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Motivation

Huge advances in action recognition in controlled 
environment or in movie or sports videos.
– Known temporal segments of actions
– One action occurs at a time
– Little scale and viewpoint changes
– Static and clean background
– Actions are less natural in staged environments

How is the performance of action detection in 
huge amount of real surveillance videos?
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TRECVid 2009 Event Detection

Real surveillance videos recorded in London 
Gatwick Airport.
– Crowded scenes with cluttered background
– Large variances in scales, viewpoints and action styles

Huge amount of video data: 
– ~144 hours of videos with image resolution 720×576
– Computational efficiency is very critical!

10 required events: 
– CellToEar, Objectput, Pointing, PersonRuns, PeopleMeet, 

PeopleSplit, OpposeFlow, Embrace, ElevatorNoEntry, 
TakePicture.
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TRECVid 2009 Event Detection

A formidably challenging task !
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Related Work

Action representations:
– graphical models of key poses or examplars
– holistic space-time templates
– bag-of-words models of space-time interest points
– A vast pool of spatio-temporal features

How to locate actions:
– sliding window/volume search
– efficient subwindow/subvolume search
– human detection and tracking
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NEC’s System
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Human Detection and Tracking

The human detector 
– Based on Convolutional Neural Networks (CNN)

The human tracker
– A new multi-cue based head tracker
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BoW features based SVM

Motion edge history image (MEHI)
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Implementation 

Dense DHOG features 
– Every 6 pixels from 7×7 and 16×16 patches
– Soft quantization using a 512-word codebook

Spatial pyramids
– 2×2 and 3×4 cells

Frame based or cube based
– 1 frame or 7 frames (-6, -4, -2, 0, 2, 4, 6)

The feature vector for one candidate  
– 512× (2×2+3×4)=8192D
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Training of SVM Classifiers

Binary SVM classifiers for each action category
One set of training features: 520K in total
– 520K × 8192 × 4 (float)=17G bytes

SVM classifiers trained by averaged stochastic 
gradient descent (ASGD)
Highly efficient for training on large scale datasets 
– 2.5 mins to train 3 SVM classifiers on a 64bit blade server 
– CPU Intel Xeon 2.5GHz (8 cores)
– 16GB RAM 
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Cube based CNN
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CNN Architecture

Each candidate is a cube of 7 frames
5 different types of input features
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CNN Configuration

60x40 54x34

7x7

27x17

2x2

21x12

7x6

7x4

3x3 7x4

Input image patches: 60x40
Use 3 frames before and 3 frames after current 
frame with step size 2
– i.e., -6, -4, -2, 0, 2, 4, 6

Compute N*3+(N-1)*2 feature maps from N=7 input 
frames using hardwired weights
– Grey, x-gradient, y-gradient, x-optical-flow, y-optical-flow
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What Else We Tried?

Sparse coding of DHOG features
– The computations are unaffordable.

Gaussian Mixture Model (GMM)
– The storage and memory requirements are 

unaffordable.
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Experiments

Criteria: Normalized Detection Cost Rate (NDCR)
Training set: ~100 hours of videos
Test Set: ~14 hours out of 44 hours
– The subset of 14 hours videos used in testing is 

unknown to participants

The entire system is implemented with C++
– 64bit blade servers with Intel Xeon 2.5GHz CPU (8 

cores) and 16GB RAM.
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Training Sample Preparation

Positive samples
– Label the person performing the action every 3 frames
– Generate 6 additional samples by some perturbations

Negative samples
– The same person performing the actions in two 30-

frame intervals before and after the action occurs.
– The detected persons that are not performing the 

actions when the action occurs.

CellToEar ObjectPut Pointing Negative Total

25.2K 39.3K 152.2K 303K 520K
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Sample of Positive Samples

CelltoEar

ObjectPut

Pointing
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Feature Extraction

Training of the codebook using K-Means based 
on 8 hours videos on 11/12/2007
4 set of BoW features: 
– Gray-Frame
– Gray-Cube
– MEHI-Frame
– MEHI-Cube

3D-CNN
Evaluation on a 2-hour video may take 1-2 days.
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Parameter Selection

Linear combination of scores from 3 methods 
Exhaustive search of the weights and threshold to 
minimize the NDCR directly.
NDCR calculation is implemented with C++.
5-fold cross-validation to evaluate the performance
Search the best parameters for 2 combinations
– Gray-Frame + Gray-Cube + MEHI-Cube
– Gray-Frame + MEHI-Frame + 3D-CNN
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Cross-validation (1)
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Cross-validation (2)
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Submissions

NEC-1: 
– Gray-Frame + Gray-Cube + MEHI-Cube
– CelltoEar: 118; ObjecPut: 21; Pointing: 27

NEC-2
– Gray-Frame + MEHI-Frame + 3DNN
– CelltoEar: 63; ObjecPut: 26; Pointing: 19

NEC-3
– Combination of NEC-1 and NEC-2 on per camera 

per event basis according to the cross-validation
– CelltoEar: 63; ObjecPut: 13; Pointing: 27

UIUC-1
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Performance

Act.DCR: 0.999X (2008) -> 0.99X (2009)
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Sample Results
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Processing AnalysisFeatures

UIUC’s System for TRECVid 2009
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Motion History Images
(Bobbick & Davis 2001)

⎩
⎨
⎧ =

−−
=

otherwise
1t)y,D(x,if

1)1)ty,(x,Hmax(0,
τ

t)y,(x,H
τ

τ



Histograms of 
Oriented Gradients
Optical Flow

Features

Features are 
collected from 

many 
overlapping 

regions

• Partition the image window into local regions
• Histogram of the {Image Gradient/Optical Flow} based on 
the direction and magnitude
• Normalize over neighboring regions
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Results (2009)

True 
Positives

False 
Alarm

Miss Min DCR

Pointing 13 225 1050 1.006

Cell To Ear 0 58 194 1.060

Person Runs 1 38 106 0.997

Object Put 1 190 620 1.020



Results (2009)

True 
Positives

False 
Alarm

Miss Min DCR

Pointing 13 (57) 225 (2505) 1050 1.006

Cell To Ear 0 (8) 58 (4005) 194 1.060

Person Runs 1 (0) 38 (314) 106 0.997

Object Put 1 (21) 190 (2703) 620 1.020

(2008 Results)



Video Computer Vision on 
Graphics Processors -- ViVid

Video Decoder 

2D/3D Convolution

2D/3D Fourier Transform

Image / Video 
Processing

Optical Flow

Motion Descriptor (Efros et al.)

Motion History DescriptorFeature 
Extraction

Histograms of {Oriented Gradients / Optical Flow}

Vector Quantization
Analysis

SVM Classifier Evaluation

Download: 
http://libvivid.sourceforge.net



Conclusions

A long way to go for human action detection in 
real-world conditions!
A fruitful journey!
– A new multiple human tracking algorithm
– A new SVM learning algorithm for large scale datasets
– Parallel processing on graphics processors
– Evaluation of different action representations

Thank you!
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