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Abstract
In this paper, we describe the Toshiba event detection sys-
tem for TRECVID surveillance event detection task [1] that
detects three TRECVID required events (E05:PersonRuns,
E19:ElevatorNoEntry, and E20:OpposingFlow). Our sys-
tem (“Toshiba_1 p-cohog_1”) consists of four compo-
nents: (1) robust change detection based on the com-
bination of pixel intensity histogram, PTESC (Peripheral
TErnary Sign Correlation), and PrBPRRC (Probabilistic
Bi-polar Radial Reach Correlation) that is robust against
illumination changes and background movements, (2) hu-
man detection using the CoHOG (Co-occurrence His-
tograms of Oriented Gradients) feature that outperforms
the one using the HOG (Histogram of Oriented Gradient)
feature, (3) human tracking using linear estimation and
color histogram matching, and (4) event detection based on
change detection and human tracking. We briefly describe
the four components.

1 Introduction
We developed a basic event detection system for TRECVID
surveillance task [1] that detects three TRECVID re-
quired events (E05:PersonRuns, E19:ElevatorNoEntry, and
E20:OpposingFlow). Our system consists of four compo-
nents: (1) change detection, (2) human detection, (3) hu-
man tracking, and (4) event detection (Fig.1).

First, change detector detects change region from the
input image. We adopted change detection that is robust
against illumination changes and background movements
because TRECVID data include small illumination changes
and foreground invasions in the training images such as
walking people. Our change detection is the combination of
pixel intensity histogram [2], PTESC (Peripheral TErnary
Sign Correlation) [3], and PrBPRRC (Probabilistic Bi-polar
Radial Reach Correlation) [4].

Next, human detector detects human from the change re-
gion. We adopted CoHOG (Co-occurrence Histograms of
Oriented Gradients)-based human detection [5]. CoHOG
is a high-dimensional feature that extends the HOG (His-
togram of Oriented Gradient) feature and CoHOG-based
human detection outperforms the one using HOG.
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Figure 1: Process flow of our surveillance system



Then, human tracker tracks the detected humans using
linear estimation of human position and color histogram
matching.

Finally, event detector recognizes events according to
the results of change detection and human tracking.

In the following sections, we explain each of the four
components.

2 Change Detection
We adopted change detection that is robust against illumi-
nation changes and background movements. It combines
three change detection methods: pixel intensity histogram
[2] using color information that is robust against back-
ground movements, PTESC (Peripheral TErnary Sign Cor-
relation) [3] using local texture that is robust against illumi-
nation changes, and PrBPRRC (Probabilistic Bi-polar Ra-
dial Reach Correlation) [4] using local/global texture that is
robust against illumination changes and background move-
ments. We explain several change detection methods in-
cluding ours and show some results of the application of
our change detection to TRECVID data.

2.1 Change Detection Method

Many change detection methods have been proposed. Gen-
erally, the systems calculate the probability distribution of
the input pattern from training images with the background
model, and then detect changes from the test image accord-
ing to the posterior probability. Fig.2 and Tab.1 show the
schematics of the background models and a comparison of
them, respectively.

One of the simplest background models is the single
Gaussian model that models each pixel intensity with a sin-
gle Gaussian distribution (Fig.2(a)). The Gaussian distri-
bution can model intensity fluctuation of each pixel caused
by sensing devices but the model is too simple to model
real environmental changes such as illumination changes
and background movements. MoG (Mixture of Gaussian)
[6] uses multiple Gaussian distributions to model multiple
background intensity distributions caused by tree swaying
and door movement (Fig.2(b)). MoG is used in many appli-
cations but requires a decision on the number of Gaussian
distributions. The non-parametric pixel intensity model
with pixel intensity histogram [2] (Fig.2(c)) uses histogram
that can model arbitrary intensity distributions and is free
from the decision on the number of Gaussian distributions.

The pixel-intensity-based models mentioned above are
not robust against illumination changes (Tab.1(a)-(c)) be-
cause illumination changes cause large intensity changes
deviating from the past intensity history. For example,
background models trained from images in the sun cannot
cover inputs in the shade.

To increase robustness against illumination changes,
some methods introduced texture information. Texture in-
formation based on the intensity differences among local
pixels is stable against illumination changes because all
the local pixels change their intensities by almost the same

IntensityMean & variance
Probability distribution

Target pixelBackgroundimage IntensityMean & variance
Probability distribution

Target pixelBackgroundimage
(a) Single Gaussian

IntensityProbability distribution
Target pixelMeans& variancesIntensityProbability distribution
Target pixelMeans& variances

(b) Mixture of Gaussian

IntensityProbability distribution
Target pixel IntensityProbability distribution
Target pixel

(c) HistogramReference pixels(darker / brighter)Target pixelReference pixelsReference pixels(darker / brighter)(darker / brighter)Target pixelTarget pixel
(d) PISC/LBP/PTESC

Target pixeldarker / brighterrespectivelyReference pixelsTarget pixelTarget pixeldarker / brighterrespectivelydarker / brighterrespectivelyReference pixelsReference pixels
(e) BPRRC

Distribution ofReference pixel position
r direction kTarget pixel (x,y)

(darker/brighter  respectively)Distribution ofReference pixel position
rrr direction kTarget pixel (x,y)Target pixel (x,y)

(darker/brighter  respectively)

(f) PrBPRRC

Figure 2: Schematics of the background models for change
detection

Table 1: Comparison of background models for change de-
tection

robust against robust against
background model illumination background

changes movements
(a) Single Gaussian × ×

pixel (average background)
inten- (b) Mixture of Gaussian × ⃝

sity (MoG, GMM)
based (c) Pixel-intensity × ⃝

Histogram

(d) PISC/LBP/PTESC ⃝ ×

texture (e) BPRRC ⃝ ×
based

(f) PrBPRRC ⃝ ⃝



amount and the intensity differences among them don’t
change. PISC (Peripheral Increment Sign Correlation) [7],
LBP (Local Binary Pattern) [8], and PTESC (Peripheral
TErnary Sign Correlation) [3] model background using lo-
cal texture information (Fig.2(d)) and BPRRC (Bi-polar
Radial Reach Correlation) [9] models it using local/global
texture information (Fig.2(e)). These texture-based meth-
ods are robust against illumination changes but not robust
against background movements because of the static tex-
ture model (Tab.1(d)(e)). To solve this problem, PrBPRRC,
which introduces non-parametric histogram model into
BPRRC (Fig.2(f)), has been proposed [4]. PrBPRRC is
robust against both illumination changes and background
movements (Tab.1(f)) because it models dynamic texture
distribution caused by background movements such as tree
swaying and walking people in the training images by his-
togram model.

We adopted pixel intensity histogram using color in-
formation, PTESC, and PrBPRRC, and combined them to
make the detection more robust. Robust change detection
can reduce false positives of human detection as well as re-
duce the search area for human detection [10] (Fig.3).

Figure 3: Schematics of the effectiveness of change detec-
tion for human detection. Change detection reduces search
area and false positives of human detection

2.2 Change Detection Result
Fig.4 shows some results of change detection. In Fig.4,
(a) shows an input image and (b) shows the result of
change detection, the combination of all the components
(c)-(e). Three components (c)-(e) compensate one another
and make the result (b) more stable under illumination
changes and background movements.

3 Human Detection

3.1 CoHOG Human Detection
Our human detector detects humans from the change re-
gion detected by the change detection described in Sec.2.
We adopted a human detector based on CoHOG (Co-
occurrence Histograms of Oriented Gradients) feature de-
scriptor [5] and Support Vector Machine (SVM).

The CoHOG feature extends HOG (Histogram of Ori-
ented Gradient) [11] by considering the co-occurrence of

(a) input (b) change detection (all)
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Figure 4: Typical results of change detection

oriented gradients and forms higher-dimensional feature
vector than HOG. CoHOG inherits the robustness against
deformation and illumination changes from HOG and ex-
tends its description power to describe the complex shape
of human in detail.

Fig.5 shows the process flow of CoHOG human detec-
tion. The system calculates oriented gradients in an in-
put image (Fig.5(a)) and then makes histograms of the co-
occurrence of the oriented gradients (Fig.5(b)). By con-
sidering co-occurrences between the oriented gradients at
various offsets, CoHOG has an extensive vocabulary and
description power. Then the co-occurrence histograms are
concatenated into one vector (Fig.5(c)) and a Support Vec-
tor Machine (SVM) classifies the vector into human or non-
human (Fig.5(e)).

We use a linear SVM for classifier because the Co-
HOG feature is so powerful that non-linear SVM requiring
much computation is unnecessary. Though the dimension
of CoHOG is tens of thousands, the simplicity of CoHOG
calculation and the speed of linear SVM realize real-time
detection. The performance of the human detection us-
ing CoHOG outperforms the one using HOG and is better
than or at least comparable to other state-of-the-art meth-
ods [5]. Fig.6 shows the comparison of the performance on
the DaimlerChrysler Pedestrian Classification Benchmark
Dataset [12] and the INRIA Person dataset [11]. Upper left
plot on ROC curve in Fig.6(a) and lower left plot on DET
curve in Fig.6(b) indicate better performance. Our CoHOG
detector with red plot shows performance better than or at
least comparable to that of other state-of-the-art methods
(refer to [5] for detail).
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Figure 5: Process flow of CoHOG human detection
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Figure 6: Comparison of human detection performance
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Figure 7: Sample results of human detection



3.2 Human Detection Result
We trained head, upper-body, and whole-body human de-
tectors and used the proper one for each camera data
(Fig.1(2)).

Fig.7 shows some results of human detection. Head de-
tector is used for E20:OpposingFlow detection of CAM1
because the people exiting from the gate are sometimes
heavily occluded by other people and only the head re-
gion can be seen (Fig.7(a)). Whole-body detector is used
for E05:PersonRuns detection of CAM2 because the people
running in the CAM2 movie are very small and the whole-
body can usually be seen (Fig.7(b)). Upper-body detector is
used for other events (E19:ElevatorNoEntry of CAM4 and
E05:PersonRuns of CAM1, CAM3, CAM4, and CAM5)
because the lower half of the body sometimes cannot be
seen (Fig.7(c)(d)).

4 Human Tracking
We adopted a human tracker using linear estimation of hu-
man position and color histogram matching. The tracker
maintains the history of trajectories of each tracked human
and estimates the human position at the current frame from
the history. Then, it finds the correspondence between the
estimated human and the detected human based on the sim-
ilarity of the color histogram between them.

4.1 Linear Estimation of Human Position
Human position is estimated with a linear model using the
previous position, velocity, and acceleration. Let the human
position, velocity, and acceleration at frame t be pt, vt, and
at, respectively. The estimation of the human position at
frame t+ 1, p̃t+1, is calculated as

p̃t+1 = pt + vt.

If the human position at frame t+ 1, pt+1, is confirmed by
the correspondence matching described below, the system
updates vt+1 and at+1 as

vt+1 = wv ∗ v̂t+1 + (1− wv) ∗ vt

and
at+1 = wa ∗ ât+1 + (1− wa) ∗ at,

where v̂t+1 = pt+1− pt, ât+1 = vt+1− vt, and wv and wa

are the update weights for the newest velocity and acceler-
ation respectively. Larger weights make the system follow
the change of velocity and acceleration quickly but be sen-
sitive to the detection errors.

4.2 Correspondence Matching
The correspondence between the estimated human and the
detected human is evaluated from four measures: (1) the
ratio of region overlapped, (2) the ratio of change region,
(3) detection score, and (4) color histogram similarity. The
correspondence measure is given by

M(estimation, detection)

= wregion ∗Mregion + wchange ∗Mchange

+wscore ∗Mscore + wcolor ∗Mcolor, (1)

where Mregion is the ratio of the overlapped region between
the estimated human and the detected human, Mchange is
the ratio of the change region detected by change detec-
tion in Sec.2 in the human region, Mscore is the score of
human detection, Mcolor is a color histogram similarity be-
tween the estimated human and the detected human based
on color histogram intersection [13], and the coefficients
wregion, wchange, wscore, and wcolor are the weights for
the four measures, respectively. After the correspondence
matching, the tracker merges other detected humans similar
to the matched human based on the above measure and the
remainders are added as new human trajectories.

Kalman filter and particle filter will realize a more sta-
ble tracker than the linear estimation tracker. We intend to
introduce them in future work.

4.3 Human Tracking Result

Fig.8 shows some results of human tracking. Rectangles
indicate human detection results and following line seg-
ments indicate human tracking results. Fig.7(a) shows
head tracking for E20:OpposingFlow detection of CAM1;
Fig.7(b) shows whole-body tracking for E05:PersonRuns
detection of CAM2; Fig.7(c)(d) show upper-body tracking
for E19:ElevatorNoEntry of CAM4 and E05:PersonRuns of
CAM1.
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[ (d) upper-body ]
(E05:PersonRuns)

Figure 8: Sample results of human tracking

5 Event Detection

Our event detector detects three required events:
(1)E05:PersonRuns, (2)E19:ElevatorNoEntry, and
(3)E20:OpposingFlow. In the following subsections,
we explain these three event detections.



5.1 E05:PersonRuns
Our event detector detects the event E05:PersonRuns based
on the velocity of the tracked human. It maintains the av-
erage µ and standard deviation σ of the velocity in eight
directions at each segmented surveillance area as shown in
Fig.9. If the velocity of the tracked human exceeds µ+2.0σ
continuously, the event detector recognizes it as the event
E05:PersonRuns.

Though the parameters µ and σ should be learned from
the tracked humans in the training data, we used approxi-
mate values manually given because of the lack of training
time. Since we only checked the part of the training data for
the parameter setting, use of all the training data is expected
to greatly improve the performance of the event detector.

Figure 9: Statistics of human velocity and direction

5.2 E19:ElevatorNoEntry
Our event detector detects the event E19:ElevatorNoEntry
based on the sequence of the change in the elevator door
area and the sequence of human detection. It detects
the door is closed by the disappearance of the change
in the elevator door area and then detects the event
E19:ElevatorNoEntry if a human is detected during the
closing of the door. The elevator door area is manually
given and the human detector is trained using upper half of
the body because only upper half of the body can be seen
in CAM4 elevator data.

5.3 E20:OpposingFlow
Our event detector detects the event E20:OpposingFlow
based on the flow direction of the tracked human. It main-
tains the occurrence probability of the flow in eight direc-
tions at each segmented surveillance area as shown in Fig.9.
The ordinariness of the flow direction of the tracked human
is given by

Ord(flow) = arg max
dir=1..8

wdir ∗ cos(flow, dir),(2)

where wdir is the occurrence probability of the flow in
the direction of dir. If the ordinariness is less than a
threshold, the event detector recognizes it as the event
E20:OpposingFlow.

Though the parameter wdir should be learned from the
tracked humans in the training data, we used approximate
values manually given because of the lack of training time.
Since we only checked the part of the training data for the
parameter setting, use of all the training data is expected to
greatly improve the performance of the event detector.

6 Conclusion
In this paper, we explained our implementation of an event
detection system for TRECVID surveillance task. Our sys-
tem consists of four components: change detection, human
detection, human tracking, and event detection.

First, our change detector detects change region from
the input image. It combines pixel intensity histogram us-
ing color information, PTESC, and PrBPRRC; therefore,
it is robust against illumination changes and background
movements such as walking people. Next, our human de-
tector detects humans from the change region. It intro-
duces our new powerful CoHOG feature that outperforms
the HOG feature. Then, our human tracker tracks the de-
tected humans using linear estimation of human position
and color histogram matching. It estimates the next po-
sition of the tracked human and compares it with newly
detected humans. The correspondence is evaluated based
on the ratio of region overlapped, the ratio of change re-
gion, detection score, and color histogram similarity. Fi-
nally, our event detector detects three required events with
the results of change detection and human tracking. The
events E05:PersonRuns and E20:OpposingFlow are de-
tected based on the velocity and direction of the human
flow. The event E19:ElevatorNoEntry is detected based on
the disappearance of changes in the elevator door area and
the human detection in the waiting area.

The system requires many parameters for the decisions
and they have to be learned from training data. At present,
we are using the parameters manually given because of the
lack of training time. In future work, we intend to improve
the system performance by learning the parameters from
the TRECVID training data.
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