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Abstract

This paper presents overview and comparative analysis of our systems designed for 3 TRECVID
2009 tasks: high-level feature extraction, automatic search, and content-based copy detection.

High-Level Feature Extraction (HLFE):
Our main focus for the HLFE task is on the study of a new method named domain adaptive

semantic diffusion (DASD) [1], which exploits semantic context (concept relationship) while
also considers the domain-shift-of-context to improve concept detection accuracy. We apply our
TRECVID 2008 HLFE system [2] to construct baseline detectors for the 20 evaluated concepts,
where both local and global features are explored. Evaluation results show that our 2008 system
is still able to produce strong performance (Run 5: MAP=0.156). Over the 20 strong baseline
detectors, DASD consistently improves 17 concepts using a set of 300+ relatively much weaker
detectors (from VIREO-374 [3]) as contexts (Run 1–4). Our 6 submitted runs are summarized
below:

- A vireo.dasd20scorelinear 1: DASD over a baseline using linear weighted fusion of local
and global features. Concept affinity estimation method is the same to Run 3.

- A vireo.dasd20fcs 2: DASD over Run 5; using ground-truth annotations and Flickr context
to estimate concept affinity.

- A vireo.dasd20score 3: DASD over Run 5; using ground-truth annotations and detection
score to estimate concept affinity.

- A vireo.dasd10 4: DASD over Run 5; using ground-truth annotations to estimate concept
affinity (only applied for 10 concepts).

- A vireo.localglobal 5: average fusion of local and global features.

- A vireo.localalone 6: local feature alone - multiple detectors and spatial partitions.



Automatic Video Search:
For this task, in the past we have been focusing on concept-based video search [4, 5]. Given

a textual query, various factors including semantic relatedness, co-occurrence, diversity, and
detector robustness were jointly considered for better selection of the concept detectors. This
year, in addition to textual queries, the visual query examples are also taken into account,
and our main focus is on the combination of multiple search modalities. To this end we apply a
concept-driven fusion scheme, which is able to dynamically discover the (near-)optimal modality
weights for each query. Evaluation results confirm the effectiveness of our fusion approach,
offering at least 10% improvement compared to the best uni-modality performance.

- F A N CityUHK1: multi-modality fusion of concept-based search (a slight different setup
based on Run 5), query-by-example (Run 9), and text baseline (Run 10).

- F A N CityUHK2: multi-modality fusion of concept-based search (Run 5), query-by-
example (Run 9), and text baseline (Run 10).

- F A N CityUHK3: multi-modality fusion of concept-based search (Run 6), query-by-
example (Run 9), and text baseline (Run 10).

- F A N CityUHK4: multi-modality fusion of concept-based search (Run 7), query-by-
example (Run 9), and text baseline (Run 10).

- F A N CityUHK5: concept-based search; using both textual and visual example queries
for concept selection.

- F A N CityUHK6: concept-based search; using textual queries for concept selection based
on semantic and context spaces [5].

- F A N CityUHK7: concept-based search; using textual queries for domain adaptive con-
cept selection based on Flickr context similarity.

- F A N CityUHK8: concept-based search; using textual queries for concept selection based
on Flickr context similarity.

- F A N CityUHK9: query-by-visual-example.

- F A N CityUHK10: text-based search.

Content-Based Video Copy Detection:
Our approach for copy detection is mainly based on our recent work on near-duplicate

keyframe detection [6]. We consider only two features: bag-of-visual-words (BoW) based on
SIFT and bag-of-audio-words (BoA) based on MFCC. To achieve fast and accurate BoW-based
detection, indexing and various geometric verification techniques are employed. We submitted
2 video-only runs and 3 audio-video runs (see descriptions in Section 3).

1 High-Level Feature Extraction

In TRECVID 2009, we experiment our recently proposed algorithm, named domain adaptive
semantic diffusion (DASD) [1], for context-based concept fusion. Starting from hundreds of
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Figure 1: Our TRECVID-2009 local feature-based keyframe representation framework.

individually developed concept detectors, DASD exploits semantic context (concept relationship)
to refine concept detection scores using graph diffusion technique. Particularly, it involves a
semantic context adaptation process to cope with domain change between training and test
data. We adopt our 2008 HLFE system as a baseline. In the end, we find that the well designed
2008 system which utilizes both local and global features still produces excellent performance
with MAP=0.156, and the DASD algorithm is capable of consistently improving such a strong
baseline for most of the evaluated concepts.

1.1 Baseline Detectors Using Local and Global Features

Bag-of-visual-words (BoW) representation derived from local keypoint features has been playing
a very important role in a successful concept detection system. For this, we slightly update our
2008 BoW representation framework (see Figure 2 in [2]), by removing a keypoint detector and
adding in one more spatial partition. The new framework is show in Figure 1. Detector MSER
is dropped since it did not help much in TRECVID 2008. As using multiple spatial resolutions
tends to be helpful, we add in a 3 × 1 partition. At the end for each concept, there are four
SVMs to be trained using BoW histograms. For more details about this BoW representation,
please refer to [2, 7].

We extract two kinds of global features: grid-based color moments (CM) and grid-based
wavelet texture (WT). For CM, we calculate the first 3 moments of 3 channels in Lab color
space over 5× 5 grids, and aggregate the features into a 225-d feature vector. For WT, we use
3 × 3 grids and each grid is represented by the variances in 9 Haar wavelet sub-bands to form
a 81-d feature vector. Two SVMs are trained for each concept using the two global features
respectively.

Given a test keyframe1, the SVM classifiers are applied on the same set of features for
1For both HLFE and automatic search tasks, we extract 3 keyframes from each test shot.
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Figure 2: Illustration of DASD using four example concepts. Over a set of testing keyframes,
detectors of frequently concurrent concepts tend to produce highly correlated prediction scores
(left; road and vehicle). Therefore we model concept relationship in a graph structure where each
node is a concept, and the edge weight (line width) indicates concept affinity (right). Prediction
scores of the individual concept detectors are then refined w.r.t. the concept affinities using
graph diffusion technique.

prediction. The raw outputs of the SVMs are converted into posterior probabilities (concept
detection score). We then combine detection scores from the six SVMs in the “late fusion”
manner, i.e. the final decision is made by fusing of the outputs multiple separate classifiers. In
most of our experiments, “average fusion” is adopted to combine different classifiers.

1.2 Domain Adaptive Semantic Diffusion (DASD)

Most video concept detection systems assign single or multiple concept labels to a test sample
(keyframe), where the assignment is often done independently without considering the inter-
concept relationship. Due to the fact that concepts do not occur in isolation (e.g., smoke and
explosion), more research attentions have been paid recently for improving detection accuracy
by learning from semantic context (inter-concept relationship).

The learning of contextual knowledge, however, is often conducted in an offline manner
based on training data, resulting in the classical problem of over-fitting. For large scale semantic
concept detection which could involve simultaneous labeling of hundreds of concepts, the problem
becomes worse when the unlabeled videos are from a domain different from that of the training
data. For example, concept weapon always co-occurs with desert in news videos due to plenty
of events about Iraq war. When such context relationship is captured by using news videos as
training data, misleading detection results will be generated if it is applied to documentary videos
where such relationship is seldom observed. This brings two challenges related to scalability for
context-based learning: the need for adaptive learning and the demand for efficient detection.

DASD is designed to tackle these two challenges in a uniform fashion. As illustrated in
Figure 2, one underlying assumption of DASD is that detectors of frequently concurrent concepts
should produce highly correlated scores. We therefore construct an undirected and weighted
graph, namely semantic graph, to model the concept affinities. The graph is then applied to



refine concept detection scores using a function level diffusion process. The aim is to recover the
consistency of the detection scores w.r.t. the concept relationship. To handle the domain change
problem, DASD further allows to simultaneously optimize the detection results and adapt the
geometry of the semantic graph (concept affinity) according to the test data distribution. More
formally, the cost function of DASD is defined as:

E(g, W ) =
1
2

m∑

i,j=1

Wij || g(ci)√
d(ci)

− g(cj)√
d(cj)

||2, (1)

where g(ci) and g(cj) are the detection score vectors over a set of testing keyframes for concepts
ci and cj ; Wij indicates the affinity between the two concepts; d(ci) and d(cj) are normalization
factors; m is the total number of semantic concepts.

Apparently, this cost function evaluates the smoothness of g over the semantic graph. There-
fore, reducing the function value of E makes the detection results g more consistent with the
concept affinities captured by W . Specifically, we use gradient descent to reduce E by updating
both g and W iteratively. The refinement of g is essentially a context-based concept fusion
process, while the modification of W facilitates the domain adaptation of the semantic context.

The major advantage of DASD is twofold. First, it allows the online update of semantic
context for addressing the problem of domain-shift. Second, with a linear complexity to the
number of concepts and testing samples, it is scalable to large data sets where only a couple of
minutes is required to complete DASD over hundreds of concepts for thousands of video shots.
Interesting readers can refer to [1] for more details of DASD.

1.2.1 Graph Construction Methods

In DASD, both the concept affinity W and the detection score g need to be initialized. The
initial values of g can be directly set as the detection scores of individual classifiers. There can be
many ways to compute the concept affinity. Here we evaluate three different knowledge sources:

Ground-truth annotation: One ideal way to estimate the concept relationship is to use a
training set Xtrn and its corresponding label matrix Y , where yij = 1 denotes the presence of
concept ci in the sample xj , otherwise yij = 0. Base on this, the concept relationship can be
computed using Pearson product moment correlation as

PM(ci, cj) =
∑|Xtrn|

k=1 (yik − µi)(yjk − µj)
(|Xtrn| − 1)σiσj

, (2)

where µi and σi are the sample mean and standard deviation, respectively, of observing ci in
the training set Xtrn.

The correlation calculated by the above equation can be either negative or positive. In this
experiment, we only consider positive correlation and construct a semantic graph G as:

G = (C, E,W ), (3)
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Figure 3: (a) Rich context information associated with a Flickr image. (b) The total number of
images returned using keyword-based search in Flickr image context.

where C, E,W represent a node set (concepts), an edge set, and the edge weight matrix (con-
cept affinities) respectively. An edge eij ∈ E is established when PM(ci, cj) > 0 and Wij =
PM(ci, cj).

Prediction score: An alternative source to estimate the concept affinities is the initial pre-
diction scores from individual classifiers. Let T be the test data set and gi

k be the baseline
prediction scores of concept ci in test shot k. Similar to Equation 2, the weight Wij of the

edge (ci, cj) can be calculated as Wij =
P|T |

k=1(gi
k−µi)(g

j
k−µj)

(|T |−1)σiσj
, where µi and σi are the mean and

standard deviation of the prediction scores of ci, respectively, in T .
Compared to ground-truth annotation, using prediction score is more economic (less accu-

rate, though) since the former requires a fully labeled training set. Manual labels are difficult
to obtain in practice, especially when the number of concepts is in the order of thousands.

Flickr context: The growing practice of online photo sharing has resulted in a huge amount of
consumer photos accessible online. In addition to the abundant photo content, another attractive
aspect of such photo sharing activity is the context information generated by users to depict the
photos. As shown in Figure 3 (a), the rich context information includes title, tags, description
and comments. Here we make use of such context information for concept affinity estimation.

Given two concepts, we compute their relatedness based on the number of Flickr images
associated with the concept names. With the number of hits returned by Flickr, we apply NGD
derived from Kolmogorov complexity theory to estimate concept distance [8]:

NGD(x, y) =
max{log h(x), log h(y)} − log h(x, y)

log N −min{log h(x), log h(y)} , (4)

where h(x) denotes the number of images associated with concept x in their context, and h(x, y)
denotes the number of images associated with both concepts x and y; N is the total number of
images on Flickr, which is roughly estimated as 3.5 billion by the time we did the experiments.
The NGD is then converted to Flickr context similarity (FCS) using a Gaussian kernel, defined
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Figure 4: Mean average precision of all 222 HLFE runs submitted to TRECVID-2009. Our
submissions are marked in red.

as
FCS(x, y) = e−NGD(x,y)/ρ, (5)

where the parameter ρ is empirically set as the average pairwise NGD among a randomly pooled
set of words. Similar way of setting ρ has been shown to be effective for kernel based classification
tasks [7]. An example of calculating FCS is shown in Figure 3 (b).

FCS can be directly used as concept affinity for DASD. Similar to detection score, it also
does not require a fully labeled training set. Since Flickr contexts are basically composed of
descriptions to photos, the word co-occurrence estimated using FCS somewhat reflects visual
co-occurrence of both terms in images. This is the major advantage of FCS compared to other
word similarity measures (e.g., those using WordNet ontology). More descriptions/evaluations
of FCS can be found in [9].

1.3 HLFE Results and Analysis

As described in the abstract, we have six submissions including two baseline runs (Run 5&6)
and four DASD runs (Run 1–4). Figure 4 shows MAP performance of all the official submissions
this year. Our runs are marked in red color. As can be seen from the figure, our 2008 system
which judiciously uses local and global features still produces impressive performance, with a
local feature alone run of MAP at 0.150, and a local+global feature run of MAP at 0.156. The
light-weight modification of the system does not show clear performance improvement. From
our internal evaluation, the MAP performance merely drops to 0.149 without the newly added
3 × 1 partition. Thus we conclude that although using multiple spatial partitions tends to be
helpful, adding too many layers will deteriorate the feature mismatch problem, especially for
objects spanning multiple cells.

The major difference of the four DASD runs is semantic graph construction method, i.e., the
way to compute concept affinities. We use VIREO-3742 detectors [3] as contextual knowledge,
and construct a graph of 394 nodes by directly adding the 20 evaluate concepts into the semantic

2Download site: http://vireo.cs.cityu.edu.hk/research/vireo374/. Features and detection scores of VIREO-374

on TRECVID 2009 data collection have been released. Detection scores of this year’s 20 concepts using our new

models (for Run 5) are also available at http://www.ee.columbia.edu/ln/dvmm/CU-VIREO374/.
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Figure 5: Per-concept performance of our submitted runs.

space. Note that although about half of the 20 evaluated concepts exist in the 374 concept set,
we treat them as different nodes in the graph since the training set and feature representations
of VIREO-374 are quite different from our new basline3. Throughout the experiments, we use
ground-truth annotations (on TRECVID 2005 development set) to compute concept affinity
for the new concepts with their names existing in VIREO-374 (10 out of 20). Based on this
we submitted Run 4 where DASD is only applied to the 10 concepts (MAP gain for the 10
concepts: 5%). For the remaining 10 out-of-vocabulary concepts, we compute their affinities to
VIREO-374 concepts using either detection score (Run 3) or Flickr context (Run 2). For Run
2–4, we use Run 5 as baseline, while for Run 1, we adopt the same semantic graph as Run 3,
but use a slightly different (and worse) baseline from (than) Run 5.

As shown in Figure 4, all the DASD runs steadily outperform the baseline, with MAP of
0.160–0.163. The overall improvement over the baseline is about 4.5%. This is lower than that
from our previous experiments on TRECVID 2005–2007 [1], where the improvements range from
11.9% to 17.5%. This is due to the fact that for the previous TRECVID collections we used
similar baselines for all the concepts, while for TRECVID 2009, the baseline detectors of the 20
target concepts are much stronger than that of VIREO-374. Using weaker detectors as contexts
indeed largely limits the performance gain of DASD in this experiment.

Figure 5 gives the per-concept performance of our six submissions. Similar to our observa-
tions in [1], we see that DASD consistently outperforms the baseline for most of the concepts
(e.g., Run 2 improves 16/20 concepts over Run 5). Significant improvements are obtained for
many concepts (e.g., 30% for Bus and 10% for person-riding-bicycle). Very few concepts surfer
from minor performance degradation (e.g., Boat Ship).

To clearly compare the effectiveness of FCS and detection score for graph construction (con-
cept affinity estimation), we show per-concept performances of Runs 2, 3, and 5 for the 10
out-of-vocabulary concepts in Figure 6. Both methods do not require all the concepts being

3VIREO-374 detectors were trained on broadcast news videos (TRECVID 2005 development set) using BoW

(500-d; no spatial partition), CM, and WT features.
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Figure 6: Comparison of different graph construction methods (using FCS and detection score
respectively) over the 10 out-of-vocabulary concepts.

fully labeled over a large training set (in contrast to computing affinity using ground-truth an-
notation). We see that there is no clear winner of the two, with equal overall MAP improvement
at 4%. Thus we conclude that detection score may be used for out-of-vocabulary concepts if the
test set is large enough to compute score correlation (cf. Section 1.2.1). Otherwise, FCS is a
good choice.

The DASD algorithm is highly efficient. The complexity is O(mn), where m is the number
of concepts and n is the number of testing samples (keyframes). Specifically, performing DASD
for one testing sample only requires 2 milliseconds on a regular PC. More detailed empirical
evaluations of DASD can be found in [1].

2 Automatic Video Search

For the automatic search task, our main focus is on the combination of three modalities: text-
based search, concept-based search, and query-by-example (QBE). We submitted four multi-
modality search runs (Run 1–4) and six uni-modality search runs (four of them are concept-
based search runs with different concept selection schemes). In the following we first describe
each of the three modalities. After that, we introduce our multi-modality fusion method and
analyze search results.

2.1 Text-based Search

In text search, we only employ the English output of ASR/MT [10]. Instead of traditional
method like TF-IDF, our text search model adopts Okpai [11] to index the transcripts. Based
on our previous experiments, synonyms usually hurt the performance, so our text search model
only uses the original noun query items as query input to avoid the negative affect of irrelevant
words. The application interface provided by Lemur [12] is used.



2.2 Concept-based Search

We use VIREO-374 [3] detectors for concept-based search, and submit four runs (Run 5–8)
based on different concept selection schemes, which are described as follows.

2.2.1 Semantic Space and Context Space (SSCS) Reasoning

For this, we directly apply our previous work in [5]. Only textual queries are considered for
concept selection. Two spaces, semantic space (SS) and context space (CS) are constructed using
WordNet ontology and manual annotations (on TRECVID 2005 development data) respectively.
SS and CS are then jointly used to model the semantic and contextual relationship between
concepts and query terms. Concepts that are semantically and/or contextually relevant to the
textual query terms are selected. Finally, a multi-level fusion strategy is further employed to
combine the selected concepts. Note that the aim of this multi-level fusion is for the combination
of multiple concepts, which is different from the multi-modality fusion introduced later on. For
more details about this component, please refer to [5].

2.2.2 Flickr Context Similarity (FCS)

In addition to semantic and context reasoning, we also test FCS described in Section 1.2.1 for
concept selection. The relevancy of a concept C to a query term q is measured by FCS(C, q). For
each query term, three concepts are empirically selected. All the selected concepts are finally
linearly fused to response the query, where the fusion weight for each concept is determined by
FCS.

2.2.3 Signed Fisher Ratio (SFR)

Different from the text-based schemes introduced above, in this section we perform concept
selection by investigating visual query examples. The intuition is, by surveying the presence
(absence) of concepts in positive (negative) examples, concepts are picked accordingly based
on their prevalence and discriminativeness. There are several assumptions made here. First,
the presence of a concept in visual examples is not known a priori in practice. We thus adopt
concept detector to predict the relevance of a concept to the visual query examples. Second,
query examples are treated as positive training samples, and in general the number of examples
is very small. Third, there is no negative sample comes along with a query. We draw samples
randomly from the training set as pseudo-negative examples, assuming that majority of the
training samples are not relevant to the query.

Denote {u+, σ+} and {u−, σ−} as the mean and standard deviation of prediction scores from
a concept C on the positive and negative training examples respectively. We propose a signed
Fisher ratio (SFR) to measure the relevance of C to query as

Vrel(C) = sign(u+ − u−) · (u+ − u−)2

σ2
+ + σ2−

, (6)



where the sign function contrasts the prevalence of C in positive and negative samples. Positive
value will be assigned, indicating the usefulness of C to visual query, if C receives higher pre-
diction scores on average in positive than in negative samples. This function basically groups
the available set of concepts into positive and negative concepts with respect to the query. The
discriminativeness of a concept is further determined by the second part of the equation, which
is the original formula of Fisher ratio, for measuring class separability. By SFR, all concepts
are eventually ranked based on their relevance. We consider the top-k most relevant concepts
where the value of k is empirically set equal to the number of concepts selected by semantic and
context reasoning.

2.3 Query-by-Example (QBE)

The visual query examples include images and/or short video clips. We adopt the supervised
learning approach (Multi-bag SVMs) in [13] for QBE, by training ten SVMs for each query.
Visual examples are used as the positive training samples for all the SVMs. Ten sets of pseudo-
negative examples are randomly sampled from the dataset and used separately for each SVM.
The visual features for learning SVMs are concept scores produced by VIREO-374 concept
detectors. In other words, each sample is represented by a vector of 374 elements, where each
element is a probability indicating the confidence of detecting the corresponding concept in the
sample. With the outputs from all the ten SVMs trained for each query, finally we adopt average
fusion to combine the results for ranking video shots.

2.4 Concept-Driven Multi-Modality Fusion

In this section we introduce a concept-driven approach for multi-modality fusion (text-based
search, concept-based search, and QBE). Since the importance of the each search modality
for a user query cannot be directly obtained in advance, we explore its selected concepts in
concept-based search to implicitly predict fusion weights.

To this end, we treat each semantic concept as a simulated query by using concept name as
textual query and ten randomly chosen positive samples as visual query. Based on both textual
and visual queries we perform search for this concept (simulated query) against a training dataset
using the three modalities (text-based, concept-bsed, and QBE). Then the uni-modal search
performance for the concept/simulated-query can be easily computed using manual labels of
the concept. With these simulated search evaluations, given a real user query, we estimate its
multi-modality fusion weights on-the-fly, by jointly considering query-concept relatedness and
the simulated search performance of all selected concept.

2.5 Search Results and Analysis

Table 1 summarizes our submitted runs. With such a very small number of positive samples
per-query, the multi-bag SVMs work very well with MAP at 0.029 (Run 9), but the text-
based search (Run 10) performance is surprisingly bad this year. Among all the concept-based



Table 1: Description and MAP of our submitted runs.
Run ID Description MAP
Run 1 Multi-modality Fusion (same to Run2 but with a different SFR setup) 0.044
Run 2 Multi-modality Fusion (Run 5+Run 9+Run 10) 0.035
Run 3 Multi-modality Fusion (Run 6+Run 9+Run 10) 0.046
Run 4 Multi-modality Fusion (Run 7+Run 9+Run 10) 0.040
Run 5 Concept-based Search (SSCS+SFR) 0.030
Run 6 Concept-based Search (SSCS) 0.033
Run 7 Concept-based Search (FCS+adaptation) 0.036
Run 8 Concept-based Search (FCS) 0.049
Run 9 QBE 0.029
Run 10 Text-based Search 0.002

search runs, FCS which only uses textual queries generates an impressive MAP at 0.049 (Run
8). Compared with the other two concept-based runs which select concepts using SSCS (Run
6) and its combination with SFR4 (Run 5), FCS achieves MAP gains of 48.4% and 63.3%
respectively. This indeed signified the advantage of FCS for concept selection – it is able to
reflect visual co-occurrence of words (query terms/concepts). A detailed evaluation of FCS can
be found in [9]. Additionally, in Run 7, we further applied a new adaptation technique to
refine the selected concept set of FCS according to test data characteristics [9]. However, we
performed this adaptive search on shot-level after consolidating concept detection scores from
keyframe-level5, which seems to degrade the performance significantly.

On the other hand, from comparing Run 5 with Run 6, it turns out that collecting additional
concepts from SFR does not improve the performance. We investigated the results and found
that some concepts are selected twice by SSCS and SFR. As a result our simple polling strategy
largely over-weighs the importance of these concepts.

For the four multi-modality search runs, we see consistent MAP improvements over corre-
sponding uni-modality performance (e.g., 46.7% of Run 1 over Run 5, 16.7% of Run 2 over Run
5, 39.3% of Run 3 over Run 6, and 13.9% of Run 4 over Run 7). This confirms the effectiveness
of our concept-driven multi-modality fusion approach.

Figure 7 further gives per-query results of our submitted runs, together with the mean and
best performance of all submissions. We achieved the best performance for Query-273 (for a
closeup of a hand, writing, drawing, coloring, or painting), and above-mean performance for
most of the remaining queries. It is also worth noting that although concept-based search
produced the best performance among our submissions (Run 8), it is largely limited by the
number/quality of available concept detectors. For example, a concept cable is selected for
Query-283 “find a person playing a piano” because there is no better choice. In the future we
plan to put more efforts in building large-scale reliable concept detectors.

4For this run we simply pool all the selected concepts by SSCS and SFR together for concept-based search.
5All the other runs are conducted on keyframe-level.
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Figure 7: Per-Query performance of our submitted runs vs. the mean and best performance of
all submissions of fully automatic search.

3 Video Copy Detection

3.1 Video-Only Copy Detection

Our submitted video-only runs for CBCD are mainly based on our recent works on near-duplicate
video search. Figure 8 shows our framework, which consists two major parts: offline indexing and
online retrieval. We only consider one feature - bag-of-visual-words (BoW) generated from local
keypoints. For offline indexing, one video frame is sampled every 2.5 seconds (567,056 frames
in the test/reference set). Keypoint features are computed using SIFT [14]. A vocabulary of
20,000 visual words is generated for BoW representation. We adopt inverted file to index the
frames extracted from the reference set.
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Figure 8: Video-only copy detection framework.

During online retrieval, we extract one frame per 1.25 seconds from queries. The frames
are represented with BoW, and mapped into the inverted file structure for efficient search.



To alleviate the information loss in BoW quantization, we adopt an enhanced weak geometric
consistency verification strategy (EWGC). EWGC is a modified version of WGC proposed in [15].
To consolidate matching results from frame level to video level, we employ 2D Hough transform
(HT) to aggregate scores from the matched frames and localize copy segments.

We also perform and test an internal run by including hamming embedding (HE) and pattern
entropy checking (SR-PE [6]), before and after the EWGC, respectively. HE is adopted as a pre-
filtering step, to reduce the number of candidate frame pairs for EWGC and thus improve the
overall detection efficiency. The additional process of SR-PE further prunes false alarms which
cannot be filtered by EWGC. Our video-only runs are listed as follows. Table 2 summarizes the
detailed settings of these runs.

Table 2: Configurations of different video-only runs.

Run ID Retrieval Scheme HE EWGC SR-PE Weighting Scheme

Vireo.v.BALANCED.tgc First Scheme
√

Sim1×Score

Vireo.v.BALANCED.norm First Scheme
√

Sim2×Score

Vireo.v.NOFA.srpe Second Scheme
√ √ √

Sim1×Nc

Sim1: cosine distance; Sim2: ratio of matched visual words between two frames;
Score: EWGC score; Nc: # of correct visual word matches estimated by SR-PE

Vireo.v.BALANCED.tgc: This run employs EWGC and 2D HT, shown as “First Scheme”
as indicated in Figure 8. For each query, we return top-2 retrieved videos for submission.

Vireo.v.BALANCED.norm: Similar to the previous run but with a different similarity mea-
sure (see Table 2).

Vireo.v.NOFA.srpe: This run employs HE, EWGC, SR-PE and 2D HT, shown as “Second
Scheme” in Figure 8. Only top-1 retrieved video is returned. Note that this run is not officially
submitted.

Table 3 shows the performance of three runs, measured in terms of NDCR and F1, and
compared against the best and median results. Among the two official runs we submitted,
Vireo.v.BALANCED.tgc shows better performance in terms of NDCR. This implies that co-
sine similarity is a better choice over the ratio of matched visual words. The updated run,
Vireo.v.NOFA.srpe, shows much better performance. In terms of NDCR, it is even better than
the best reported results for T3, T4, T5 and T6. For T2 (Pic-in-Pic), T8 and T10 (with mir-
ror), our approach shows relatively poor performance (compared to the best results) due to the
limitation of local features which cannot deal with these types of transformations well.

Because our framework is basically targeted for near-duplicate detection, the performance
is not so good in terms of F1 measure, especially for reference videos containing near-duplicate
scenes to the true video copy segment. A typical example is shown in Figure 9, where many
frames in the ground-truth video are visually similar to the query video. In this case, the exact
copy segment cannot be correctly located by our approach, even though this video can always
be correctly identified.



Table 3: Performance of different video-only runs.

Opt.NDCR Opt.F1

tgc norm srpe median best tgc norm srpe median best

T2 0.985 1.204 0.940 1.005 0.938 0.920 0.95 0.637 0.165 0.982

T3 0.898 0.970 0.022 0.998 0.216 0.780 0.783 0.612 0.801 0.995

T4 0.993 0.993 0.478 1.000 0.493 0.720 0.720 0.613 0.725 0.938

T5 0.993 0.993 0.060 1.001 0.142 0.720 0.720 0.624 0.775 0.995

T6 1.000 1.032 0.015 1.002 0.408 0.000 0.804 0.597 0.800 0.952

T8 0.985 0.993 0.851 1.002 0.420 0.869 0.944 0.488 0.820 0.993

T10 1.032 1.102 0.940 1.005 0.723 0.875 0.944 0.468 0.748 0.990

Query video

Ground-truth video

1.25 2.5 3.75 5 sTime code

85 122.5 125 132.5 135 137.5 140 sTime code

Figure 9: A typical example on which our approach shows low localization accuracy. For a refer-
ence video which has self-duplicate or similar segments throughout the sequence, our approach
is not able to accurately localize the copy.

For query processing and retrieval time, the two official runs take approximately 250 seconds
to complete the search for a query video of average length (178 seconds). For the new run
NOFA.srpe, due to the use of HE as a pre-filtering step, the search time is significantly reduced
to 134 seconds.

3.2 Audio-Video Copy Detection

Following the similar idea of BoW, we propose the use bag-of-audio-words (BoA) to perform
audio-based copy detection. For both query and reference video sequences, we extract audio
signals and converted them to mono PCM (16 bits) with 44.1KHz sampling rate. After that,
the audio signals are divided into segments of 40ms-length with 50% overlap between consec-
utive ones. Each segment is then represented by a 39-dimensional Mel-Frequency Cepstrum
Coefficients (MFCCs). Finally, every 50 continuous audio segments (1 second audio signal) are
quantized using a pre-constructed audio word vocabulary (15, 000 words), and represented by
a BoA histogram. The BoA histogram is used as audio feature of a video frame closet to the
center of the 1 second time slot. With the BoA features, similar to our video-only approach,
Hough transform is used to aggregate frame-level similarity scores. For each audio query, the
top one video is returned.

For joint audio-video detection, we use late fusion to fuse our audio-only result with several



Table 4: Configuration of the video-only component in our audio-video runs.

Run ID Retrieval Scheme HE EWGC SR-PE Weighting Scheme

Vireo.v.NOFA.he Second Scheme
√ √ √

Sim1×Nc

Vireo.v.BALANCED.ewgc Second Scheme
√ √ √

Sim1×Score

Vireo.v.BALANCED.retri Second Scheme
√ √

Sim1×Score

Vireo.v.NOFA.srpe Second Scheme
√ √ √

Sim1×Nc
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Figure 10: Audio-video copy detection performance.

video-only runs under different settings. We perform four runs as described below. Detailed
configurations of the video-only part in our audio-video runs are summarized in Table 4.

Vireo.m.NOFA.he: This run fuses audio-only with Vireo.v.NOFA.he. There are program-
ming mistakes in this run. Results will not be discussed.

Vireo.m.BALANCED.ewgc: This run fuses audio-only with Vireo.v.BALANCED.ewgc.
Vireo.m.BALANCED.retri: This run fuses audio-only with Vireo.v.BALANCED.retri.
Vireo.m.NOFA.srpe: This run serves as an update of Vireo.m.NOFA.he. It fuses audio-only

with Vireo.v.NOFA.srpe. Note that this run was not submitted.

We linearly fuse video and audio results. Because scores from audio-only are much smaller
than those of video-only, we use weights of 10:1 to combine both modalities. Figure 10 shows
the performance of the three runs, measured in terms of NDCR and F1, and compared against the
best and median results6. For the two official runs (m.BALANCED.ewgc and m.BALANCED.retri),
performances are around median in terms of NDCR, but are relatively worse in terms of F1 mea-
sure. This indicates that the audio-only part contributes little to reducing the localization errors
in the video-only runs. The performance of the updated run (m.NOFA.srpe) is above median in
terms of NDCR. It is worth noting that, for 21/49 transformations, the NDCR scores of this run
are below 0.05. From our investigation, compared to video-only, the fusion is able to improve
10% in terms of recall while degrade 7% for precision. On one hand, audio-only results are com-
plementary to video-only results, especially when video-only cannot handle the Pic-in-Pic and
flip transformations well. On the other hand, however, since MFCC feature is not discriminative
enough, a number of false-alarms are also brought into the audio-video results.

6The best and median results are roughly estimated by ourselves from the figures officially released.



For computational time, the video-only part used for all audio-video runs finishes one query
in 134 seconds on average. Because of the simplicity of our audio-only system, audio-only copy
detection is much more efficient – taking just 15 seconds on average for a query. In total, the
average time cost for a query is around 150 seconds.

4 Summary

This year, we applied our TRECVID-2008 HLFE system [2] as baseline. As expected, we again
demonstrated strong performance of this system which largely relies on local keypoint features
(MAP=0.156). By considering context-based concept fusion using DASD, we obtained some fur-
ther improvements. Similar to our observations in [1], we have seen consistent improvement for
most of the evaluated concepts from using DASD. For automatic search task, we demonstrated
the power of using Flickr context for query-concept similarity estimation. Compared to other
ontology-based word relatedness measures, it has the advantage of reflecting word co-occurrence
in images rather than text corpus. We also presented a concept-driven multi-modality fusion
method, which offers significant performance gains of 14-47% over uni-modality search. We
believe that using multiple search modalities with query-adaptive fusion scheme is the right
direction towards a successful image/video search system.

For copy detection, video elements are represented using both bag-of-visual-words and bag-of-
audio-words. From our evaluation, video feature plays a more important role in copy detection.
Our additional video-only runs achieve the best results for 4 out of 7 transformations in terms
of NDCR. However, for F1 measure, since our framework is mainly developed for near-duplicate
detection, the performance is not satisfactory due to the excessive number of false alarms caused
by incorrect copy localization.
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