a set of labels for X as a subset
of C. Letting the discriminant function for the jth concept be gj(X; Λj), then the decision rule
is as follows:{

Accept X ∈ Cj , if gj(X; Λj)− g−j (X; Λ−) > 0

Reject X /∈ Cj ,Otherwise
1 ≤ j ≤ N, (7)

where g−j (X; Λ−) is the class anti-discriminant function for the jth concept, which is defined as,

g−j (X; Λ−) = log

 1∣∣∣C−
j

∣∣∣
∑
i∈C−

j

exp
(
gi(X; Λi)

)η
1
η

, (8)

where C−
j is a subset of C, containing the most competitive concepts against Cj , |C−

j | is its

cardinality, Λ− is the parameter set for the competitive concepts, and η is a positive constant.
Eq. (8) computes the score by taking a geometric average for scores of all competing concepts.

Here, to introduce a smoothing objective functino for optimization, we define a one-dimensional
class misclassificatino function, dj(X; Λ),

dj(X; Λ) = −gj(X; Λj) + g−j (X; Λ−), (9)

where a correct decision is made when dj(X; Λ) < 0, and otherwise when dj(X; Λ) ≥ 0. Since
(9) is necessary to be normalized, a class loss function, lj(X; Λ), is introduced in the form of a
sigmoid function, which normalizes (9) from 0 to 1,

lj(X; Λ) =
1

1 + exp

(
− α

(
dj(X; Λ) + β

)) , (10)

where α is a positive constant controlling the size of the learning window and rate, and β is a
constant measuring the offset of dj(X; Λ) from 0.

With these definitions, the true positive, false positive and false negative functions for Cj

could be approximated as follows:
TPj ≈

∑
X∈T

(
1− lj(X; Λ)

)
· 1
(
X ∈ Cj

)
FPj ≈

∑
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)
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)
FNj ≈

∑
X∈T lj(X; Λ) · 1

(
X ∈ Cj

) . (11)



Then, most commonly used metrics could be approximated. For example, if the micro-averaging
F1 is the preferred metric, the objective function would be defined as:

L(X; Λ) = 2 ·
N∑
i=1

TPi/
( N∑
i=1

FPi +
N∑
i=1

FNi + 2 ·
N∑
i=1

TPi

)
. (12)

Then, a linear classifier, gj(X; Λj) = Wj ·X+ bj , is trained by optimizing the objective function
with a generalized probabilistic descent (GPD) algorithm [5], whereWj and bj are the parameters
for the jth concept model.

3.3 Discriminative Fusion

MC classifiers trained using multiple low-level features can be combined by the model based
transformation (MBT) fusion, which can be considered as a supervised mapping from the low-
level feature space to the semantic concept space [6]. It is a type of late fusion methods. For
given N concepts, N score functions are learned by an MC MFoM classifier. Taking the N score
functions as the basis for the transformation, we can obtain a new N -dimensional feature with
the similarity between a given sample and a score function as each of its components.

Using the MBT method, we can easily fuse distinctive features. If M types of features
are available, we can obtain M number of N -dimensional features in the concept space. By
cascading the features to form a M ×N -dimensional feature to represent a sample, we can train
another classifier with the MC MFoM learning algorithm. With appropriate normalization, the
MBT method can map any kind of features including visual, textual, and acoustic. The more
powerful a feature is, the heavier weight will naturally be given to the feature. It outperforms
other heuristic fusion methods.

In this experiment, we fused three kinds of features; color, texture, and semi-global features.
For the color and texture features, we used 12-dimensional color histogram and Gabor-filter
coefficients respectively, which constructs feature vectors in the way described in Section 3.1.
For the semi-global features, low-level features with color histogram, gabor filter coefficients, and
edge histogram from a whole image and coarsely divided image sub-blocks (3× 4), constructing
a 859-dimensional feature. Given 20 concepts for the TRECVID2009 HLF extraction task, 60-
dimensional feature vectors in the result of cascading scores from the three features are used for
training the classifier in the fusion stage.

4 Fusion framework

4.1 Score fusion

The score-based fusion methods are based on the MBT fusion method discussed in Section 3.3.
The HLF extraction scheme of GATECH already uses the MBT fusion method to fuse color,
texture, and semi-global visual features. To collaborate with TITECH, we extended our fusion
model by including additional score functions provided by the TITECH’s system. There were
two major issues in fusing scores from two systems. First, the TITECH’s system is based on
binary classification, while the GATECH’s system is based on multi-concept classification. An-
other issue was that the distributions of scores in two systems are significantly different due
to the characteristics of the classifiers. Since we can obtain scores for each concept from the
corresponding binary classifier, and cascade them to construct a new feature in the concept
space, the former one could be easily solved. However, we needed to be careful in normalization
of scores from the outer system. Through cross validation by dividing the training set into two
groups, we mapped the scores from TITECH’s system to be compatible to those from GAT-
ECH’s system, and then normalized them with the same normalization factors for GATECH’s



scores. Three sets of scores from GATECH and another three sets from TITECH are used in
the discriminative fusion method as described in Section 3.3.

In addition, to explore further possibilities, score modification based on their score ranks
was experimented. For the ith sample in the jth feature and kth concept, we used the Borda
rank normorlization [7] to compute the weight function according to the rank as follows:

wj,k(i) =

{
1− τj,k(i)−1

|T | , if i ∈ τj,k
1
2 − |τj,k|−1

2·|T | , otherwise
, (13)

where T is a training set, |T | is its cardinality, and τ = [x1 ≥ x2 ≥ . . . ≥ xn] is a rank list for
T in which S ⊆ T , xn ∈ S, and ≥ indicates ordering relation on S. We used top 2,000 ranked
samples for S.

4.2 Rank fusion

In rank-based fusion method, the shots of all the test videos are first ranked by the confidence
scores from each classification system. Then for each shot, the rank numbers from different
systems are combined to get a new number. Finally all the shots of test videos are arranged
using the new numbers. The rank-based fusion method can eliminate the effects of the differences
in the distributions of scores from different systems.

Suppose the sequence number of shot x in the ranked output of classification system i is
Ri(x), then the new number N(x) will be

N(x) =
∑
i

PiRi(x), (14)

where Pi is the weight assigned to system i. Cross validation by dividing the training set into
two groups is used to determine the weight Pi.

5 Result

We submitted six runs in HLF extraction task. The results are illustrated in Figure 1.

A TITGT-Fusion-rank 1

This run uses the rank-based fusion method described in Section 4.2 to combine the TITECH’s
system and GATECH’s system, performed best among the six runs for some HLFs, such as
“Airplane-flying”, “Bus”, “Person-playing-soccer” and “Female-human-face-closeup”. However,
it didn’t work well for the others and the InfMAP even decreased. Since we used 3-fold cross
validation to determine six parameters simultaneously, the ineffectiveness of our rank-based fu-
sion method might be due to the over-fitting problem. Our future work will focus on exploiting
a new fusion method that can produce a complementary effect.

A TITGT-Fusion-score-1 2 and A TITGT-Fusion-score-2 3

Score-based fusion runs by GATECH were submitted as A TITGT-Fusion-score-1 2 and
A TITGT-Fusion-score-2 3, whereA TITGT-Fusion-score-1 2 indicates the MBT fusion method,
and A TITGT-Fusion-score-2 3 with the weight functions described in Section 4.1 respectively.
According to the theory and successful experiences that we have had in fusion [6, 8], the fusions
should have worked, showing better performances than both the two systems, A TITGT-Titech-1 4
andA TITGT-Gatech-Ftr 5. A TITGT-Fusion-score-2 3 performs slightly better thanA TITGT-
Fusion-score-1 2; however, we could not find any interesting point here, maybe since both fusions
were not successful.



Figure 1: Results of TITGT group’s six runs.

We found that the major reason in the unsatisfied fusion results is the normalization of the
scores from the TITECH’s system. To speak specifically, we failed to map TITECH’s infinity-
like scores which we had not experienced in our system. In the future collaboration, we expect
that better fusion results will be given with handling scores from two different systems more
carefully and rectifying dynamic range of scores.

A TITGT-Titech-1 4

The MeanInfAP of A TITGT-Titech-1 4 which uses the SIFT GMMs and the acoustic fea-
tures described in Section 2.1 was 0.168. It ranked 11st of all A-Type runs. In our experiments,
SIFT GMMs work well for “Airplane-flying”, “Boat-Ship” and “Person-playing-soccer”. SIFT
GMMs represent HLFs with the background. Thus the HLFs which tend to appear with certain
backgrounds such as sky and sea can be detected effectively. On the other hand, combination
with audio stream is effective for “Singing”, “People-playing-a-musical-instruments”, “People-
dancing” and “Female-human-face-closeup”. InfAPs of “Singing” and “People-dancing” were
0.229 and 0.319, respectively, which were the top scores in all the runs.

A TITGT-Gatech-Ftr 5

The result of A TITGT-Gatech-Ftr 5 indicates the method using only GATECH’s feature
sets described in Section 3.1. Among 222 runs, it was ranked 61st as 0.108 in InfMAP. Con-
sidering GATECH’s system uses only visual featuers with a 6-bit quantizer, and counts simple
unigram and bigram patterns of visual alphabets, it showed promissing results which can be
enhanced with a 7-bit or higher quantizer and extention of visual patterns in the future. The
well working concepts were “Person-eating”, “Demonstration Or Protest”, “People-dancing”,
“Nighttime”, “Femalie-human-face-closeup”, and etc.



Due to the limit of runs, the performances of individual features were not shown in the
TRECVID 2009 HLF task results. As we tried the cross validation with two groups divided from
the training set, color, texture and semi-global features showed similar performances where the
semi-global feature was slightly better than two other features. The fusion of the three features,
which made the final run for GATECH’s system, succeeded to enhance performance as about
23% from the best individual feature.

Now, our research objective is to extend our system with a higher quantizer and more
sophisticated patterns of visual alphabets such as trigrams and hierarchical grid structures [9].
Since the increased number of visual alphabets and patterns of them may result extremely
high dimension of feature vectors, we are trying to formulate feature selection that selectively
chooses visual patterns which have more discriminative power than others. Furthermore, since
our fusion scheme allows to adopt any new feature sets, we are willing to explore not only new
visual features but also acoustic or textual features.

A TITGT-Titech-2 6

A TITGT-Titech-2 6 uses only the visual words and the global features described in Section
2.2. According to the results of our experiments and the results of both TRECVID2008 and
TRECVID2009, the combination of the visual words and the global features performs better
than using either the visual words or the global features alone. But this system is far surpassed
by our new proposed system which uses the methods described in Section 2.1.
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